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It combines the clarity and accessibility of an advanced textbook with the completeness
of an encyclopedia. The basic ideas that Lie and Cartan developed at the end of the
nineteenth century to transform solving a differential equation into a problem in
geometry or algebra are here reworked in a novel and modern way. Differential
equations are considered as a part of contact and symplectic geometry, so that all the
machinery of Hodge–de Rham calculus can be applied. In this way a wide class of
equations can be tackled, including quasi-linear equations, Monge–Ampère equations
(which play an important role in modern theoretical physics and meteorology).

The main features of the book are geometric transparency, clear and almost
immediate applications to interesting problems, and exact solutions clarifying how
approximate numerical solutions can be better obtained. The types of problem
considered range from the classical (e.g., Lie’s classification probelm) to the analysis
of laser beams or the dynamics of cyclones. The authors balance rigor with the need to
solve problems, so it will serve as a reference and as a user’s guide.
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xiv Preface

The aim of this book is to introduce the reader to a geometric study of partial
differential equations of second order.

We begin the book with the most classical subject: the geometry of ordinary
differential equations, or more general, differential equations of finite type. The
main item here is the various notions of symmetry and their use in solving a given
differential equation. In Chapter 1 we discuss the distributions, integrability and
symmetries. In a form appropriate to our aims, we remind the reader of the main
notions of the geometry of distributions: complete integrability, curvature, integ-
ral manifolds and symmetries. The Frobenius integrability theorem is presented
in its geometric form: as a flatness condition for the distribution.

The main result of this chapter is the famous Lie–Bianchi theorem which
gives a condition and an constructive algorithm for integrability in quadrat-
ures of a distribution in terms of a Lie algebra of the shuffling symmetries.
The theorem clearly explains the etymology of the expression “solvable Lie
algebra.”

In Chapter 2 we apply these results to explicit integration of scalar ordinary
differential equations. We consider some standard examples of differential equa-
tions integrable in quadratures but treat them in quite non-standard geometric
way to demonstrate the advantage of the language and the method of symmet-
ries. Even in the case of linear differential equations one is able to find some new
and interesting results by systematically exploiting the notion of symmetries.
The most instructive illustration of this methodology is the application of the
linear symmetries of (skew) self-adjoint linear operators. The space of linear
symmetries admits in this case the structure of a Lie superalgebra. For example,
the even part of the linear symmetries for the Schrödinger operator L = ∂2 +W
is isomorphic to the Lie algebra sl2, and the generating functions of the lin-
ear symmetries satisfy the third-order differential equation. The corresponding
third-order operator is the second symmetric power of the Schrödinger one. This
operator is also known as a second Gelfand–Dikii Hamiltonian operator, which
transforms the functional space of the potentials W under appropriate boundary
conditions into the infinite-dimensional Poisson algebra known as the Virasoro
algebra. We use this operator to obtain a description of integrable potentials
W such that the solutions of the Schrödinger equation Lu = 0 can be obtained
in quadratures. The operator is also used to find symmetries of the eigenvalue
problem for the Schrödinger operator. We show that if the potential W satis-
fies the KdV equation, or one of their higher analogs, then the eigenvalues and
eigenfunctions can be found by quadratures.

In Chapter 3 we illustrate the potency of the geometric approach to the
symmetries developing two constructions: a symmetry reduction and Lie’s
superposition principle.
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Preface xv

The first construction is very natural: given an ideal τ of the Lie algebra g

of shuffling symmetries of a completely integrable distribution, we decompose
the integrability problem into two steps: integrability of a completely integrable
with symmetry algebra τ , and then the new one with the symmetry factor
algebra g/τ .

Taking τ to be the radical of g we reduce by quadratures the integration of
the initial distribution to a distribution with a semi-simple or simple symmetry
algebra. The last distributions correspond to ordinary differential equations
which we call model equations. We give a description of the model equa-
tions which correspond to the classical simple Lie algebras. One can see the
advantage of using the model system from Lie’s superposition principle. The
principle provides us with all the solutions of the model differential equa-
tion when we know some finite number of solutions (a fundamental system of
solutions) and a (in general-non-linear) superposition law. Thus, for the case of
the three-dimensional Lie algebra sl2, the model is the Riccati equation and the
superposition rule is given by the cross-ratio of four points.

Part II of the book is devoted to symplectic algebra. Here we collect necessary
information associated with the existence of a symplectic structure on a basic
vector space. We had decided to gather together here all the main results not
only for the sake of completeness and to make the book self-contained but also
because of the conceptual importance of the symplectic structure for Monge–
Ampère differential equations.

Historically, the appearance of a symplectic structure in the geometric
studies of differential equation has traditionally been attributed to Huygens
papers in geometric optics (though, strictly speaking, he had used merely a
contact structure – an odd-dimensional cousin of the symplectic structure).
The importance of symplectic geometry was recognized by J. Lagrange, G.
Monge, A. Legendre and especially by Sophus Lie. E. Cartan and his Belgian
student T. Lepage had used the symplectic machinery to study the geometry of
Monge–Ampère equations at the beginning of the twentieth century. It is curi-
ous to note that T. Lepage had introduced a symplectic analog of Hodge theory
before the appearance the “very” Hodge decomposition theorem on Riemannian
manifolds.

The necessity of symplectic and contact geometry in mechanics is well
known. For Monge–Ampère differential equations one should go further and
use differential forms in the middle dimension.

The algebra of exterior forms on a symplectic vector spaces has some inter-
esting specific features. In Chapter 5 we study as sl2- structure given by a couple
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xvi Preface

of “rising” � and “lowering” ⊥ operators on the exterior forms:

�ω = ω ∧ �, ⊥ ω = ıX�ω

and by its commutator.
Here � is the given symplectic 2-form and ıX� is the contraction (the “inner

product” ) with the symplectically dual bivector X�.
Their commutator acts on k–forms by a multiplication:

ω → (n − k)ω.

The form ω annihilated by ⊥ is called a “primitive” or effective k-form. These
forms are extremely important – they correspond to Monge–Ampère operators.
The arguments of the sl2-representation theory give the Hodge – Lepage decom-
position theorem – the main result of this chapter – which states that any
exterior k-form ω on the symplectic vector space V is a sum of the forms
ωi ∧ �i, i = 0, . . . , where ωi are effective forms uniquely determined by ω.

The classification problems for differential equations and operators have their
trace in linear algebra – this is a classification of effective forms with respect to
the symplectic group. Chapter 6 deals with the easiest classifications problems
in dimension 4. In the next chapter we give a symplectic classification of exterior
2-forms in arbitrary dimensions.

In Chapter 8 we classify effective 3-forms in six-dimensional symplectic
space with respect to a natural action of the symplectic group Sp3 . The problem
has a long history. Being in the spirit of the classical questions of the theory
of geometric invariants, this problem was well known within a classification of
spinors of dimension 12 and 14 (see [40], [90]) for the case when the base field
is algebraically closed. Their methods do not work for the real classification.
The first classification was obtained in our papers [74, 77] where the list of
normal forms had a gap that was later filled by B. Banos [4, 5].

Part IV is devoted to the Monge–Ampère equations and to the related objects:
Monge–Ampère operators and partial differential equation (PDE) systems on
two-dimensional manifolds.

Chapters 9 and 10 contain some necessary information about symplectic and
contact manifolds.

The application of the algebraic machinery of Chapter 5 gives a description
of the Monge–Ampère equations and Monge – Ampère operators. The initial
point of our approach is the following observation: to any differential k-form
ω ∈ �k(J1M), where J1M is the space of 1-jet functions on a manifold M, we
attach a non-linear second-order differential operator �ω : C∞(M) → �k(M),
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Preface xvii

acting as

�ω(h) = j1(h)∗(ω),

where j1(h) : M → J1M is the 1-jet prolongation of a function h ∈ C∞(M).
We see that the first advantage of this approach is a reduction of the order of

the jet spaces: we use a simpler space J1M instead of the space J2M where the
Monge–Ampère equations should lie ad hoc, being second-order partial differ-
ential equations. The space J1M has the Cartan distribution which in this case is
nothing but the aforementioned contact structure which impacts fascinatingly
on the treatment of second-order differential operators and equations.

We should stress that our definition does not cover all non-linear second-
order differential equations but only a certain subclass of them. This subclass is
rather wide and contains all linear, quasi-linear and Monge–Ampère equations.
We call the operators �ω with ω ∈ �n(M), where n = dim M, Monge–Ampère
operators. The following observation justifies this definition: being written in a
local canonical contact coordinates on J1M the operators �ω have the same type
of non-linearity as the Monge – Ampère operators. Namely, the non-linearity
involves the determinant of the Hesse matrix and its minors.

The correspondence ω → �ω is not one-to-one: this map has a huge kernel.
If we denote the canonical contact 1-form on J1M by ω0, then the kernel is
generated by the forms α ∧ ω0 + β ∧ dω0.

It is not hard to check that these forms produce an ideal C in the exterior
algebra �∗(J1M) which we call Cartan ideal, and the quotient �∗(J1M)/C by
this ideal is isomorphic to the effective exterior forms �∗

ε (J
1M) which we had

discussed above. Hence, the effective exterior forms uniquely define Monge –
Ampère operators and we can apply all of the machinery of contact/symplectic
geometry to a study of these operators and the related non-linear differen-
tial equations. For example, from the geometrical point of view, solutions of
differential equations corresponding to �ω are nothing but the Legendre sub-
manifolds L in J1M which are integral with respect to the form ω, that is,
ω|L = 0. It is also much easier to apply the contact transformations to differ-
ential forms than to the differential operators, so one can define (infinitesimal)
symmetries of the Monge–Ampère operators and Monge–Ampère equations by
using the induced action of the contact diffeomorphisms (respectively contact
vector fields) on the effective differential forms.

In Chapter 11 we introduce and discuss some operators acting on the effect-
ive forms and (by correspondence) on the Monge – Ampère operators. First of
all the de Rham operator induces a complex on the algebra of effective forms.
The cohomology of the complex coincides with the de Rham cohomology of
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xviii Preface

the base M up to dimension n − 1, where n = dim M. They are trivial in
dimensions greater than n, and only in dimension n do we have an essential
difference with the cohomology of M. This relates to conservation laws and
an Euler operator E . By a conservation law we mean an (n − 1)-differential
form θ on J1M, such that dθ |L = 0 for all solutions L. One can check that this
is possible if and only if dθ = gω mod C for some function g ∈ C∞(J1M).
We call such a function a generating function of the conservation law. There
is one-to-one correspondence between generating functions and conservation
laws considered up to the trivial ones, and a function g is a generating function
if and only if E (gω) = 0. We study conservation laws in Chapter 13. We show a
relation between contact symmetries and conservation laws for Monge–Ampère
equations of divergent type that generalize the classical Noeter theorem in vari-
ational calculus. Conservation laws can be used in different directions and here
we discuss their application to the classical problem of “sewing” of two solu-
tions by a border of codimension 1. This leads us to the contact analog of the
classical Hugoniot–Rankin conditions which are used further for description of
shock waves and discontinuous solutions. The end of this chapter is devoted to
an application of the developed approach to variational problems. We show that
the Euler operator is exactly the operator in the corresponding Euler–Lagrange
equations. The chapter closes with a description of non-holonomic filtration
in the exterior algebra of J1M and with an interpretation of the Euler oper-
ator as a connecting differential in the spectral sequence associated with this
filtration.

Chapter 14 deals with the special case when the base manifold M is two-
dimensional. This situation has a lot of complementary geometric and algebraic
structures which come into play. The structures resulte from the naturally
defined non-holonomic field of endomorphism on J1M, that is, a field of operat-
ors defined on the Cartan distribution only. This leads to a non-holonomic almost
complex structure, for elliptic differential equations, and to a non-holonomic
almost product structure for the case of hyperbolic equations. For the parabolic
one we get a non-holonomic almost tangent structure.

The theory becomes more enlightened in the case when J1M is replaced by
the cotangent bundle T∗M. We call the corresponding Monge–Ampère equation
symplectic and their geometry is defined by the corresponding structure on the
phase space. Thus, for example, elliptic equations define an almost complex
structure on T∗M. The liaison between the geometric structures and equations
will be used profoundly in subsequent chapters to establish and to clarify the
classification and equivalence problems.

Part IV of the book has a somewhat specific feature – on one hand it is
so important and voluminous that it could be chosen as the foundation for
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Preface xix

a separate book. On the other hand, we had decided to include this part as
an illustration how the proposed approach can be effectively used in practice
for many different type of equations, coming from practically all branches
of the natural sciences. We were clearly unable to cover all possible applica-
tions but we had focused on the examples which were elaborated by ourselves
during long-time contacts with physicists, engineers, biologists, etc. Most of
the examples were developed up to numerical results and had figured as a
useful part of some joint technical and scientific projects which were under-
taken at the Applied Mathematical Department of Moscow Technical University
of Civil Constructions during the period 1978–1990 under the direction of
one of the authors (VL) and with a strong participation of two others. Some
of the examples in this part were developed at Astrakhan State University
under the guidance of one of the authors (AK) in a collaboration with the
Biology Department of Moscow State University between 1999 and 2003.
Another important collaboration which we acknowledge in this part is the
long-time cooperation of third author (VR) with applied mathematicians and
meteorologists from the Meteorological Office (Bracknell, UK) and Reading
University.

Chapter 15 is devoted to a study of the Khokhlov–Zabolotskaya (KZ) equa-
tion. We knew about this equation in the mid-1970s from contacts with the
theoretical acoustics group of R. Khokhlov (Physics Department of Moscow
State University). The equation describes the propagation of three-dimensional
sound beams in a non-linear medium. We treat this equation in its full three-
dimensional version. It worth mentioning that the two-dimensional version of
this equation is a hierarchy member of the famous dispersionless Kadomtsev–
Petviashvili integrable system. The numerous applications and physically
relevant versions of this dispersionless hierarchy are beyond the scope of our
book (for statements and references see [78]).

We describe symmetries, conservation laws and exact solutions of the KZ
equation. We discuss singularities of the solutions, Hugoniot–Rankin conditions
and shock acoustic waves. Using this information we give a mathematical
explanation to an experimentally verified phenomena of self-diffraction and
periodic oscillation of sound beams (which is completely similar to the beha-
vior of beams) and give some explicit formulas for the parameters of this
behavior.

A version of the Kolmogorov–Petrovsky–Piskunov equation with a non-
linear diffusion coefficient is the subject of our study in Chapter 16. This
equation has a lot of interest in biology, ecology, and heat and mass trans-
fer theory. We compute the Lie algebra of its symmetries and show how to use
them to construct invariant solutions.
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xx Preface

In Chapter 17 we collect all the applications of geometric studies of Monge–
Ampère equations in theoretical meteorology where Monge–Ampère like
operators had appeared some time ago in so-called semi-geostrophic models.
They constitute an important class of models which are very useful in numer-
ical weather prediction. This chapter is based on some on-going research by
one of the authors with I. Roulstone (Surrey University, UK). We give a short
account of the geometric study of balanced rotational models, which mathemat-
ically means a very special case of the Navier–Stokes system with the presence
of Coriolis-like forces. An important aero- and hydrodynamical notion asso-
ciated with these models is a potential vorticity. The conservation law of this
quantity (under some mild restrictions) gives a non-linear differential equa-
tion which is easily represented in a form of the symplectic Monge–Ampère
equation. The geometric structures related to this symplectic Monge–Ampère
equation define and sometimes (and in turn are defined by) some nearly balanced
two-dimensional model.

The second main motive of this book is a contact equivalence problem for
differential equations. The first and important algebraic step to this problem was
made in the previous parts of the book when we had discussed the classification
and equivalence for (effective) exterior forms.

Part V of the book contains the contact classification results on Monge–
Ampère equations (in analytic and smooth categories) which can be obtained
by our geometric approach and which have the most complete form when the
base manifolds are two- or three-dimensional.

The first case (dim M = 2) can be attributed as a classical Sophus Lie
problem. This problem was raised in the S. Lie article [66] and in our lan-
guage it may be reformulated in the following way: to find the equivalence
classes of second-order (non-linear) differential equations with respect to the
(local) group of contact diffeomorphisms. Lie himself had stated some theorems
(or without proofs or with some indications/hints of them) which can be con-
sidered as an attempt to give answers to the problem in some special cases. One
of his main results is a statement about (quasi-)linearizability of any analytic
Monge–Ampère equation. He had also considered the Monge–Ampère equa-
tion with constant coefficients and the Monge–Ampère equation in the presence
of so-called intermediate integrals.

The essential inroad to the classical Lie problem was given by the French
School and mainly by G. Darboux and E. Goursat who gave a classification of the
two-dimensional hyperbolic Monge–Ampère equation under some restrictions.
We should mention that the geometric version of Goursat’s results was given by
T. Morimoto who had used the language of G-structures and whose approach
differs cardinally from ours (see [83]).
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Preface xxi

Chapters 18–21 contain a modern version of S. Lie’s results (which to our
knowledge were never completely proven until our papers in the early 1980s)
and more general results on the symplectic and contact classification (A. Kush-
ner, B. Kruglikov and D. Tunitskii), based on e-structures naturally defined by
Monge–Ampère equations of the general type. Concerning the general equival-
ence problem we outline classification results for Monge–Ampère equations in
the general case. We apply these results for classification and normal forms of
symplectic Monge–Ampère equations on three-dimensional manifolds.

You will discover a family of sympathic cats which decorate the main text.
Each cat has his own personal name and we hope that it will not be an enigmatic
problem to our cleverminded and brilliant readers to understand why one or
another cat appears in its proper place place in the text. A list of pictures of
these cats with their names appear below.

Welcome Eureka Mentor Thinking Lazy Terminator

In conclusion we wish to thank our friends, colleagues and students for their
help and support during the preparation of this book. In particular, we wish to
thank Marat Djamaletdinov for his beautiful pictures which, we believe, should
captivate readers.
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