Affine root systems

1.1 Notation and terminology

Let *E* be an affine space over a field *K*: that is to say, *E* is a set on which a *K*-vector space *V* acts faithfully and transitively. The elements of *V* are called *translations* of *E*, and the effect of a translation $v \in V$ on $x \in E$ is written x + v. If y = x + v we write v = y - x.

Let E' be another affine space over K, and let V' be its vector space of translations. A mapping $f : E \to E'$ is said to be *affine-linear* if there exists a *K*-linear mapping $Df : V \to V'$, called the *derivative* of f, such that

(1.1.1)
$$f(x+v) = f(x) + (Df)(v).$$

for all $x \in E$ and $v \in V$. In particular, a function $f: E \to K$ is affine-linear if and only if there exists a linear form $Df: V \to K$ such that (1.1.1) holds.

If $f, g: E \to K$ are affine-linear and $\lambda, \mu \in K$, the function $h = \lambda f + \mu g: x \mapsto \lambda f(x) + \mu g(x)$ is affine-linear, with derivative $Dh = \lambda Df + \mu Dg$. Hence the set *F* of all affine-linear functions $f: E \to K$ is a *K*-vector space, and *D* is a *K*-linear mapping of *F* onto the dual *V*^{*} of the vector space *V*. The kernel of *D* is the 1-dimensional subspace F^0 of *F* consisting of the constant functions.

Let F^* be the dual of the vector space F. For each $x \in E$, the evaluation map $\varepsilon_x : f \mapsto f(x)$ belongs to F^* , and the mapping $x \mapsto \varepsilon_x$ embeds E in F^* as an affine hyperplane. Likewise, for each $v \in V$ let $\varepsilon_v \in F^*$ be the mapping $f \mapsto (Df)(v)$. If v = y - x, where $x, y \in E$, we have $\varepsilon_v = \varepsilon_y - \varepsilon_x$ by (1.1.1), and the mapping $v \mapsto \varepsilon_v$ embeds V in F^* as the hyperplane through the origin parallel to E.

From now on, *K* will be the field \mathbb{R} of real numbers, and *V* will be a real vector space of finite dimension n > 0, equipped with a positive definite symmetric

1 Affine root systems

scalar product $\langle u, v \rangle$. We shall write

$$|v| = \langle v, v \rangle^{1/2}$$

for the length of a vector $v \in V$. Then *E* is a Euclidean space of dimension *n*, and is a metric space for the distance function d(x, y) = |x - y|.

We shall identify *V* with its dual space V^* by means of the scalar product $\langle u, v \rangle$. For any affine-linear function $f: E \to \mathbb{R}$, (1.1.1) now takes the form

(1.1.2)
$$f(x + v) = f(x) + \langle Df, v \rangle$$

and Df is the gradient of f, in the usual sense of calculus.

We define a scalar product on the space *F* as follows:

$$(1.1.3) = .$$

This scalar product is positive semidefinite, with radical the one-dimensional space F^0 of constant functions.

For each $v \neq 0$ in V let

$$v^{\vee} = 2v/|v|^2$$

and for each non-constant $f \in F$ let

$$f^{\vee} = 2f/|f|^2.$$

Also let

$$H_f = f^{-1}(0)$$

which is an affine hyperplane in *E*. The reflection in this hyperplane is the isometry $s_f: E \to E$ given by the formula

(1.1.4)
$$s_f(x) = x - f^{\vee}(x)Df = x - f(x)Df^{\vee}.$$

By transposition, s_f acts on $F: s_f(g) = g \circ s_f^{-1} = g \circ s_f$. Explicitly, we have

(1.1.5)
$$s_f(g) = g - \langle f^{\vee}, g \rangle f = g - \langle f, g \rangle f^{\vee}$$

for $g \in F$.

For each $u \neq 0$ in V, let $s_u: V \rightarrow V$ denote the reflection in the hyperplane orthogonal to u, so that

(1.1.6)
$$s_u(v) = v - \langle u, v \rangle u^{\vee}.$$

1.2 Affine root systems

Then it is easily checked that

$$(1.1.7) Ds_f = s_{Df}$$

for any non constant $f \in F$.

Let $w : E \to E$ be an isometry. Then w is affine-linear (because it preserves parallelograms) and its derivative Dw is a linear isometry of V, i.e., we have $\langle (Dw)u, (Dw)v \rangle = \langle u, v \rangle$ for all $u, v \in V$. The mapping w acts by transposition on $F: (wf)(x) = f(w^{-1}x)$ for $x \in V$, and we have

(1.1.8)
$$D(wf) = (Dw)(Df).$$

For each $v \in V$ we shall denote by $t(v) : E \to E$ the translation by v, so that t(v)x = x + v. The translations are the isometries of E whose derivative is the identity mapping of V. On F, t(v) acts as follows:

(1.1.9)
$$t(v)f = f - \langle Df, v \rangle c$$

where *c* is the constant function equal to 1. For if $x \in E$ we have

$$(t(v)f)(x) = f(x - v) = f(x) - \langle Df, v \rangle.$$

Let $w: E \to E$ be an isometry and let $v \in V$. Then

(1.1.10)
$$wt(v)w^{-1} = t((Dw)v).$$

For if $x \in E$ we have

$$(wt(v)w^{-1})(x) = w(w^{-1}x + v) = x + (Dw)v.$$

1.2 Affine root systems

As in §1.1 let *E* be a real Euclidean space of dimension n > 0, and let *V* be its vector space of translations. We give *E* the usual topology, defined by the metric d(x, y) = |x - y|, so that *E* is locally compact. As before, let *F* denote the space (of dimension n + 1) of affine-linear functions on *E*.

An *affine root system* on E [M2] is a subset S of F satisfying the following axioms (AR1)–(AR4):

(AR 1) *S* spans *F*, and the elements of *S* are non-constant functions. (AR 2) $s_a(b) \in S$ for all $a, b \in S$. (AR 3) $\langle a^{\vee}, b \rangle \in \mathbb{Z}$ for all $a, b \in S$. 3

1 Affine root systems

The elements of *S* are called *affine roots*, or just *roots*. Let W_S be the group of isometries of *E* generated by the reflections s_a for all $a \in S$. This group W_S is the *Weyl group* of *S*. The fourth axiom is now

(AR 4) W_S (as a discrete group) acts properly on E.

In other words, if K_1 and K_2 are compact subsets of E, the set of $w \in W_S$ such that $wK_1 \cap K_2 \neq \emptyset$ is *finite*.

From (AR3) it follows, just as in the case of a finite root system, that if *a* and λa are proportional affine roots, then λ is one of the numbers $\pm \frac{1}{2}, \pm 1, \pm 2$. If $a \in S$ and $\frac{1}{2}a \notin S$, the root *a* is said to be *indivisible*. If each $a \in S$ is indivisible, i.e., if the only roots proportional to $a \in S$ are $\pm a$, the root system *S* is said to be *reduced*.

If S is an affine root system on E, then

$$S^{\vee} = \{a^{\vee} : a \in S\}$$

is also an affine root system on *E*, called the *dual* of *S*. Clearly *S* and S^{\vee} have the same Weyl group, and $S^{\vee\vee} = S$.

The *rank* of *S* is defined to be the dimension *n* of *E* (or *V*). If *S'* is another affine root system on a Euclidean space *E'*, an *isomorphism* of *S* onto *S'* is a bijection of *S* onto *S'* that is induced by an isometry of *E* onto *E'*. If *S'* is isomorphic to λS for some nonzero $\lambda \in \mathbb{R}$, we say that *S* and *S'* are *similar*.

We shall assume throughout that *S* is *irreducible*, i.e. that there exists no partition of *S* into two non-empty subsets S_1 , S_2 such that $\langle a_1, a_2 \rangle = 0$ for all $a_1 \in S_1$ and $a_2 \in S_2$.

The following proposition ([M2], p. 98) provides examples of affine root systems:

(1.2.1) Let *R* be an irreducible finite root system spanning a real finitedimensional vector space *V*, and let $\langle u, v \rangle$ be a positive-definite symmetric bilinear form on *V*, invariant under the Weyl group of *R*. For each $\alpha \in R$ and $r \in \mathbb{Z}$ let $a_{\alpha,r}$ denote the affine-linear function on *V* defined by

$$a_{\alpha,r}(x) = <\alpha, x > + r.$$

Then the set S(R) of functions $a_{\alpha,r}$, where $\alpha \in R$ and r is any integer if $\frac{1}{2}\alpha \notin R$ (resp. any odd integer if $\frac{1}{2}\alpha \in R$) is a reduced irreducible affine root system on V.

1.2 Affine root systems

5

Moreover, every reduced irreducible affine root system is similar to either S(R) or $S(R)^{\vee}$, where *R* is a finite (but not necessarily reduced) irreducible root system ([M2], §6).

Let *S* be an irreducible affine root system on a Euclidean space *E*. The set $\{H_a: a \in S\}$ of affine hyperplanes in *E* on which the affine roots vanish is locally finite ([M2], §4). Hence the set $E - \bigcup_{a \in S} H_a$ is open in *E*, and therefore so also are the connected components of this set, since *E* is locally connected. These components are called the *alcoves* of *S*, or of W_S , and it is a basic fact (loc. cit.) that the Weyl group W_S acts faithfully and transitively on the set of alcoves. Each alcove is an open rectilinear *n*-simplex, where *n* is the rank of *S*.

Choose an alcove *C* once and for all. Let x_i ($i \in I$) be the vertices of *C*, so that *C* is the set of all points $x = \sum \lambda_i x_i$ such that $\sum \lambda_i = 1$ and each λ_i is a positive real number. Let B = B(C) be the set of indivisible affine roots $a \in S$ such that (i) H_a is a wall of *C*, and (ii) a(x) > 0 for all $x \in C$. Then *B* consists of n + 1 roots, one for each wall of *C*, and *B* is a basis of the space *F* of affine-linear functions on *E*. The set *B* is called a *basis* of *S*.

The elements of *B* will be denoted by a_i ($i \in I$), the notation being chosen so that $a_i(x_j) = 0$ if $i \neq j$. Since x_i is in the closure of *C*, we have $a_i(x_i) > 0$. Moreover, $\langle a_i, a_j \rangle \leq 0$ whenever $i \neq j$.

The alcove *C* having been chosen, an affine root $a \in S$ is said to be *positive* (resp. *negative*) if a(x) > 0 (resp. a(x) < 0) for $x \in C$. Let S^+ (resp. S^-) denote the set of positive (resp. negative) affine roots; then $S = S^+ \cup S^-$ and $S^- = -S^+$. Moreover, each $a \in S^+$ is a linear combination of the a_i with nonnegative integer coefficients, just as in the finite case ([M2], §4).

Let $\alpha_i = Da_i$ ($i \in I$). The n + 1 vectors $\alpha_i \in V$ are linearly dependent, since dim V = n. There is a unique linear relation of the form

$$\sum_{i\in I}m_i\alpha_i=0$$

where the m_i are positive integers with no common factor, and at least one of the m_i is equal to 1. Hence the function

$$(1.2.2) c = \sum_{i \in I} m_i a_i$$

is constant on E (because its derivative is zero) and positive (because it is positive on C).

Let

$$\Sigma = \{Da : a \in S\}.$$

1 Affine root systems

Then Σ is an irreducible (finite) root system in *V*. A vertex x_i of the alcove *C* is said to be *special* for *S* if (i) $m_i = 1$ and (ii) the vectors α_j ($j \in I$, $j \neq i$) form a basis of Σ . For each affine root system *S* there is at least one special vertex (see the tables in §1.3). We shall choose a special vertex once and for all, and denote it by x_0 (so that 0 is a distinguished element of the index set *I*). Thus $m_0 = 1$ in (1.2.2), and if we take x_0 as origin in *E*, thereby identifying *E* with *V*, the affine root a_i ($i \neq 0$) is identified with α_i .

The Cartan matrix and the Dynkin diagram of an irreducible affine root system *S* are defined exactly as in the finite case. The *Cartan matrix* of *S* is the matrix $N = (n_{ij})_{i,j\in I}$ where $n_{ij} = \langle a_i^{\vee}, a_j \rangle$. It has n + 1 rows and columns, and its rank is *n*. Its diagonal entries are all equal to 2, and its off-diagonal entries are integers ≤ 0 . If $m = (m_i)_{i\in I}$ is the column vector formed by the coefficients in (1.2.2), we have Nm = 0.

The *Dynkin diagram* of *S* is the graph with vertex set *I*, in which each pair of distinct vertices *i*, *j* is joined by d_{ij} edges, where $d_{ij} = \max(|n_{ij}|, |n_{ji}|)$. We have $d_{ij} \le 4$ in all cases. For each pair of vertices *i*, *j* such that $d_{ij} > 0$ and $|a_i| > |a_j|$, we insert an arrowhead (or inequality sign) pointing towards the vertex *j* corresponding to the shorter root.

If *S* is reduced, the Dynkin diagram of S^{\vee} is obtained from that of *S* by reversing all arrowheads. If S = S(R) as in (1.2.1), where *R* is irreducible and reduced, the Dynkin diagram of *S* is the 'completed Dynkin diagram' of *R*([B1], ch. 6).

If *S* is reduced, the Cartan matrix and the Dynkin diagram each determine *S* up to similarity. If *S* is not reduced, the Dynkin diagram still determines *S*, provided that the vertices $i \in I$ such that $2a_i \in S$ are marked (e.g. with an asterisk).

1.3 Classification of affine root systems

Let *S* be an irreducible affine root system. If *S* is reduced, then *S* is similar to either S(R) or $S(R)^{\vee}(1.2.1)$, where *R* is an irreducible root system. If *R* is of type *X*, where *X* is one of the symbols A_n , B_n , C_n , D_n , BC_n , E_6 , E_7 , E_8 , F_4 , G_2 , we say that S(R) (resp. $S(R)^{\vee}$) is of type *X* (resp. X^{\vee}).

If S is not reduced, it determines two reduced affine root systems

$$S_1 = \{a \in S : \frac{1}{2}a \notin S\}, \quad S_2 = \{a \in S : 2a \notin S\}$$

with the same affine Weyl group, and $S = S_1 \cup S_2$. We say that S is of type (X, Y) where X, Y are the types of S_1 , S_2 respectively.

1.3 Classification of affine root systems

7

The reduced and non-reduced irreducible affine root systems are listed below ((1.3.1)-(1.3.18)). In this list, $\varepsilon_1, \varepsilon_2, \ldots$ is a sequence of orthonormal vectors in a real Hilbert space.

For each type we shall exhibit

- (a) an affine root system *S* of that type;
- (b) a basis of *S*;
- (c) the Dynkin diagram of *S*. Here the numbers attached to the vertices of the diagram are the coefficients m_i in (1.2.2).

We shall first list the reduced systems ((1.3.1)-(1.3.14)) and then the non-reduced systems ((1.3.15)-(1.3.18)).

(1.3.1) *Type* A_n $(n \ge 1)$.

- (a) $\pm (\varepsilon_i \varepsilon_j) + r \ (1 \le i < j \le n+1; r \in \mathbb{Z}).$
- (b) $a_0 = -\varepsilon_1 + \varepsilon_{n+1} + 1$, $a_i = \varepsilon_i \varepsilon_{i+1} (1 \le i \le n)$.

(1.3.2) *Type* B_n $(n \ge 3)$.

- (a) $\pm \varepsilon_i + r \ (1 \le i \le n; r \in \mathbb{Z}); \quad \pm \varepsilon_i \pm \varepsilon_j + r \ (1 \le i < j \le n; r \in \mathbb{Z}).$
- (b) $a_0 = -\varepsilon_1 \varepsilon_2 + 1$, $a_i = \varepsilon_i \varepsilon_{i+1}$ $(1 \le i \le n-1)$, $a_n = \varepsilon_n$.

(1.3.3) *Type*
$$B_n^{\vee}$$
 $(n \ge 3)$.

(a) $\pm 2\varepsilon_i + 2r \ (1 \le i \le n; r \in \mathbb{Z}); \quad \pm \varepsilon_i \pm \varepsilon_j + r \ (1 \le i < j \le n; r \in \mathbb{Z}).$

CAMBRIDGE

Cambridge University Press 0521824729 - Affine Hecke Algebras and Orthogonal Polynomials I. G. Macdonald Excerpt <u>More information</u>

1.3 Classification of affine root systems

These are the "classical" reduced affine root systems. The next seven types ((1.3.8)-(1.3.14)) are the "exceptional" reduced affine root systems. In (1.3.8)-(1.3.10) let

$$\omega_i = \varepsilon_i - \frac{1}{9}(\varepsilon_1 + \dots + \varepsilon_9) \qquad (1 \le i \le 9).$$

(1.3.8) Type E_6 .

(a)
$$\pm (\omega_i - \omega_j) + r \ (1 \le i < j \le 6; r \in \mathbb{Z});$$

 $\pm (\omega_i + \omega_j + \omega_k) + r \ (1 \le i < j < k \le 6; r \in \mathbb{Z});$
 $\pm (\omega_i + \omega_2 + \dots + \omega_6) + r \ (r \in \mathbb{Z}).$

(b) $a_0 = -(\omega_1 + \dots + \omega_6) + 1$, $a_i = \omega_i - \omega_{i+1}$ $(1 \le i \le 5)$, $a_6 = \omega_4 + \omega_5 + \omega_6$.

(1.3.9) Type E_7 .

(a)
$$\pm(\omega_i - \omega_j) + r \ (1 \le i < j \le 7; \ r \in \mathbb{Z});$$

 $\pm(\omega_i + \omega_j + \omega_k) + r \ (1 \le i < j < k \le 7; \ r \in \mathbb{Z});$
 $\pm(\omega_1 + \dots + \hat{\omega}_i + \dots + \omega_7) + r \ (1 \le i \le 7; \ r \in \mathbb{Z}).$

(b)
$$a_0 = -(\omega_1 + \dots + \omega_6) + 1$$
, $a_i = \omega_i - \omega_{i+1} \ (1 \le i \le 6)$,
 $a_7 = \omega_5 + \omega_6 + \omega_7$.

(c)
$$1 2 3 4 3 2 1$$

(1.3.10) Type E_8 .

(a)
$$\pm(\omega_i - \omega_j) + r \ (1 \le i < j \le 9; r \in \mathbb{Z});$$

 $\pm(\omega_i + \omega_j + \omega_k) + r \ (1 \le i < j < k \le 9; r \in \mathbb{Z}).$

- (b) $a_0 = \omega_1 \omega_2 + 1$, $a_i = \omega_{i+1} \omega_{i+2}$ $(1 \le i \le 7)$, $a_8 = \omega_7 + \omega_8 + \omega_9$.

CAMBRIDGE

10	1 Affine root systems
(1.3	.11) <i>Type</i> F_4 .
(a)	$ \pm \varepsilon_i + r \ (1 \le i \le 4; \ r \in \mathbb{Z}); \pm \varepsilon_i \pm \varepsilon_j + r \ (1 \le i < j \le 4; \ r \in \mathbb{Z}); $ $ \frac{1}{2} (\pm \varepsilon_1 \pm \varepsilon_2 \pm \varepsilon_3 \pm \varepsilon_4) + r \ (r \in \mathbb{Z}). $
(b) (c)	$u_{0} = -\varepsilon_{1} - \varepsilon_{2} + 1, u_{1} = \varepsilon_{2} - \varepsilon_{3}, u_{2} = \varepsilon_{3} - \varepsilon_{4}, u_{3} = \varepsilon_{4},$ $a_{4} = \frac{1}{2}(\varepsilon_{1} - \varepsilon_{2} - \varepsilon_{3} - \varepsilon_{4}).$ 1 = 2 - 3 - 4 - 2
(-)	
(1.3	.12) <i>Type</i> F_4^{\vee} .
(a)	$ \pm 2\varepsilon_i + 2r \ (1 \le i \le 4; \ r \in \mathbb{Z}); \pm \varepsilon_i \pm \varepsilon_j + r \ (1 \le i < j \le 4; \ r \in \mathbb{Z}); \\ \pm \varepsilon_1 \pm \varepsilon_2 \pm \varepsilon_3 \pm \varepsilon_4 + 2r \ (r \in \mathbb{Z}). $
(b)	$a_0 = -\varepsilon_1 - \varepsilon_2 + 1$, $a_1 = \varepsilon_2 - \varepsilon_3$, $a_2 = \varepsilon_3 - \varepsilon_4$, $a_3 = 2\varepsilon_4$, $a_4 = \varepsilon_1 - \varepsilon_2 - \varepsilon_3 - \varepsilon_4$.
(c)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(1.3	.13) <i>Type</i> G_2 .
(a)	$\pm(\varepsilon_i - \frac{1}{3}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3)) + r \ (1 \le i \le 3; \ r \in \mathbb{Z});$ $\pm(\varepsilon_i - \varepsilon_i) + r \ (1 \le i \le j \le 3; \ r \in \mathbb{Z}).$
(b)	$a_0 = \varepsilon_1 - \varepsilon_2 + 1, a_1 = \varepsilon_2 - \varepsilon_3, a_2 = \varepsilon_3 - \frac{1}{3}(\varepsilon_1 + \varepsilon_2 + \varepsilon_3).$
(C)	
(1.3	.14) Type G_2^{\vee} .
(a)	$ \pm (3\varepsilon_i - (\varepsilon_1 + \varepsilon_2 + \varepsilon_3)) + 3r \ (1 \le i \le 3; \ r \in \mathbb{Z}); \\ \pm (\varepsilon_i - \varepsilon_j) + r \ (1 \le i < j \le 3; \ r \in \mathbb{Z}). $
(b)	$a_0 = \varepsilon_1 - \varepsilon_2 + 1, a_1 = \varepsilon_2 - \varepsilon_3, a_2 = 3\varepsilon_3 - (\varepsilon_1 + \varepsilon_2 + \varepsilon_3).$
(\mathbf{c})	

We come now to the non-reduced affine root systems. In the Dynkin diagrams below, an asterisk placed over a vertex indicates that if a_i is the affine root corresponding to that vertex in a basis of *S*, then $2a_i \in S$.

(1.3.15) *Type* (BC_n, C_n) $(n \ge 1)$.

(a) $\pm \varepsilon_i + r$, $\pm 2\varepsilon_i + r \ (1 \le i \le n, r \in \mathbb{Z});$ $\pm \varepsilon_i \pm \varepsilon_j + r \ (1 \le i < j \le n; r \in \mathbb{Z}).$