
An Overview

In this book, we shall consider graphs X = (V, E), where V is the set of
vertices and E is the set of edges of X . We shall assume that X is undirected;
most of the time, X will be finite. A path in X is a sequence v1 v2 . . . vk of
vertices, where vi is adjacent to vi+1 (i.e., {vi , vi+1} is an edge). A graph X
is connected if every two vertices can be joined by a path.

For F ⊆ V , the boundary ∂F is the set of edges connecting F to V − F .
Consider for example the graph in Figure 0.1 (this is the celebrated Petersen
graph): it has 10 vertices and 15 edges; three vertices have been surrounded
by squares: this is our subset F ; the seven “fat” edges are the ones in ∂F .

Figure 0.1

The expanding constant, or isoperimetric constant of X , is

h(X ) = inf

{ |∂F |
min{|F |, |V − F |} : F ⊆ V : 0 < |F | < +∞

}
.

If we view X as a network transmitting information (where information re-
tained by some vertex propagates, say in 1 unit of time, to neighboring ver-
tices), then h(X ) measures the “quality” of X as a network: if h(X ) is large,
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2 An Overview

information propagates well. Let us consider two extreme examples to illus-
trate this.

0.1.1.Example. The complete graph Km onm vertices is defined by requiring
every vertex to be connected to any other, distinct vertex: see Figure 0.2 for
m = 5.

Figure 0.2

It is clear that, if |F | = �, then |∂F | = �(m − �), so that h(Km) = m − [
m
2

] ∼
m
2 .

0.2.2. Example. The cycle Cn on n vertices: see Figure 0.3 for n = 6. If F
is a half-cycle, then |∂F | = 2, so h(Cn) ≤ 2

[ n2 ] ∼ 4
n ; in particular h(Cn) → 0

for n → +∞.

Figure 0.3

From these two examples, wee see that the highly connected complete
graph has a large expanding constant that grows proportionately with the
number of vertices. On the other hand, the minimally connected cycle graph
has a small expanding constant that decreases to zero as the number of vertices
grows. In this sense, h(X ) does indeed provide a measure of the “quality,” or
connectivity of X as a network.

We say that a graph X is k-regular if every vertex has exactly k neighbors,
so that the Petersen graph is 3-regular, Km is (m − 1)-regular, and Cn is
2-regular.

0.3.3. Definition. Let (Xm)m≥1 be a family of graphs Xm = (Vm, Em) indexed
bym ∈ N. Furthermore, fix k ≥ 2. Such a family (Xm)m≥1 of finite, connected,
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An Overview 3

k-regular graphs is a family of expanders if |Vm | → +∞ for m → +∞, and
if there exists ε > 0, such that h(Xm) ≥ ε for every m ≥ 1.

Because an optimal design for a network should take economy of transmis-
sion into account, we include the assumption that Xm is k-regular in Defini-
tion 0.3.3. This assures that the number of edges of Xm grows linearly with the
number of vertices. Without that assumption, we could just take Xm = Km for
good connectivity. However, note that Km has m(m−1)

2 edges, which quickly
becomes expensive when transmission lines are made of either copper or op-
tical fibers. Hence, the “optimal” network for practical purposes arises from
a graph that provides the best connectivity from a minimal number of edges.

Indeed such expander graphs have become basic building blocks in many
engineering applications. We cite a few such applications, taken from Rein-
gold, Vadhan and Wigderson [55]: to network designs [53], to complexity
theory [66], to derandomization [50], to coding theory [63], and to crypto-
graphy [30].

0.4.4. Main Problem. Give explicit constructions for families of expanders.
We shall solve this problem algebraically, by appealing to the adjacency

matrix A of the graph X = (V, E); it is indexed by pairs of vertices x, y of
X , and Axy is the number of edges between x and y.

When X has n vertices, A is an n-by-n, symmetric matrix, which com-
pletely determines X . By standard linear algebra, A has n real eigenvalues,
repeated according to multiplicities that we list in decreasing order:

µ0 ≥ µ1 ≥ · · · ≥ µn−1 .

In section 1.1 we shall prove the following.

0.5.5. Proposition. If X is a k-regular graph on n vertices, then

µ0 = k ≥ µ1 ≥ · · · ≥ µn−1 ≥ −k .

Moreover,

(a) µ0 > µ1 if and only if X is connected.
(b) Suppose X is connected. The equality µn−1 = −k holds if and only if

X is bicolorable. (A graph X is bicolorable if it is possible to paint the
vertices of X in two colors in such a way that adjacent vertices have
distinct colors.)

It turns out that the expanding constant can be estimated spectrally by
means of a double inequality (due to Alon & Milman [3] and to Dodziuk
[22]) that we shall prove in section 1.2.
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4 An Overview

0.6.6. Theorem. Let X be a finite, connected, k-regular graph. Then

k − µ1

2
≤ h(X ) ≤

√
2k (k − µ1) .

This allows for an equivalent formulation of 0.4.4.

0.7.7. Rephrasing of the Main Problem. Give explicit constructions for
families (Xm)m≥1 of finite, connected, k-regular graphs with the following
properties: (i) |Vm | → +∞ for m → +∞, and (ii) there exists ε > 0 such
that k − µ1(Xm) ≥ ε for every m ≥ 1.

Therefore, to have good quality expanders, the spectral gap k − µ1(Xm)
has to be as large as possible. However, the spectral gap cannot be too large
as was observed independently by Alon and Boppana [10] and Serre [62]
(see also Grigorchuk & Zuk [31]). In fact, we have the bound implied by the
following result.

0.8.8. Theorem. Let (Xm)m≥1 be a family of finite, connected, k-regular
graphs with |Vm | → +∞ as m → +∞. Then

lim inf
m→+∞ µ1(Xm) ≥ 2

√
k − 1 .

This asymptotic threshold will be discussed in section 1.3 and proved
in section 1.4. Now Theorem 0.8.8 singles out an extremal property on the
eigenvalues of the adjacency matrix of a k-regular graph; this motivates the
definition of a Ramanujan graph.

0.9.9. Definition. A finite, connected, k-regular graph X is Ramanujan if, for
every eigenvalue µ of A other than ± k, one has

|µ| ≤ 2
√
k − 1 .

So, if for some k ≥ 3 we succeed in constructing an infinite family of
k-regular Ramanujan graphs, we will get a solution of our main problem 0.7.7
(hence, also of 0.4) which is optimal from the spectral point of view.

0.10.10. Theorem. For the following values of k, there exist infinite families
of k-regular Ramanujan graphs:

� k = p + 1, where p is an odd prime ([42], [46]).
� k = 3 [14].
� k = q + 1, where q is a prime power [48].
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An Overview 5

Our purpose in this book is to describe the Ramanujan graphs of Lubotzky
et al. [42] and Margulis [46]. While the description of these Ramanujan graphs
(given in section 4.2) is elementary, the proof that they have the desired
properties is not. For example, the proofs in [42] and [41] make free use of
the theory of algebraic groups, modular forms, theta correspondences, and
the Riemann Hypothesis for curves over finite fields. Our aim here is to give
elementary and self-contained proofs of most of the properties enjoyed by
these graphs, results the reader will find in sections 4.3 and 4.4. Actually, our
elementary methods will not give us the full strength of the Ramanujan bound
for these graphs, though they do have that property. Nevertheless, we will be
able to prove that they form a family of expanders with a quite good explicit
asymptotic estimate on the spectral gap. This estimate is strong enough to
provide explicit solutions to two outstanding problems in graph theory that
we describe as follows:

0.11.11. Definition. Let X be a graph.

(a) The girth of X , denoted by g(X ), is the length of the shortest circuit
in X .

(b) The chromatic number of X , denoted by χ (X ), is the minimal number
of colors needed to paint the vertices of X in such a way that adjacent
vertices have different colors.

The problem of the existence of finite graphs with large girth and at the
same time large chromatic number has a long history (see [7]). The problem
was first solved by Erdös [24], whose solution shows that the “random graph”
has this property; this construction is recalled in section 1.7. (This paper was
the genesis of the “random method” and theory of random graphs. See the
monograph [4].) We shall see in section 4.4 that the graphs X p,q presented in
Chapter 4 provide explicit solutions to this problem.

0.12.12. Definition. Let (Xm)m≥1 be a family of finite, connected, k-regular
graphs, with |Vm | → +∞ as m → +∞. We say that this family has large
girth if, for some constant C > 0, one has g(Xm) ≥ (C + o(1)) logk−1 |Vm |,
where o(1) is a quantity tending to 0 for m → +∞.

It is easy to see that, necessarily, C ≤ 2. By counting arguments, Erdös
and Sachs [25] proved the existence of families of graphs with large girth and
with C = 1. In the Appendix, we give a beautiful explicit construction due
to Margulis [45], leading to C = 1

3
log 3

log
(

1+√
2
) = 0.415 . . . . In section 4.3, we

shall see that the graphs X p,q , with p not a square modulo q, provide a family
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6 An Overview

with large girth and that C = 4
3 which, asymptotically, is the largest girth

known.
We claimed previously that our constructions are “elementary”: since there

is no general agreement on the meaning of this word, we feel committed to
clarify it somewhat. In 1993, the first two authors wrote up a set of unpub-
lished Notes that were circulated under the title “An elementary approach
to Ramanujan graphs.” In 1998–99, the third author based an undergraduate
course on these Notes; in the process he was able to simplify the presenta-
tion even further. This gave the impetus for the present text. We assume that
our reader is familiar with linear algebra, congruences, finite fields of prime
order, and some basic ring theory. The relevant number theory is presented in
Chapter 2; and the group theory, including representation theory, in Chapter 3.

Other than these topics, we have attempted to present here a self-contained
treatment of the construction and proofs involved. To do this we have borrowed
some of our exposition from well-known sources, adapting and tailoring those
to give a more concise presentation of the contexts and specific theoretical
tools we need. In all such cases, we hope that we have provided clear and
complete attribution of sources for those readers who wish to pursue any topic
more broadly.

There is some novelty in our approach.

� The graphs X p,q depend on two distinct, odd primes p, q . In the liter-
ature, it is commonly assumed that p ≡ 1 (mod. 4), for simplicity. We
give a complete treatment of both the case p ≡ 1 (mod. 4) and the case
p ≡ 3 (mod. 4).

� As in [42], [44], and [57], we give two constructions of the graphs X p,q :
one is based on quaternion algebras and produces connected graphs by
construction; however, it gives little information about the number of
vertices; the other describes the X p,q as Cayley graphs of PGL2(q) or
PSL2(q), from which the number of vertices is obvious but connect-
edness is not. The isomorphism of both constructions, in the original
paper [42] (and also in Proposition 3.4.1 in [57]), depends on fairly deep
results of Malisěv [43] on the Hardy–Littlewood theory of quadratic
forms. The proof in Theorem 7.4.3 of [41] appeals to Kneser’s strong
approximation theorem for algebraic groups over the adèles. In our ap-
proach here, we first give a priori estimates on the girth of the graphs
obtained by the first method, showing that the girth cannot be too small.
We then apply a result of Dickson [20], reproved in section 3.3, that
up to two exceptions, proper subgroups of PSL2(q) are metabelian, so
that Cayley graphs of proper subgroups must have small girth. This is

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521824265 -  Elementary Number Theory,  Group Theory , and Ramanujan
Gr aphs
Giuliana Davidoff, Peter Sarnak and Alain Valette
Excerpt
More information

http://www.cambridge.org/0521824265
http://www.cambridge.org
http://www.cambridge.org


An Overview 7

enough to conclude that our Cayley graphs of PGL2(q) or PSL2(q) must
be connected.

� The proof we give here that the X p,q ’s, with fixed p, form a family
of expanders depends on a result going back to Frobenius [27], and
is proved in section 3.5: any nontrivial representation of PSL2(q) has
degree at least q−1

2 . As a consequence, the multiplicity of any nontrivial
eigenvalue of X p,q is at least q−1

2 . Using the fact that q−1
2 is fairly large

compared to q3, the approximate number of vertices, we deduce that
there must be a spectral gap.

The idea of trying to exploit this feature of the representations of
PSL2(q) was suggested by Bernstein and Kazhdan (see [8] and [58]).
In Sarnak and Xue [59], this lower bound for the multiplicity is com-
bined with some upper-bound counting arguments to rule out excep-
tional eigenvalues of quotients of the Lobachevski upper half-plane by
congruence subgroups in co-compact arithmetic lattices in SL2(R). Our
proof of the spectral gap in these notes is based on similar ideas. This
method has also been used recently by Gamburd [29] to establish a
spectral gap property for certain families of infinite index subgroups of
SL2(Z).

Most of the exercices in this book were provided by Nicolas Louvet, who
was the third author’s teaching assistant: we heartily thank him for that. We
also thank J. Dodziuk, F. Labourie, F. Ledrappier, and J.-P. Serre for useful
comments, conversations, and correspondence.

The draft of this book was completed during a stay of the first author at
the University of Roma La Sapienza and of the third author at IHES in the
Fall of 1999. It was also at IHES that the book was typed, with remarkable
efficiency, by Mrs Cécile Gourgues. We thank her for her beautiful job.
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Chapter 1

Graph Theory

1.1. The Adjacency Matrix and Its Spectrum

We shall be concerned with graphs X = (V, E), where V is the set of vertices
and E is the set of edges. As stated in the Overview, we always assume our
graphs to be undirected, and most often we will deal with finite graphs.

We let V = {v1, v2, . . .} be the set of vertices of X . Then the adjacency
matrix of the graph X is the matrix A indexed by pairs of vertices vi , v j ∈ V .
That is, A = (Ai j ), where

Ai j = number of edges joining vi to v j .

We say that X is simple if there is at most one edge joining adjacent vertices;
hence, X is simple if and only if Ai j ∈ {0, 1} for every vi , v j ∈ V .

Note that A completely determines X and that A is symmetric because X
is undirected. Furthermore, X has no loops if and only if Aii = 0 for every
vi ∈ V .

1.1.1.Definition. Let k ≥ 2 be an integer. We say that the graph X is k-regular
if for every vi ∈ V :

∑
v j∈V

Ai j = k.

If X has no loop, this amounts to saying that each vertex has exactly k
neighbors.

Assume that X is a finite graph on n vertices. Then A is an n-by-n sym-
metric matrix; hence, it has n real eigenvalues, counting multiplicities, that
we may list in decreasing order:

µ0 ≥ µ1 ≥ · · · ≥ µn−1.

The spectrum of X is the set of eigenvalues of A. Note that µ0 is a simple
eigenvalue, or has multiplicity 1, if and only if µ0 > µ1.

8
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1.1. The Adjacency Matrix and Its Spectrum 9

For an arbitrary graph X = (V, E), consider functions f : V → C from
the set of vertices of X to the complex numbers, and define

�2(V ) = { f : V → C :
∑
v∈V

| f (v)|2 < +∞}.

The space �2(E) is defined analogously.
Clearly, if V is finite, say |V | = n, then every function f : V → C is in

�2(V ). We can think of each such function as a vector in C
n on which the

adjacency matrix acts in the usual way:

A f =




A11 A12 . . . A1n
...

...
...

Ai1 Ai2 . . . Ain
...

...
...

An1 An2 . . . Ann






f (v1)
f (v2)

...
f (vn)




=




A11 f (v1) + A12 f (v2) + · · · + A1n f (vn)
...

Ai1 f (v1) + Ai2 f (v2) + · · · + Ain f (vn)
...

An1 f (v1) + An2 f (v2) + · · · + Ann f (vn)




.

Hence, (A f )(vi ) =
n∑
j=1

Ai j f (v j ). It is very convenient, both notationally and

conceptually, to forget about the numbering of vertices and to index matrix
entries of A directly by pairs of vertices. So we shall represent A by a matrix
(Axy)x,y∈V , and the previous formula becomes (A f )(x) = ∑

y∈V
Axy f (y), for

every x ∈ V .

1.1.2. Proposition. Let X be a finite k-regular graph with n vertices. Then

(a) µ0 = k;
(b) |µi | ≤ k for 1 ≤ i ≤ n − 1;
(c) µ0 has multiplicity 1, if and only if X is connected.

Proof. We prove (a) and (b) simultaneously by noticing first that the constant
function f ≡ 1 on V is an eigenfunction of A associated with the eigenvalue
k. Next, we prove that, if µ is any eigenvalue, then |µ| ≤ k. Indeed, let f be
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10 Graph Theory

a real-valued eigenfunction associated with µ. Let x ∈ V be such that

| f (x)| = max
y∈V

| f (y)|.

Replacing f by − f if necessary, we may assume f (x) > 0. Then

f (x) |µ| = | f (x) µ| =
∣∣∣∣∣
∑
y∈V

Axy f (y)

∣∣∣∣∣ ≤
∑
y∈V

Axy | f (y)|

≤ f (x)
∑
y∈V

Axy = f (x) k.

Cancelling out f (x) gives the result.
To prove (c), assume first that X is connected. Let f be a real-valued

eigenfunction associated with the eigenvalue k. We have to prove that f is
constant. As before, let x ∈ V be a vertex such that | f (x)| = max

y∈V
| f (y)|.

As f (x) = (A f )(x)
k = ∑

y∈V
Axy
k f (y), we see that f (x) is a convex combination

of real numbers which are, in modulus, less than | f (x)|. This implies that
f (y) = f (x) for every y ∈ V , such that Axy �= 0, that is, for every y adjacent
to x . Then, by a similar argument, f has the same value f (x) on every vertex
adjacent to such a y, and so on. Since X is connected, f must be constant.

We leave the proof of the converse as an exercise. �

Proposition 1.1.2(c) shows a first connection between spectral properties
of the adjacency matrix and combinatorial properties of the graph. This is one
of the themes of this chapter.

1.1.3. Definition. A graph X = (V, E) is bipartite, or bicolorable, if there
exists a partition of the vertices V = V+ ∪ V−, such that, for any two vertices
x, y with Axy �= 0, if x ∈ V+ (resp. V−), then y ∈ V− (resp. V+).

In other words, it is possible to paint the vertices with two colors in such a
way that no two adjacent vertices have the same color. Bipartite graphs have
very nice spectral properties characterized by the following:

1.1.4. Proposition. Let X be a connected, k-regular graph on n vertices. The
following are equivalent:

(i) X is bipartite;
(ii) the spectrum of X is symmetric about 0;

(iii) µn−1 = −k.
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