CAMBRIDGE

Cambridge University Press

978-0-521-82284-8 - Quantum Field Theory in Condensed Matter Physics
Alexei M. Tsvelik

Excerpt

More information

Introduction to methods

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/052182284X
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-82284-8 - Quantum Field Theory in Condensed Matter Physics
Alexei M. Tsvelik

Excerpt

More information

1
QFT: language and goals

Under the calm mask of matter
The divine fire burns.
Vladimir Solovyev

The reason why the terms ‘quantum field theory’ and ‘statistical mechanics’ are used to-
gether so often is related to the essential equivalence between these two disciplines. Namely,
a quantum field theory of a D-dimensional system can be formulated as a statistical me-
chanics theory of a (D + 1)-dimensional system. This equivalence is a real godsend for
anyone studying these subjects. Indeed, it allows one to get rid of noncommuting operators
and to forget about time ordering, which seem to be characteristic properties of quantum
mechanics. Instead one has a way of formulating the quantum field theory in terms of
ordinary commuting functions, more or less conventional integrals, etc.

Before going into formal developments I shall recall the subject of quantum field the-
ory (QFT). Let us consider first what classical fields are. To begin with, they are entities
expressed as continuous functions of space and time coordinates (x, ). A field &(x, 1)
can be a scalar, a vector (like an electromagnetic field represented by a vector potential
(¢, A)), or a tensor (like a metric field g,; in the theory of gravitation). Another important
thing about fields is that they can exist on their own, i.e. independent of their ‘sources’ —
charges, currents, masses, etc. Translated into the language of theory, this means that a
system of fields has its own action S[®] and energy E[®P]. Using these quantities and
the general rules of classical mechanics one can write down equations of motion for the
fields.

Example

As an example consider the derivation of Maxwell’s equations for an electromagnetic field
in the absence of any sources. I use this example in order to introduce some valuable
definitions. The action for an electromagnetic field is given by

1
S = —/dtde[Ez — H? (1.1)
8
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4 I Introduction to methods

where E and H are the electric and the magnetic fields, respectively. These fields are not
independent, but are expressed in terms of the potentials:

19A
E=-V¢+-—
ot (12)

H=VxA
The relationship between (E, H) and (¢, A) is not unique; (E, H) does not change when
the following transformation is applied:
1dy

Pt (1.3)

A— A+ Vy

This symmetry is called gauge symmetry. In order to write the action as a single-valued
functional of the potentials, we need to specify the gauge. I choose the following:

¢ =0

Substituting (1.2) into (1.1) we get the action as a functional of the vector potential:
1 3 1 2 2
S=— [ dtd’x | (5, A" —(V x A) (1.4)
8 c

In classical mechanics, particles move along trajectories with minimal action. In field
theory we deal not with particles, but with configurations of fields, i.e. with functions of
coordinates and time A(t, x). The generalization of the principle of minimal action for fields
is that fields evolve in time in such a way that their action is minimal. Suppose that Ay(¢, X) is
such a configuration for the action (1.4). Since we claim that the action achieves its minimum
in this configuration, it must be invariant with respect to an infinitesimal variation of the field:

A=Ay +5A
Substituting this variation into the action (1.4), we get:
88 = %/drd%[c‘za,AoatSA— (V x Ap)(V x 8A)] + O(8A) (L.5)
The next essential step is to rewrite S in the following canonical form:
88 = /dtd38xA(t, X)F[A(t, x)] + O(8A?) (1.6)

where F[Ay(¢, x)] is some functional of Ay(¢, x). By definition, this expression determines
the function
F = ﬁ
SA
the functional derivative of the functional S with respect to the function A. Let us assume
that § A vanishes at infinity and integrate (1.5) by parts:

58 = —é / drd’x{c7?97 Ao(t, x) — [(V x V) x Ao(t, X)I}8A(, x)  (L.7)
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1 QFT: language and goals 5

Figure 1.1. Maxwell’s equations as a mechanical system.

Since 88 = 0 for any §A, the expression in the curly brackets (that is the functional
derivative of S) vanishes. Thus we get the Maxwell equation:

c2PA-(VXV)x A=0 (1.8)

Thus Maxwell’s equations are the Lagrange equations for the action (1.4).

From Maxwell’s equations we see that the field at a given point is determined by the
fields at the neighbouring points. In other words the theory of electromagnetic waves is a
mechanical theory with an infinite number of degrees of freedom (i.e. coordinates). These
degrees of freedom are represented by the fields which are present at every point and coupled
to each other. In fact it is quite correct to define classical field theory as the mechanics of
systems with an infinite number of degrees of freedom. By analogy, one can say that QFT
is just the quantum mechanics of systems with infinite numbers of coordinates.

There is a large class of field theories where the above infinity of coordinates is trivial.
In such theories one can redefine the coordinates in such a way that the new coordinates
obey independent equations of motion. Then an apparently complicated system of fields
decouples into an infinite number of simple independent systems. Itis certainly possible to do
this for so-called linear theories, a good example of which is the theory of the electromagnetic
field (1.4); the new coordinates in this case are just coefficients in the Fourier expansion of
the field A:

AX, 1) = % Za(k, 1)l (1.9)
k

Substituting this expansion into (1.8) we obtain equations for the coefficients, which are
just the Newton equations for harmonic oscillators with frequencies £c|K|:

9%a;(k, 1) — (ck)’ <5~ — ﬁ) a k=0 (1.10)
r 4ilR ij K2 JU :

where a = (a;, a», a3).
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6 I Introduction to methods

The meaning of this transformation becomes especially clear if we confine our system of
fields in a box with linear dimensions L; (i = 1, ..., D) with periodic boundary conditions.
Then our k-space becomes discrete:

k,' = 2—7[11,'
L;
(n; are integer numbers). Thus the continuous theory of the electromagnetic field in real
space looks like a discrete theory of independent harmonic oscillators in k-space. The
quantization of such a theory is quite obvious: one should quantize the above oscillators
and get a quantum field theory from the classical one. Things are not always so simple,
however. Imagine that the action (1.4) has quartic terms in derivatives of A, which is the
case for electromagnetic waves propagating through a nonlinear medium where the speed
of light depends on the field intensity E:

¢* = (cj/n) + (3, A? (1.11)

Then one cannot decouple the Maxwell equations into independent equations for harmonic
oscillators.

We have mentioned above that QFT is just quantum mechanics for an infinite number
of degrees of freedom. Infinities always cause problems, not only conceptual, but technical
as well. In high energy physics these problems are really serious, but in condensed matter
physics we are more lucky: here we rarely deal with systems where the number of degrees
of freedom is really infinite. Numbers of electrons and ions are always finite though usually
very large. If an infinity actually does appear, the first approach to it is to make it countable.
We already know how to do this: we should put the system into a box and carry out a Fourier
transformation of the fields. In condensed matter problems this box is not imaginary, but
real. Another natural way to make the number of degrees of freedom finite is to put the
system on a lattice. Again, in condensed matter physics a lattice is naturally present.

Usually QFT is concerned about universal features of phenomena, i.e. about those features
which are independent of details of the lattice. Therefore QFT describes a continuum limit of
many-body quantum mechanics, in other words the limit on a lattice witha — 0, L; — oo.
We shall see that this limit does not necessarily exist, i.e. not all condensed matter phenomena
have universal features.

Let us forget for a moment about possible difficulties and accept that QFT is just a
quantum mechanics of systems of an infinite number of degrees of freedom. Does the word
‘infinite’ impose any additional requirements? It does, because this makes QFT a statistical
theory. QFT operates with statistically averaged quantum averages. Therefore in QFT we
average twice. Let us explain this in more detail. The quantum mechanical average of an
operator A(t) is defined as

(Aw) = / AV xy e 0AOY @0 =Y CC,iglAW)Ip) (1.12)
q

where |g) are eigenstates and the coefficients C, are not specified. In QFT we usually
consider systems in thermal equilibrium, i.e. we assume that the coefficients of the wave
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1 QFT: language and goals 7

Figure 1.2. Studying responses of a ‘black box’.

functions follow the Gibbs distribution:
* 1 —BE,
CCp=—e PEas,, (1.13)

where 8 = 1/T. In other words, the averaging process in QFT includes quantum mechan-
ical averaging and Gibbs averaging:

Y, e FialADlg)  Tre PR A)
Zq e PE, - Tr(e_ﬂﬂ)

There is also another important language difference between quantum mechanics and
QFT. Quantum mechanics expresses everything in terms of wave functions, but in QFT we
usually express results in terms of correlation functions or generating functionals of these
functions. It is useful to define these important notions from the very beginning. Let us
consider a classical statistical system first. What is a correlation function? Imagine we have
a complicated system where everything is interconnected appearing like a ‘black box’ to
us. One can study this black box by its responses to external perturbations (see Fig. 1.2).

A usual measure of this response is a change in the free energy: § F = F[H(x)] — F[0].
In principle, the functional § F[ H(x)] carries all accessible information about the system.
Experimentally we usually measure derivatives of the free energy with respect to fields
taken at different points. The only formal difficulty is that the number of points is infinite.
However, we can overcome this by discretizing our space as has been explained above.
Therefore we represent our space as an arrangement of small boxes of volume €2 centred

(A(®)orr = (1.14)
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Figure 1.3. Response functions are usually measurable experimentally.

around points x,, (recall the previous discussion!) assuming that the field H(x) is constant
inside each box: H(x) = H(x,). Thus our functional may be treated as a limiting case of a
function of a large but finite number of arguments F[H] = limg_.o F(H), ..., Hy).

Performing the above differentiations we define the following quantities which are called
correlation functions:

(M) = 2]
SH(x)
(MM ) = — P (1.15)
SH(xo)8 H(x1)

SNF[H]

((MXN)M(Xy_1)--- M(X1))) SHG) - SHx)

Recall that the operation § F'/§ H thus defined is called a functional derivative. As we see, it
is a straightforward generalization of a partial derivative for the case of an infinite number of
variables. In general, whenever we encounter infinities in physics we can approximate them
by very large numbers, so do not worry much about such things as functional derivatives
and path integrals (see below); they are just trivial generalizations of partial derivatives and
multiple integrals!

Response functions are usually measurable experimentally, at least in principle (see
Fig. 1.3). By obtaining them one can recover the whole functional using the Taylor
expansion:

1
SFIH(X)] = Z;[d’)xl-~-deNH(xl>~--H(xn)<<M<x1)~-~M(xn>>> (1.16)

In which way does the situation in QFT differ from the classical one? First of all, as we
have seen, in QFT we average in both the quantum mechanical and thermodynamical sense,
but what is more important is that the quantities M (x) are now operators and the result of
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1 QFT: language and goals 9

averaging depends on their ordering. As we know from an elementary course in quantum
mechanics, operators satisfy the Heisenberg equation of motion:

ih— =[H, A] (1.17)

where H is the Hamiltonian of the system. This equation has the following solution:
At) = e ' A(r = 0)el ' (1.18)

To describe systems in thermal equilibrium we usually use imaginary or the so-called
Matsubara time

it = th!

Its meaning will become clear later.
Suppose now that A is a perturbation to our Hamiltonian A. Then this perturbation
changes the energy levels:

| Alm)>

E,=EY A
W nlAin) + ) S

m#n

(1.19)

and therefore changes the free energy:

F=—""In (Z eﬁE")

Now I am going to show that in the second order of the perturbation theory these changes in
the free energy can be expressed in terms of some correlation function. Let me make some
preparatory definitions. Consider an operator A(x) and its Hermitian conjugate A*(x). Let

us define their T-dependent generalizations:

Ar, x) = e"H A(x)e—"H
a - . (1.20)
A(t, x) = et At (x)e "

where the Matsubara ‘time’ belongs to the interval 0 < t < B.
Then we have the following definition of the correlation function of two operators:

D(1,2) = ((A(r1, x)A(2, X2)))

_ { (2 Trle P A, xDA(, x0)l — (A, xD)(A(m, %)) 1>
(Z 7 Trle#8 A(1y, x) AT, x1)] — (AT, X)) (A(T1, X))} n>1
1.21)

The minus sign in the upper row appears if A is a Fermi operator. Here I have to make the
following important remark. The terms Bose and Fermi are used in the following sense.
Operators are termed Bose if they create a closed algebra under the operation of commu-
tation, and they are termed Fermi if they create a closed algebra under anticommutation.
The phrase ‘closed algebra’ means that commutation (or anticommutation) of operators
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10 I Introduction to methods

of a certain set produces only operators of this set and nothing else. Thus spin opera-
tors on a lattice $¢ (r) (a = x,y, z) create a closed algebra under commutation, because
their commutator is either zero (r # r’) or a spin operator. One might think that § = 1/2
is a special case because the Pauli matrices on one site also satisfy the anticommutation
relations:

{0, 0"} =264

and it seems that one can choose alternative definitions of their statistics. It is not true,
however, because the spin-1/2 operators from different lattice sites always commute and,
on the contrary, their anticommutator is never equal to zero.

Imagine that we know all the eigenfunctions and eigenenergies of our system. Then we
can rewrite the above traces explicitly using this basis. The result is given by

7/3E11 ~ .
D(1.2) = Y S| AO)m) PP [£0(r, — )™ 4 01y — 1y)efm ]

’ (1.22)
where 71, = 7] — To, X;2 = X| — Xp. Here we have used the following properties of
eigenstates:

er[:l|n> — erEn|n>

(mlAx)ln) = T =P (m| A0)|n)

The latter property holds only for translationally invariant systems where the eigenstates of
H are simultaneously eigenstates of the momentum operator P. Now you can check that
the change in the free energy can be written in terms of the correlation functions:

ﬂéF:/ dt(A(T)) + / dn/ dr, D(ty, 12) (1.23)
0

Therefore correlation functions are equally important in classical and quantum systems.

Let us continue our analysis of the pair correlation function defined by (1.21) and (1.22).
This pair correlation function is often called the Green’s function after the man who intro-
duced similar objects in classical field theory. There are two important properties following
from this definition. The first is that the Green’s function depends on

T=(11 — )
which belongs to the interval
—-B<t<§p
The second is that for Bose operators the Green’s function is a periodic function:
D(t) = D(t + pB) <0 (1.24)
and for Fermi operators it is an antiperiodic function:

D(t)=-D(r+p) 1<0 (1.25)
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1 QFT: language and goals 1

These two properties allow one to write down the following Fourier decomposition of the
Green’s function:

e~ dPk
—_p-1 —iws T—ikX 12
D(t,x12) = B S;oc / oy D@s: e ! (1.26)
where
. Sk —P,
D(ws,. k) = 2m)PZ7' Y e PP e’s_E'"”)|(n|A(0)|m)|2M
n,m 1w — Emn
K
= Z M (1.27)
n,m 1wy — Emn
and

wy = Znﬂfls
for Bose systems and
ws, =7 2s+ 1)

for Fermi systems. Thus we get a function defined in the complex plane of w at a sequence
of points w = iw;. We can continue it analytically to the upper half-plane (for example).
Thus we get the function

n,m k
= e
nom " (1.28)

D
e P (1 5 ) A 50K — )

,O(n,m)(k) =

analytical in the upper half-plane of w. This function has two wonderful properties. (a)
Its poles in the lower half-plane give energies of transitions E,,, which tell us about the
spectrum of our Hamiltonian. (b) We can write down our original Green’s function in terms
of the retarded one:

1 / ImD®(y)
dy—

This relation is very convenient for practical calculations as will become clear in subsequent
chapters.

We see that the quantum case is special due to the presence of the ‘time’ variable 7. What
is specially curious is that the quantum correlation functions have different periodicity
properties in the t-plane depending on the statistics. We shall have a chance to appreciate
the really deep meaning of all these innovations in the next chapters.

One should not take away from this chapter a false impression that in QFT we are doomed
to deal with this strange imaginary time and are not able to make judgements about real
time dynamics. The point is that the r-formulation is just more convenient; for systems
in thermal equilibrium the dynamic (i.e. real time) correlation functions are related to the
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