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Preface

Within a period of a few decades, the field of materials science and engineering
has emerged as a focal point for developments in virtually all areas of engineering
and applied science. The study of thin film materials has been one of the unifying
themes in the development of the field during this period. As understood here, the
area encompasses films bonded to relatively thick substrates, multilayer materials,
patterned films on substrates and free-standing films. Significant advances in meth-
ods for synthesizing and processing these materials for ever more specific purposes,
as well as in instrumentation for characterizing materials at ever diminishing size
scales, have been key to modern engineering progress.

At the dawn of the 21st century, the United States National Academy of Engineer-
ing reported the outcome of a project intended to identify the twenty most significant
engineering achievements of the preceding century. It is evident from the list com-
piled that achievements of the second half of the twentieth century — electronics,
computers, health technologies, laser and fiber optics, for example — were all based
on the creative and efficient exploitation of materials; thin film materials represent
a major component of this advance in materials technology. In fact, the impact
of advances in the specialized uses of materials was so pervasive in the achieve-
ments being recognized by the Academy that the development of high-performance
materials itself was included as one of the most significant achievements.

The goal of this book is to summarize developments in the area of thin film
materials that have occurred over the past few decades, with emphasis on the gener-
ation of internal stress and its consequences. Internal stress can induce a variety of
undesirable consequences including excessive deformation, fracture, delamination,
permanent deformation and microstructural alterations. In spite of these possibil-
ities, thin films have been inserted into engineering systems in order to accom-
plish a wide range of practical service functions. Among these are microelectronic
devices and packages; micro-electro-mechanical systems or MEMS; and surface
coatings intended to impart a thermal, mechanical, tribological, environmental,

XVl
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optical, electrical, magnetic or biological function. To a large extent, the success of
this endeavor has been enabled by research leading to reliable means for estimating
stress in small material systems and by establishing frameworks in which to assess
the integrity or functionality of the systems. The prospect for material failure due
to stress continues to be a technology-limiting barrier, even in situations in which
load-carrying capacity of the material is not among its primary functional charac-
teristics. In some circumstances, stress has desirable consequences, as in bandgap
engineering for electronic applications and in the self-assembly of small structures
driven by stored elastic energy. It is our hope that the information included in this
book will be useful as an indicator of achievements in the field and as a guide for
further advances in a number of new and emerging directions.

The first chapter is devoted largely to a discussion of the origins of residual
stress in thin film materials and to identification of relationships between processing
methods and generation of stress. The consequences of stress are discussed in
subsequent chapters, with the presentation generally organized according to the size
scale of the dominant physical phenomena involved. Overall deformation of film—
substrate systems or multilayer structures is considered in Chapters 2 and 3. This
is followed by examination of the general failure modes of fracture, delamination
and buckling of films in Chapters 4 and 5. The focus then shifts to a smaller scale to
discuss conditions for dislocation formation in Chapter 6 and inelastic deformation
of films in Chapter 7. Finally, the issues of stability of material surfaces and evolution
of surface morphology or alloy composition are considered in Chapters 8 and 9. The
consequences of stress in thin films are linked to the structure of the film materials
wherever possible.

It is recognized that each of the principal topics covered in the book could itself
be developed into a substantial monograph, but the goal here is not the exhaustive
treatment of a topic of limited scope. The area is inherently interdisciplinary, and
the intention is to provide a comprehensive coverage of issues relevant to stress and
its consequences in thin film materials. Adoption of this approach meant that many
choices had to be made along the way about depth of coverage of specific topics
and balance among different topics; we hope that readers will judge the choices
made to be reasonable. The main purpose of the book is the coherent presentation
of a sound scientific basis for describing the origins of stress in films and for
anticipating the consequences of stress in defect formation, surface evolution and
allied effects. Many references to original work are included as a guide to the
archival literature in the area. In addition, the fundamental concepts developed are
made more concrete through implementation in sample calculations and through
discussion of case studies of practical significance. The description of experimental
methods, results and observations is included as an integral part of developing the
conceptual structure of the topics examined. Each chapter concludes with a set

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521822815
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-82281-7 - Thin Film Materials: Stress, Defect Formation and Surface Evolution
L. B. Freund and S. Suresh

Frontmatter

More information

Xviil Preface

of exercises that further extend the material discussed and which can challenge
newcomers to the area at applying concepts. It is our hope that, with this structure,
the book will serve as a research reference for those pursuing the area at its frontiers,
as a useful compilation of readily applicable results for practicing engineers, and
as a textbook for graduate students or advanced undergraduate students wishing to
develop background in this area.

The idea for the book grew out of a course on thin films that has been offered for
students in solid mechanics and materials science at Brown University since 1992,
as a natural outgrowth of emerging research activity in the area. We are grateful to
the many students, postdoctoral research associates and colleagues who attended
these lectures and whose enthusiasm gave this project its initial impetus.

We are also grateful to many colleagues who have contributed in various ways
to the preparation of this book. We particularly thank John Hutchinson who used
a draft of parts of the book for a course for graduate students at Harvard and MIT,
and who provided valuable feedback on this material. Both John Hutchinson and
Bill Nix kindly shared with us their own course materials on thin films. Several
colleagues read drafts of various sections of the book and offered helpful recom-
mendations; they include Ilan Blech, Eric Chason, Ares Rosakis, Vivek Shenoy
and Carl Thompson. Several graduate students who took courses based in part on
draft chapters, particularly Yoonjoon Choi and Nuwong Chollacoop, suggested a
number of clarifications and improvements in the presentation. Finally, we are grate-
ful to the many colleagues who provided figures and micrographs from their own
work; in these cases, acknowledgments are noted along with the included material.
Tim Fishlock at Cambridge University Press offered us considerable flexibility in
the formulation of the scope of this book and in the preparation of the document.
We also thank Desiree Soucy who secured the agreements necessary to reproduce
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