ELECTROCHROMISM AND ELECTROCHROMIC DEVICES

Electrochromism has advanced greatly over the past decade with electrochromic substances – organic and/or inorganic materials and polymers – providing widespread applications in light-attenuation, displays and analysis.

Using reader-friendly electrochemistry, this book leads from electrochromic scope and history to new and searching presentations of optical quantification and theoretical mechanistic models. Non-electrode electrochromism and photo-electrochromism are summarised, with updated comprehensive reviews of electrochromic oxides (tungsten trioxide particularly), metal coordination complexes and metal cyanometallates, viologens and other organics; and more recent exotics such as fullerenes, hydrides and conjugated electroactive polymers are also covered. The book concludes by examining device construction and durability.

Examples of real-world applications are provided, including minimal-power electrochromic building fenestration, an eco-friendly application that could replace air conditioning; moderately sized electrochromic vehicle mirrors; large electrochromic windows for aircraft; and reflective displays such as quasi-electrochromic sensors for analysis, and electrochromic strips for monitoring of frozen-food refrigeration.

With an extensive bibliography, and step-by-step development from simple examples to sophisticated theories, this book is ideal for researchers in materials science, polymer science, electrical engineering, physics, chemistry, bioscience and (applied) optoelectronics.

P. M. S. MONK is a Senior Lecturer in physical chemistry at the Manchester Metropolitan University in Manchester, UK.

R.J. MORTIMER is a Professor of physical chemistry at Loughborough University, Loughborough, UK.

D. R. ROSSEINSKY, erstwhile physical chemist (Reader) at the University of Exeter, UK, is an Hon. University Fellow in physics, and a Research Associate of the Department of Chemistry at Rhodes University in Grahamstown, South Africa.

ELECTROCHROMISM AND ELECTROCHROMIC DEVICES

P. M. S. MONK,

Manchester Metropolitan University

R. J. MORTIMER Loughborough University

AND

D. R. ROSSEINSKY

University of Exeter

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521822695

© P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-82269-5 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Pref	ace po	age 1x
	Acki	nowledgements	xii
	List	of symbols and units	xiv
	List	of abbreviations and acronyms	xvii
1	Intro	oduction to electrochromism	1
	1.1	Electrode reactions and colour: electrochromism	1
	1.2	Non-redox electrochromism	3
	1.3	Previous reviews of electrochromism and electrochromic work	6
	1.4	Criteria and terminology for ECD operation	7
	1.5	Multiple-colour systems: electropolychromism	17
	Refe	erences	18
2	A bı	rief history of electrochromism	25
	2.1	Bibliography; and 'electrochromism'	25
	2.2	Early redox-coloration chemistry	25
	2.3	Prussian blue evocation in historic redox-coloration processes	25
	2.4	Twentieth century: developments up to 1980	27
	Refe	erences	30
3	Elec	trochemical background	33
	3.1	Introduction	33
	3.2	Equilibrium and thermodynamic considerations	34
	3.3	Rates of charge and mass transport through a cell	41
	3.4	Dynamic electrochemistry	46
	References		51
4	Opti	cal effects and quantification of colour	52
	4.1	Amount of colour formed: extrinsic colour	52
	4.2	The electrochromic memory effect	53
	4.3	Intrinsic colour: coloration efficiency η	54
	4.4	Optical charge transfer (CT)	60
	4.5	Colour analysis of electrochromes	62
	References		71

vi	Contents	
5	Kinetics of electrochromic operation	75
	5.1 Kinetic considerations for type-I and type-II electrochron	nes:
	transport of electrochrome through liquid solutions	75
	5.2 Kinetics and mechanisms of coloration in type-II bipyridi	liums 79
	5.3 Kinetic considerations for bleaching type-II electrochrom	es
	and bleaching and coloration of type-III electrochromes:	-
	transport of counter ions through solid electrochromes	115
	5.4 Concluding summary	115
6	References Motol ovideo	115
6	Metal Oxides	125
	6.1 Introduction to metal-oxide electrochromes	123
	6.3 Metal oxides: secondary electrochromes	159
	6.4 Metal oxides: dual metal electrochromes	105
	References	206
7	Electrochromism within metal coordination complexes	253
,	7.1 Redox coloration and the underlying electronic transition	1s 253
	7.2 Electrochromism of polypyridyl complexes	254
	7.3 Electrochromism in metallophthalocyanines and porphyr.	ins 258
	7.4 Near-infrared region electrochromic systems	265
	References	274
8	Electrochromism by intervalence charge-transfer coloration:	
	metal hexacyanometallates	282
	8.1 Prussian blue systems: history and bulk properties	282
	8.2 Preparation of Prussian blue thin films	283
	8.3 Electrochemistry, <i>in situ</i> spectroscopy and characterisatio	n
	of Prussian blue thin films	285
	8.4 Prussian blue electrochromic devices	289
	8.5 Prussian blue analogues	291
0	References	296
9	Miscellaneous inorganic electrochromes	303
	9.1 Fullerene-based electrochromes	303
	9.2 Other carbon-based electrochromes	304 205
	9.5 Reversible electrodeposition of metals	303 207
	9.4 Reflecting metal hydrides	307
	Peferences	200
10	Conjugated conducting polymers	309
10	10.1 Introduction to conjugated conducting polymers	312
	10.2 Poly(thionhene)s as electrochromes	312
	10.2 Tory(unophene)s as electroentomes	510

		Contents	vii
	10.3	Poly(pyrrole)s and dioxypyrroles as electrochromes	327
	10.4	Poly(aniline)s as electrochromes	328
	10.5	Directed assembly of electrochromic electroactive	
		conducting polymers	331
	10.6	Electrochromes based on electroactive conducting	
		polymer composites	332
	10.7	ECDs using both electroactive conducting polymers	
		and inorganic electrochromes	333
	10.8	Conclusions and outlook	334
	Refer	rences	335
11	1 The viologens		341
	11.1	Introduction	341
	11.2	Bipyridilium redox chemistry	342
	11.3	Bipyridilium species for inclusion within ECDs	346
	11.4	Recent elaborations	360
	Refer	rences	366
12	Misc	ellaneous organic electrochromes	374
	12.1	Monomeric electrochromes	374
	12.2	Tethered electrochromic species	387
	12.3	Electrochromes immobilised within viscous solvents	391
	Refer	rences	391
13	Appl	ications of electrochromic devices	395
	13.1	Introduction	395
	13.2	Reflective electrochromic devices: electrochromic	
		car mirrors	395
	13.3	Transmissive ECD windows for buildings and aircraft	397
	13.4	Electrochromic displays for displaying images and data	401
	13.5	ECD light modulators and shutters in message-laser	
		applications	404
	13.6	Electrochromic paper	405
	13.7	Electrochromes applied in quasi-electrochromic or non-	
		electrochromic processes: sensors and analysis	406
	13.8	Miscellaneous electrochromic applications	407
	13.9	Combinatorial monitoring of multiples of varied	
		electrode materials	409
	Refer	rences	410
14	Fund	lamentals of device construction	417
	14.1	Fundamentals of ECD construction	417
	14.2	Electrolyte layers for ECDs	419
	14.3	Electrodes for ECD construction	422

CAMBRIDGE

Cambridge University Press
978-0-521-82269-5 - Electrochromism and Electrochromic Devices
P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky
Frontmatter
Moreinformation

viii		Contents	
	14.4	Device encapsulation	424
	References		425
15	Photo	Photoelectrochromism	
	15.1	Introduction	433
	15.2	Direction of beam	433
	15.3	Device types	434
	15.4	Photochromic-electrochromic systems	438
	References		440
16	Device durability		443
	16.1	Introduction	443
	16.2	Durability of transparent electrodes	444
	16.3	Durability of the electrolyte layers	445
	16.4	Enhancing the durability of electrochrome layers	445
	16.5	Durability of electrochromic devices after assembly	446
	Refer	ences	449
	Index		452

Preface

While the topic of electrochromism – the evocation or alteration of colour by passing a current or applying a potential – has a history dating back to the nineteenth century, only in the last quarter of the twentieth century has its study gained a real impetus. So, applications have hitherto been limited, apart from one astonishing success, that of the Gentex Corporation's self-darkening rear-view mirrors now operating on several million cars. Now they have achieved a telling next step, a contract with Boeing to supply adjustably darkening windows in a new passenger aircraft. The ultimate goal of contemporary studies is the provision of large-scale electrochromic windows for buildings at modest expenditure which, applied widely in the USA, would save billions of dollars in air-conditioning costs. In tropical and equatorial climes, savings would be proportionally greater: Singapore for example spends one quarter of its GDP (gross domestic product) on air conditioning, a sine qua non for tolerable living conditions there. Another application, to display systems, is a further goal, but universally used liquid crystal displays present formidable rivalry. However, large-scale screens do offer an attractive scope where liquid crystals might struggle, and electrochromics should almost certainly be much more economical than plasma screens. Numerous other applications have been contemplated. There is thus at present a huge flurry of activity to hit the jackpot, attested by the thousands of patents on likely winners. However, as a patent is sui generis, and we wish to present a scientific overview, we have not scanned in detail the patent record, which would have at least doubled the work without in our view commensurate advantages.

There are thousands of chemical systems that are intrinsically electrochromic, and while including explanatory examples, we incorporate here mostly those that have at least a promise of being useful. Our approach has been to concentrate on systems that colorise or change colour by electron transfer ('redox') processes, without totally neglecting other, electric-potential Х

Preface

dependent, systems now particularly useful in applications to bioscience. The latter especially seem set to shine.

Several international gatherings have been convened to discuss electrochromism for devices. Probably the first was The Electrochemical Society meeting in 1989 (in Hollywood, Fl).¹ Soon afterwards was 'Fundamentals of Electrochromic Devices' organised by The American Institute of Chemical Engineers at their Annual Meeting in Chicago, 11–16 November 1990.² The following year, the authors of this present volume called a Solid-State Group (Royal Society of Chemisty) meeting in London. At the Electrochemical Society meeting in New Orleans (in 1994),³ it was decided to host the first of the so-called International Meetings on Electrochromism, 'IME'. The first such meeting 'IME-1' met in Murano, Venice in 1994,⁴ IME-2 in San Diego in 1996,⁵ IME-3 was in London in 1998,⁶ IME-4 in Uppsala in 2000,⁷ IME-5 in Colorado in 2002 and IME-6 in Brno, Czech Republic in 2004.⁸ Further electrochromics symposia occurred at Electrochemical Society meetings that took place at San Antonio, TX, in 1996⁹ and Paris in 2003.¹⁰

The basis of the processes on which we concentrate is electrochemical, as is outlined in the first chapter. A historical outline is given in Chapter 2, and any reader not familiar with the electrochemistry presented here may find this explained sufficiently in Chapter 3. A fairly extensive presentation of twentieth-century electrochemistry in Chapter 3 seems necessary also to follow some later details of the exposition, and those familiar with this arcane science may choose to flip through a chapter largely comprising 'elderly electrochemistry', to quote from ref. 18 of Chapter 1.

Details of assessing coloration follow in Chapter 4, and in Chapter 5 attempts at theoretically modelling the electrochromic process in the most popular electrochromic material to date, tungsten trioxide, are outlined. In subsequent chapters, the work that has been conducted on a wide variety of materials follow, from metal oxides through complexed metals and metalorganic complexes to conjugated conductive polymers. Applications and tests finish the account. In order hopefully to make each chapter almost freestanding, we do quite frequently repeat the gist of some previous chapter(s).

A comment about the citations which end each chapter: early during our discussions of the book's contents, we decided to reproduce the full titles of each paper cited. Each title is cited as it appeared when first published. We have systematised capitalisation throughout (and corrected spelling errors in two papers).

In our account we have probably not succeeded in conveying all the aesthetic pleasure of studying aspects of colour and its creation, or the profound science-and-technology interest of understanding the reactions and of mastering the associated processes: this book does represent an attempt to spread

Preface

these interests. However, further at stake is the prospect of controlling an important part of personal environments while economising on air-conditioning costs, thereby cutting down fuel consumption and lessening the human 'carbon footprint', to cite the mode words. There are the other perhaps lesser applications that are also promisingly useful. So, to a more controlled-colour future, read on.

DISCLAIMER: Superscripted reference citations in the text are, unusually, listed in full e.g. 1, 2, 3, 4 rather than the customary 1–4. The need arises from the parallel publication of this monograph as an e-book. In this version, 'each reference citation is hyper-linked to the reference itself, which requires that they be cited separately.'

References

- 1. Proceedings volume was *Electrochromic Materials*, Carpenter, M. K. and Corrigan, D. A. (eds.), **90–2**, Pennington, NJ, Electrochemical Society, 1990.
- 2. Proceedings of the Annual Meeting of the American Institute of Chemical Engineers, published in *Sol. Energy Mater. Sol. Cells*, **25**, 1992, 195–381.
- 3. Proceedings volume was *Electrochromic Materials II*, Ho, K.-C. and MacArthur, D. A. (eds.), **94–2**, Pennington, NJ, Electrochemical Society, 1994.
- 4. Proceedings volume was Sol. Energy Mater. Sol. Cells, 1995, 39, issue 2-4.
- 5. Proceedings volume was Sol. Energy Mater. Sol. Cells, 1998, 54, issue 1-4.
- 6. Proceedings volume was Sol. Energy Mater. Sol. Cells, 1999, 56, issue 3-4.
- 7. Proceedings volume was *Electrochim. Acta*, 2001, **46**, issue 13–14.
- 8. Proceedings volume was Sol. Energy Mater. Sol. Cells, 2006, 90, issue 4.
- Proceedings volume was *Electrochromic Materials III*, Ho, K. C., Greenberg, C. B. and MacArthur, D. M. (eds.), 96–24, Pennington, NJ, Electrochemical Society, 1996.
- Proceedings volume was *Electrochromic Materials and Applications*, Rougier, A., Rauh, D. and Nazri, G. A. (eds.), 2003–17, Pennington, NJ, Electrochemical Society, 2003.

xi

Acknowledgements

We are indebted to numerous colleagues and correspondents who have collaborated in research or in providing information.

PMSM wishes to thank: Professor Claus-Gören Granqvist of Uppsala University, Professor Susana de Córdoba, Universidade de São Paulo, Brazil, Professor L. M. Loew of the University of Connecticut Health Center and Dr Yoshinori Nishikitani of the Nippon Mitsubishi Oil Corporation. Also, those on the computer helpdesk at MMU who helped with the scanning of figures.

RJM wishes to thank: Dr Joanne L. Dillingham, (Ph.D, Loughborough University), Dr Steve J. Vickers erstwhile of the Universities of Birmingham and Sheffield, Dr Natalie M. Rowley of the University of Birmingham; Dr Frank Marken, University of Bath; Professor Paul D. Beer, University of Oxford; Professor John R. Reynolds, University of Florida; Aubrey L. Dyer, University of Florida; Dr Barry C. Thompson, University of California, Berkeley – erstwhile of the Reynolds group at the University of Florida; Professor Mike D. Ward, University of Sheffield, and Professor Steve Fletcher of Loughborough University.

DRR wishes to thank: Bill Freeman Esq. then of Finisar Corp., now heading Thermal Transfer (Singapore), Dr Tom Guarr of Gentex, Dr Andrew Glidle now of Glasgow University, Dr Richard Hann of ICI, the late Dr Brian Jackson of Cookson Ltd, Professor Hassan Kellawi of Damascus University, Mr (now Captain) Hanyong Lim of Singapore, graduate of Carnegie-Mellon University, Professor Paul O'Shea of Nottingham University, Ms Julie Slocombe, erstwhile of Exeter University, and Dr Andrew Soutar and Dr Zhang Xiao of SIMTech in Singapore.

We also wish to thank the following for permission to reproduce the figures (in alphabetical order): The American Chemical Society, The American Institute of Physics, The Electrochemical Society, Elsevier Science, The Royal Acknowledgements

Society of Chemistry (RSC), The Japanese Society of Physics, The Society of Applied Spectroscopy, and the Society for Photo and Information Engineering. In collecting the artwork for figures, we also acknowledge the kind help of the following: Dr Charles Dubois, formerly of the University of Florida.

From the staff of Cambridge University Press, we wish to thank Dr Tim Fishlock (now at the RSC in Cambridge, UK), who first commissioned the book, and his successor Dr Michelle Carey, and Assistant Editor, Anna Littlewood, together with Jo Bottrill of the production team for their help; and a particularly big thank you to the copy-editor Zoë Lewin for her consistent good humour and professionalism.

We owe much to our families, who have enabled us to undertake this project. We apologise if we have been preoccupied or merely absent when you needed us.

We also thank the numbers of kindly reviewers of our earlier book (and even the two who commented adversely) and much appreciate passing comment in a paper by Dr J. P. Collman and colleagues.

Though obvious new leaders exploring different avenues are currently emerging, if one individual is to be singled out in the general field, Claes-Goran Granqvist of the Ångstrom Laboratory, Uppsala, has to be acknowledged for the huge input into electrochromism that he has sustained over decades.

We alone are responsible for the contents of the book including the errors.

Symbols and units

A	ampere, area
Abs	optical absorbance
c(y,t)	time-dependent concentration of charge at a distance of y into
	a solid thin film
Cm	maximum concentration of charge in a thin film
c_0	initial concentration of charge in a thin film
D	diffusion coefficient
\overline{D}	chemical diffusion coefficient
d	thickness of a thin film
е	charge on an electron
e ⁻	electron
\mathcal{E}	energy
Ε	potential
$E_{\rm a}$	activation energy
$E_{(appl)}$	applied potential
$E_{(eq)}$	equilibrium potential
$E_{\rm pa}$	potential of anodic peak
$E_{\rm pc}$	potential of cathodic peak
E^{Φ}	standard electrode potential
eV	electron volt
F	Faraday constant
Hz	hertz
i	current density
i	subscripted, represents component 1 or 2
i _b	bleaching current density
<i>i</i> _c	coloration current density
i _o	exchange current density
I	imaginary part of impedance
$J_{\rm o}$	charge flux (rate of passage of electrons or ionic species)
Κ	equilibrium constant
Ka	equilibrium constant of acid ionisation

List of symbols and units

XV

$K_{\rm sp}$ l(t)	equilibrium constant of ionic solubility ('solubility product') time-dependent thickness of a narrow layer of the WO ₃ film adjacent to the electrolyte (during electro-bleaching)
Μ	$mol dm^{-3}$
n	number in part of iterative calculation
n	number of electrons in a redox reaction
р	volume charge density of protons in the H ₀ WO ₃
р	the operator $-\log_{10}$
Ра	pascal
q	charge per unit volume
Q	charge
R	gas constant
R	real component of impedance
r	radius of sphere (e.g. of a solid, spherical grain)
S	Seebeck coefficient
S	second
T	thermodynamic temperature
t	time
V	scan rate
V	volt
V	volume
$V_{\rm a}$	applied potential
W	Wagner enhancement factor ('thermodynamic enhancement
	factor')
X	insertion coefficient
$\chi_{(critical)}$	insertion coefficient at a percolation threshold
X_1	constant (of value ≈ 0.1)
X _o	proton density in a solid thin film
<i>x</i> , <i>y</i> , <i>z</i> , <i>w</i> or <i>c</i>	subscripted, non-integral composition indicators, in non-
	stoichiometric materials
Ζ	impedance
γ	gamma photon
ε	extinction coefficient ('molar absorptivity')
η	coloration efficiency
η_{o}	coloration efficiency of an electrochromic device
$\eta_{ m p}$	coloration efficiency of primary electrochrome
$\eta_{ m s}$	coloration efficiency of secondary electrochrome
η	overpotential

xvi

Cambridge University Press 978-0-521-82269-5 - Electrochromism and Electrochromic Devices P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky Frontmatter More information

List of symbols and units wavelength

λ	wavelength
λ_{\max}	wavelength maximum
Λ	ionic molar conductivity
μ	mobility, chemical potential
$\mu_{(ion)}$	mobility of ions
$\mu_{(\text{electron})}$	mobility of electrons
ν	frequency of light
ρ	density of atoms in a thin film
$ ho_0$	constant equal to $(2 e \rho d i_0)$
σ	electronic conductivity
τ_{D}	'characteristic time' for diffusion
ϕ_s	membrane surface potential
v	kinematic viscosity
$\overline{\upsilon}$	velocity of solution flow
ω	frequency of ac signal

Abbreviations and acronyms

a	amorphous
ac	alternating current
AEIROF	anodically electrodeposited iridium oxide film
AES	atomic emission spectroscopy
AFM	atomic force microscopy
AIROF	anodically formed iridium oxide film
AMPS	2-acrylamido-2-methylpropanesulfonic acid
ANEPPS	3-{4-[2-(6-dibutylamino)-2-naphthyl]- <i>trans</i> -ethenyl
	pyridinium} propane sulfonate
aq	aqueous
AR	anti reflectance
ASSD	all-solid-state device
АТО	antimony-tin oxide
BEDOT	2,2'-bis(3,4-ethylenedioxythiophene)
BEDOT-NMeCz	3,6-bis[2-(3,4-ethylenedioxythiophene)]-
	<i>N</i> -alkylcarbazole
bipy	2,2'-bipyridine
bipm	4,4'-bipyridilium
c	crystalline
CAT	catecholate
CCE	composite coloration efficiency
CE	counter electrode
ChLCs	cholesteric liquid crystals
CIE	Commission Internationale de l'Eclairage
стс	critical micelle concentration
CPQ	cyanophenyl paraquat [1,1'-bis(p-cyanophenyl)-
	4,4'-bipyridilium]
CRT	cathode-ray tube
СТ	charge transfer

xvii

xviii	List of abbreviations and acronyms
CTEM	conventional transmission electron microscopy
CuHCF	copper hexacyanoferrate
CVD	chemical vapour deposition
dc	direct current
DDTP	2,3-di(thien-3-yl)-5,7-di(thien-2-yl)thieno[3,4-b]
	pyrazine
DEG	diethyleneglycol
DMF	dimethylformamide
DMSO	dimethyl sulfoxide
EC	electrochromic
EC	electrode reaction followed by a chemical reaction
ECB	electrochromic battery
ECD	electrochromic device
ECM	electrochromic material
ECW	electrochromic window
EDAX	energy dispersive analysis of X-rays
EDOT	3,4-(ethylenedioxy)thiophene
EIS	electrochemical impedance spectroscopy
EQCM	electrochemical quartz-crystal microbalance
FPE	fluoresceinphosphatidyl-ethanolamine
FTIR	Fourier-transform infrared
FTO	fluorine[-doped] tin oxide
GC	glassy carbon
HCF	hexacyanoferrate
HOMO	highest occupied molecular orbital
HRTEM	high-resolution transmission electron microscopy
HTB	hexagonal tungsten bronze
HV	heptyl viologen (1,1'-di- <i>n</i> -heptyl-4,4'-bipyridilium)
IBM	Independent Business Machines
ICI	Imperial Chemical Industries
IR	infrared
ITO	indium-tin oxide
IUPAC	International Union of Pure and Applied Chemistry
IVCT	intervalence charge transfer
LB	Langmuir-Blodgett
LBL	layer-by-layer [deposition]
LCD	liquid crystal display
LED	light-emitting diode
LFER	linear free-energy relationships

> List of abbreviations and acronyms xix liquid-phase chemical vapour deposition LPCVD linear poly(ethylene imine) LPEI LUMO lowest unoccupied molecular orbital MB Methylene Blue MLCT metal-to-ligand charge transfer MOCVD metal-oxide chemical vapour deposition methyl viologen (1,1'-dimethyl-4,4'-bipyridilium) MV naphthalocyanine nc nanochromic display NCD nickel hexacyanoferrate Ni HCF *N*-methylpyrrolidone NMP nuclear reaction analysis NRA NREL National Renewable Energy Laboratory, USA NVS[©] Night Vision System[®] optical density OD octaethyl porphyrin OEP **OLED** organic light-emitting diode OTE optically transparent electrode optically transparent thin-layer electrode OTTLE peak anodic pa PAA poly(acrylic acid) poly(allylamine hydrochloride) PAH poly(aniline) PANI PB Prussian blue poly{1,4-bis[2-(3,4-ethylenedioxy)thienyl]-**PBEDOT-B** $(OC_{12})_2$ 2,5-didodecyloxybenzene} PBEDOT-N-MeCz poly{3,6-bis[2-(3,4-ethylenedioxy)thienyl]-*N*-methylcarbazole} poly{3,6-bis[2-(3,4-ethylenedioxy)thienyl] PBEDOT-Pyr pyridine} PBEDOT-PyrPyr(Ph)₂ poly{5,8-bis(3-dihydro-thieno[3,4-b]dioxin-5-yl)-2,3-diphenyl-pyrido[3,4-*b*]pyrazine} poly[3,4-(butylenes dioxy)pyrrole] **PBuDOP** peak cathodic pc Pc dianion of phthalocyanine PC propylene carbonate PCNFBS poly{cyclopenta[2,1-b;4,3-b']dithiophen-4-(cyanononafluorobutylsulfonyl)methylidene} PdHCF palladium hexacyanoferrate

XX	List of abbreviations and acronyms
PDLC	phase-dispersed liquid crystals
PEDOP	poly[3,4-(ethylenedioxy)pyrrole]
PEDOT	poly[3,4-(ethylenedioxy)thiophene]
PEDOT-S	poly{4-(2,3-dihydrothieno[3,4-b]-[1,4]dioxin-2-yl-
	methoxy}-1-butanesulfonic acid, sodium salt
PEO	poly(ethylene oxide)
PET	poly(ethylene terephthalate)
PG	Prussian green
PITT	potentiostatic intermittence titration technique
PMMA	poly(methyl methacrylate)
PMT	polaromicrotribometric
PP	plasma polymerised
PP	poly(1,3,5-phenylene)
PProDOP	poly[3,4-(propylenedioxy)pyrrole]
PProDOT	poly(3,4-propylenedioxythiophene)
PSS	poly(styrene sulfonate)
PTPA	poly(triphenylamine)
PVA	poly(vinyl acrylate)
PVC	poly(vinyl chloride)
PVD	physical vapour deposition
PW	Prussian white
PX	Prussian brown
Pyr	pyridine
Q	Quinone
RE	reference electrode
rf	radio frequency
RP	ruthenium purple: iron(III) hexacyanoruthenate(II)
RRDE	rotated ring-disc electrode
S	solid
s. soln	solid solution
SA	sacrificial anode
SCE	saturated calomel electrode
SQ	semi quinone
SEM	scanning electron microscopy
SHE	standard hydrogen electrode
SI	Système internationale
SIMS	secondary ion mass spectroscopy
SIROF	sputtered iridium oxide film
soln	solution

	List of abbreviations and acronyms	xxi
SPD	suspended particle device	
SPM	solid paper matrix	
STM	scanning tunnelling microscopy	
ТА	thiazine	
TCNQ	tetracyanoquinodimethane	
TGA	thermogravimetric analysis	
THF	tetrahydrofuran	
TMPD	tetramethylphenylenediamine	
Tp*	hydrotris(3,5-dimethylpyrazolyl)borate	
TTF	tetrathiafulvalene	
UCPC	user-controllable photochromic [material]	
UPS	ultraviolet photoelectron spectroscopy	
VDU	visual display unit	
VHCF	vanadium hexacyanoferrate	
WE	working electrode	
WPA	tungsten phosphoric acid	
XAS	X-ray absorption spectroscopy	
XPS	X-ray photoelectron spectroscopy	
XRD	X-ray diffraction	
XRG	xerogel	