
1
Introduction

The aim of this book is to introduce the reader to classical integrable
systems. Because the subject has been developed by several schools hav-
ing different perspectives, it may appear fragmented at first sight. We
develop here the thesis that it has a profound unity and that the various
approaches are simply changes of point of view on the same underlying
reality. The more one understands each approach, the more one sees their
unity. At the end one gets a very small set of interconnected methods.
This fundamental fact sets the tone of the book. We hope in this way to

convey to the reader the extraordinary beauty of the structures emerging
in this field, which have illuminated many other branches of theoretical
physics.
The field of integrable systems is born together with Classical Mechan-

ics, with a quest for exact solutions to Newton’s equations of motion.
It turned out that apart from the Kepler problem which was solved by
Newton himself, after two centuries of hard investigations, only a handful
of other cases were found. In the nineteenth century, Liouville finally pro-
vided a general framework characterizing the cases where the equations
of motion are “solvable by quadratures”. All examples previously found
indeed pertained to this setting. The subject stayed dormant until the
second half of the twentieth century when Gardner, Greene, Kruskal and
Miura invented the Classical Inverse Scattering Method for the Korteweg–
de Vries equation, which had been introduced in fluid mechanics. Soon
afterwards, the Lax formulation was discovered, and the connection with
integrability was unveiled by Faddeev, Zakharov and Gardner. This was
the signal for a revival of the domain leading to an enormous amount of
results, and truly general structures emerged which organized the sub-
ject. More recently, the extension of these results to Quantum Mechanics
already led to remarkable results and is still a very active field of research.
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2 1 Introduction

Let us give a general overview of the ideas we present in this book. They
all find their roots in the notion of Lax pairs. It consists of presenting the
equations of motion of the system in the form L̇(λ) = [M(λ), L(λ)], where
the matrices L(λ) and M(λ) depend on the dynamical variables and on a
parameter λ called the spectral parameter, and [ , ] denotes the commu-
tator of matrices. The importance of Lax pairs stems from the following
simple remark: the Lax equation is an isospectral evolution equation for
the Lax matrix L(λ). It follows that the curve defined by the equation
det (L(λ) − µI) = 0 is time-independent. This curve, called the spectral
curve, can be seen as a Riemann surface. Its moduli contain the con-
served quantities. This immediately introduces the two main structures
into the theory: groups enter through the Lie algebra involved in the
commutator [M,L], while complex analysis enters through the spectral
curve.
As integrable systems are rather rare, one naturally expects strong con-

straints on the matrices L(λ) and M(λ). Constructing consistent Lax
matrices may be achieved by appealing to factorization problems in ap-
propriate groups. Taking into account the spectral parameter promotes
this group to a loop group. The factorization problem may then be viewed
as a Riemann–Hilbert problem, a central tool of this subject.
In the group theoretical setting, solving the equations of motion

amounts to solving the factorization problem. In the analytical setting,
solutions are obtained by considering the eigenvectors of the Lax matrix.
At any point of the spectral curve there exists an eigenvector of L(λ) with
eigenvalue µ. This defines an analytic line bundle L on the spectral curve
with prescribed Chern class. The time evolution is described as follows: if
L(t) is the line bundle at time t then L(t)L−1(0) is of Chern class 0, i.e. is
a point on the Jacobian of the spectral curve. It is a beautiful result that
this point evolves linearly on the Jacobian. As a consequence, one can ex-
press the dynamical variables in terms of theta-functions defined on the
Jacobian of the spectral curve. The two methods are related as follows:
the factorization problem in the loop group defines transition functions
for the line bundle L.
The framework can be generalized by replacing the Lax matrix by the

first order differential equation (∂λ−Mλ(λ))Ψ = 0, whereMλ(λ) depends
rationally on λ. The solution Ψ acquires non-trivial monodromy when λ
describes a loop around a pole of Mλ. The isomonodromy problem con-
sists of finding all Mλ with prescribed monodromy data. The solutions
depend, in general, on a number of continuous parameters. The deforma-
tion equations with respect to these parameters form an integrable sys-
tem. The theta-functions of the isospectral approach are then promoted
to more general objects called the tau-functions.
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1 Introduction 3

One can study the behaviour around each singularity of the differential
operator quite independently. In the group theoretical version, the above
extension of the framework corresponds to centrally extending the loop
groups. Around a singularity the most general extended group is the group
GL(∞) which corresponds to the KP hierarchy. It can be represented in
a fermionic Fock space. Fermionic monomials acting on the vacuum yield
decomposed vectors, which describe an infinite Grassmannian introduced
by Sato. In this setting, the time flows are induced by the action of com-
muting one-parameter subgroups, and the tau-function is defined on the
Grassmannian, i.e. the orbit of the vacuum, and characterizes it. Finally
the Plücker equations of the Grassmannian are identified with the equa-
tions of motion, written in the bilinear Hirota form.
We have tried, as much as possible, to make the book self-contained,

and to achieve that each chapter can be studied quite independently.
Generally, we first explain methods and then show how they can be ap-
plied to particular examples, even though this does not correspond to the
historical development of the subject.
In Chapter 2 we introduce the classical definition of integrable systems

through the Liouville theorem. We present the Lax pair formulation, and
describe the symplectic structure which is encoded into the so-called r-
matrix form. In Chapter 3 we explain how to construct Lax pairs with
spectral parameter, for finite and infinite-dimensional systems. The Lax
matrix may be viewed as an element of a coadjoint orbit of a loop group.
This introduces immediately a natural symplectic structure and a factor-
ization problem in the loop group. We also introduce, at this early stage,
the notion of tau-functions. In Chapter 4 we discuss the abstract group
theoretical formulation of the theory. We then describe the analytical as-
pects of the theory in Chapter 5. In this setting, the action variables are
g moduli of the spectral curve, a Riemann surface of genus g, and the
angle variables are g points on it. We illustrate the general constructions
by the examples of the closed Toda chain in Chapter 6, and the Calogero
model in Chapter 7.
The following two Chapters, 8 and 9, describe respectively the isomon-

odromic deformation problem and the infinite Grassmannian. Soliton so-
lutions are obtained using vertex operators. Chapters 10 and 11 are de-
voted to the classical study of the KP and KdV hierarchies. We develop
and use the formalism of pseudo-differential operators which allows us to
give simple proofs of the main formal properties. Finite-zone solutions of
KdV allow us to make contact with integrable systems of finite dimen-
sionality and soliton solutions.
In the next Chapter, 12, we study the class of Toda and sine-Gordon

field theories. We use this opportunity to exhibit the relations between
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4 1 Introduction

their conformal and integrable properties. The sine-Gordon model is
presented in the framework of the Classical Inverse Scattering Method
in Chapter 13. This very ingenious method is exploited to solve the sine-
Gordon equation.
The last three chapters may be viewed as mathematical appendices,

provided to help the reader. First we present the basic facts of symplectic
geometry, which is the natural language to speak about Classical Me-
chanics and integrable systems. Since mathematical tools from Riemann
surfaces and Lie groups are used almost everywhere, we have written two
chapters presenting them in a concise way. We hope that they will be
useful at least as an introduction and to fix notations.
Let us say briefly how we have limited our discussion. First we choose

to remain consistently at a relatively elementary mathematical level, and
have been obliged to exclude some important developments which re-
quire more advanced mathematics. We put the emphasis on methods and
we have not tried to make an exhaustive list of integrable systems. An-
other aspect of the theory we have touched only very briefly, through the
Whitham equations, is the study of perturbations of integrable systems.
All these subjects are very interesting by themselves, but the present book
is big enough!
A most active field of recent research is concerned with quantum in-

tegrable systems or the closely related field of exactly soluble models in
statistical mechanics. When writing this book we always had the quantum
theory present in mind, and have introduced all classical objects which
have a well-known quantum counterpart, or are semi-classical limits of
quantum objects. This explains our emphasis on Hamiltonians methods,
Poisson brackets, classical r-matrices, Lie–Poisson properties of dressing
transformations and the method of separation of variables. Although there
is nothing quantum in this book, a large part of the apparatus necessary
to understand the literature on quantum integrable systems is in fact
present.
The bibliography for integrable systems would fill a book by itself. We

have made no attempt to provide one. Instead, we give, at the end of each
chapter, a short list of references, which complements and enhances the
material presented in the chapter, and we highly encourage the reader
to consult them. Of course these references are far from complete, and
we apologize to the numerous authors having contributed to the domain,
and whose due credit is not acknowledged. Finally we want to thank our
many colleagues from whom we learned so much and with whom we have
discussed many parts of this book.
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2
Integrable dynamical systems

We introduce the definition of integrable systems through the Liouville
theorem, i.e. systems for which n conserved quantities in involution are
known on a phase space of dimension 2n. The Liouville theorem asserts
that the equations of motion can then be solved by quadrature. The no-
tion of Lax matrix is introduced. This is a matrix whose elements are
dynamical and whose time evolution is isospectral, a central object in
the theory. It is also shown that the Poisson brackets of the elements of
the Lax matrix are expressed in the so-called r-matrix form. Finally, we
present some historical examples of integrable systems which are solved by
the method of separation of variables. This leads to linearization of the
time evolution on the Jacobian of Riemann surfaces, another recurring
theme in the book.

2.1 Introduction

In Classical Mechanics the state of the system is specified by a point
in phase space. This is generally a space of even dimension with coordi-
nates of position qi and momentum pi. The Hamiltonian is a function on
phase space, denoted H(pi, qi). The equations of motion are a first order
differential system taking the Hamiltonian form:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
(2.1)

Here and in the following, a dot will refer to a time derivative. For any
function F (p, q) on phase space, this implies that F (p(t), q(t)) obeys:

Ḟ ≡ dF
dt

= {H,F}

5
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6 2 Integrable dynamical systems

where for any functions F and G the Poisson bracket {F,G} is defined
as:

{F,G} ≡
∑
i

∂F

∂pi

∂G

∂qi
− ∂G
∂pi

∂F

∂qi

For the coordinates pi, qi themselves we have

{qi, qj} = 0, {pi, pj} = 0, {pi, qj} = δij (2.2)

The quantity H(p, q) is automatically conserved under time evolution,
d
dtH(p, q) = 0, so that the motion takes place on the subvariety of phase
space defined by H = E constant.
Historically, it proved very difficult to find dynamical systems such that

eqs. (2.1) could be solved exactly. However, there is a general framework
where the explicit solutions can be obtained by solving a finite number
of algebraic equations and computing finite number of integrals, i.e. the
solution is obtained by quadratures. These dynamical systems are the
Liouville integrable systems that we will consider in this book. A dynam-
ical system on a phase space of dimension 2n is Liouville integrable if one
knows n independent functions Fi on the phase space which Poisson com-
mute, that is {Fi, Fj} = 0. The Hamiltonian is assumed to be a function
of the Fi.
In order to understand the geometry of the situation, let us discuss

a very simple example: the harmonic oscillator. The phase space is of
dimension 2 and the Hamiltonian isH = 1

2(p
2+ω2q2) with Poisson bracket

{p, q} = 1. The phase space is fibred into ellipses H = E except for the
point (0, 0) which is a stationary point. An adapted coordinate system
ρ, θ is given by:

p = ρ cos(θ), q =
ρ

ω
sin(θ) (2.3)

and the non-vanishing Poisson bracket is {ρ, θ} = ω/ρ. In these coordi-
nates the flow reads:

ρ =
√
2E, θ = ωt+ θ0

i.e. the flow takes place on the above ellipsis.
This can be straightforwardly generalized to a direct sum of n harmonic

oscillators with

H =
n∑

i=1

1
2
(p2i + ω

2
i q
2
i )

and Poisson bracket eq. (2.2). We do have n conserved quantities in invo-
lution, Fi = 1

2(p
2
i +ω

2
i q
2
i ), and the level manifoldMf , i.e. the set of points

of phase space such that Fi = fi, is an n-dimensional real torus, which is
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2.2 The Liouville theorem 7

explicitly a cartesian product of n topological circles. The motion takes
place on these tori which foliate the phase space. We can intoduce n an-
gles θi as above which evolve linearly in time with frequency ωi. An orbit
of the dynamical flow is dense on the torus when the ωi are rationally
independent.
For Liouville integrable systems, we shall assume that the conserved

quantities are well-behaved so that the n dimensional surfacesMf defined
by Fi = fi are generically regular, and foliate the phase space. This does
not preclude the existence of singular points such as pi = qi = 0 in the
above example of the harmonic oscillator. In this setting we are now going
to prove the Liouville theorem and show that the geometry of the situation
is analogous to that of the harmonic oscillator example.

2.2 The Liouville theorem

We consider a dynamical Hamiltonian system with phase space M of
dimension 2n. Introduce canonical coordinates pi, qi such that the non-
degenerate Poisson bracket reads as in eq. (2.2). As usual a non-degenerate
Poisson bracket on M is equivalent to the data of a non-degenerate
closed 2-form ω, dω = 0, defined on M , called the symplectic form, see
Chapter 14. In the canonical coordinates the symplectic form reads

ω =
∑
j

dpj ∧ dqj

Let H be the Hamiltonian of the system.

Definition. The system is Liouville integrable if it possesses n indepen-
dent conserved quantities Fi, i = 1, . . . , n, {H,Fj} = 0, in involution

{Fi, Fj} = 0

The independence means that at generic points (i.e. anywhere except
on a set of measure zero), the dFi are linearly independent, or that the
tangent space of the surface Fi = fi exists everywhere and is of dimension
n. There cannot be more than n independent quantities in involution
otherwise the Poisson bracket would be degenerate. In particular, the
Hamiltonian H is a function of the Fi.

The Liouville theorem. The solution of the equations of motion of a
Liouville integrable system is obtained by “quadrature”.

Proof. Let α =
∑

i pidqi be the canonical 1-form and ω = dα =
∑

i dpi ∧
dqi be the symplectic 2-form on the phase space M . We will construct
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8 2 Integrable dynamical systems

a canonical transformation (pi, qi) → (Fi,Ψi) such that the conserved
quantities Fi are among the new coordinates:

ω =
∑
i

dpi ∧ dqi =
∑
i

dFi ∧ dΨi

If we succeed in doing that, the equations of motion become trivial:

Ḟj = {H,Fj} = 0

ψ̇j = {H,ψj} =
∂H

∂Fj
= Ωj (2.4)

The Ωj depend only on F and so are constant in time. In these coordi-
nates, the solution of the equations of motion read:

Fj(t) = Fj(0), ψj(t) = ψj(0) + tΩj

To construct this canonical transformation, we exhibit its so-called gen-
erating function S. Let Mf be the level manifold Fi(p, q) = fi. Suppose
that on Mf we can solve for pi, pi = pi(f, q), and consider the function

S(F, q) ≡
∫ m

m0

α =
∫ q

q0

∑
i

pi(f, q)dqi

where the integration path is drawn on Mf and goes from the point of
coordinate (p(f, q0), q0) to the point (p(f, q), q), where q0 is some reference
value.
Suppose that this function exists, i.e. if it does not depend on the path

from m0 to m, then pj = ∂S
∂qj

. Defining ψj by

ψj =
∂S

∂Fj

we have
dS =

∑
j

ψjdFj + pjdqj

Since d2S = 0 we deduce that ω =
∑

j dpj ∧ dqj =
∑

j dFj ∧ dψj . This
shows that if S is a well-defined function, then the transformation is
canonical.
To show that S exists, we must prove that it is independent of the

integration path. By Stokes theorem, we have to prove that:

dα|Mf
= ω|Mf

= 0
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2.2 The Liouville theorem 9

Fig. 2.1. A leaf Mf on phase space

Let Xi be the Hamiltonian vector field associated with Fi, defined by
dFi = ω(Xi, ·),

Xi =
∑
k

∂Fi
∂qk

∂

∂pk
− ∂Fi
∂pk

∂

∂qk

These vector fields are tangent to the manifold Mf because the Fj are in
involution,

Xi(Fj) = {Fi, Fj} = 0

Since the Fj are assumed to be independent functions, the tangent space
to the submanifold Mf is generated at each point m ∈M by the vectors
Xi|m (i = 1, . . . , n). But then ω(Xi, Xj) = dFi(Xj) = 0 and we have
proved that ω|Mf

= 0, and therefore S exists.

We have effectively obtained the solution of the equations of motion
through one quadrature (to calculate the function S) and some “algebraic
manipulation” (to express the p as functions of q and F )

Remark 1. From the closedness of α on Mf , the function S is unchanged by
continuous deformations of the path (m0,m). However, if Mf has non-trivial cycles,
which is generically the case, S is a multivalued function defined in a neighbourhood
of Mf . The variation over a cycle

∆cycleS =

∫
cycle

α

is a function of F only. This induces a multivaluedness of the variables ψj : ∆cycleψj =
∂

∂Fj
∆cycleS. For instance, in the case of harmonic oscillators, we see that above each
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10 2 Integrable dynamical systems

point (q1, . . . , qn) we have 2
n points on the Mf level surface, due to the independent

choices of sign in pi = ±√
2fi − ω2

i q
2
i . So we have many choices for the path of inte-

gration, reflecting the topology of the torus.

Remark 2. The definition we have given of a Liouville integrable system re-

quires some care. Given any Hamiltonian H, the Darboux theorem, see Chapter 14,

implies that we can always find locally a system of canonical coordinates on phase space

(P1, . . . , Pn;Q1, . . . , Qn), with H = P1, hence fulfilling the hypothesis of the Liouville

theorem. For integrable systems we require that the conserved quantities are globally

defined on a sufficiently large open set, and that the surfaces Fi = fi are well-behaved

and foliate the phase space. This is not generally the case for the Pi constructed by the

Darboux theorem. Moreover, in all known examples, the conserved quantities are even

algebraic functions of canonical coordinates on some open domain and the solutions of

the equations of motion are analytic.

Remark 3. Using the Poisson commuting functions Fi, one can solve simultane-
ously the n time evolution equations dF/dti = {Fi, F}, since:

∂

∂ti

∂

∂tj
F − ∂

∂tj

∂

∂ti
F = {Fi, {Fj , F}} − {Fj , {Fi, F}} = {{Fi, Fj}, F} = 0

Since the Hamiltonian vector fields are well-defined and linearly independent every-

where, the flows define a locally free (no fixed points) and transitive (goes everywhere)

action of a small open set in R
n on the surface Mf . Assuming that Mf is connected

and compact, the flows extend to all values of the times ti and fill the whole surface

Mf , hence we have a surjective action of R
n on Mf . The stabilizer of a point is an

Abelian discrete subgroup of R
n since the action is locally free, so it is of the form Z

n.

Thus Mf appears as the quotient of R
n by Z

n, i.e. a torus. This refinement, due to

Arnold, of the Liouville theorem shows that, under suitable global hypothesis, the

phase space is indeed foliated by n dimensional tori, called the Liouville tori. It is re-

markable that for small perturbations of integrable systems, there still exist Liouville

tori “almost everywhere”. This is the content of the famous Kolmogorov–Arnold–Moser

(KAM) theorem.

2.3 Action–angle variables

As already noticed in the proof of the Liouville theorem, the level manifold
Mf has non-trivial cycles. Under suitable compactness and connectivity
conditions, the Mf are n-dimensional tori Tn. This points to the intro-
duction of angle variables to describe the motion along the cycles. The
torus Tn is isomorphic to a product of n circles Ci. We may choose spe-
cial angular coordinates on Mf dual to the n fundamental cycles Ci (see
eq. (2.5)).
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