#### THE JAHN–TELLER EFFECT

The Jahn–Teller effect is one of the most fascinating phenomena in modern physics and chemistry, providing a general approach to understanding the properties of molecules and crystals and their origins. The effect inspired one of the most important recent scientific discoveries, the concept of hightemperature superconductivity. This comprehensive volume presents the background of the theory and its main applications in physics and chemistry, along with more recent achievements. Full descriptions are presented alongside thorough references to original material. The book contains over 200 figures to aid visual explanation and avoids bulky mathematical deductions and overly technical language. It is intended for graduate students and academic researchers working in solid-state physics, theoretical, physical, and quantum chemistry, crystallography, spectroscopy, and materials science.

ISAAC B. BERSUKER is a Senior Research Scientist and Adjunct Professor of Theoretical Chemistry at the University of Texas at Austin. His main scientific interest is in the theory of vibronic interactions and Jahn–Teller Effect with applications to solid-state physics, chemistry, and biology. He is the author and co-author of 12 books, 25 major reviews, and more than 300 original publications.

# THE JAHN–TELLER EFFECT

ISAAC B. BERSUKER

The University of Texas at Austin



© Cambridge University Press

In memory of my wife Liliya Bersuker

#### CAMBRIDGE

Cambridge University Press 0521822122 - The Jahn-Teller Effect Isaac B. Bersuker Frontmatter More information

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK

www.cambridge.org Information on this title: www.cambridge.org/9780521822121

© I. B. Bersuker 2006

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2006

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data

ISBN-13 978-0-521-82212-1 hardback ISBN-10 0-521-82212-2 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

## Contents

| Preface       |      |                                                                                               | <i>page</i> xi |  |  |  |
|---------------|------|-----------------------------------------------------------------------------------------------|----------------|--|--|--|
| Abbreviations |      |                                                                                               |                |  |  |  |
| 1             | Intr | Introduction                                                                                  |                |  |  |  |
|               | 1.1  | The history and evolution of understanding                                                    |                |  |  |  |
|               |      | of the Jahn–Teller effect (JTE)                                                               | 1              |  |  |  |
|               | 1.2  | The role and place of the JT vibronic coupling effects                                        |                |  |  |  |
|               |      |                                                                                               |                |  |  |  |
|               |      | 6                                                                                             |                |  |  |  |
|               | 1.3  | The main goals of this book and means of their                                                |                |  |  |  |
|               |      | realization                                                                                   | 9              |  |  |  |
|               | Refe | erences                                                                                       | 10             |  |  |  |
| 2             | Vib  | ronic interactions                                                                            | 12             |  |  |  |
|               | 2.1  | The adiabatic approximation                                                                   | 12             |  |  |  |
|               | 2.2  | Vibronic interactions. Vibronic coupling constants                                            | 17             |  |  |  |
|               | 2.3  | Orbital vibronic constants                                                                    | 27             |  |  |  |
|               | 2.4  | Force constants, anharmonicity, and instability                                               | 31             |  |  |  |
|               | 2.5  | The Jahn–Teller theorem                                                                       | 35             |  |  |  |
|               | Refe | erences                                                                                       | 43             |  |  |  |
| 3             | For  | Formulation of Jahn–Teller problems. Adiabatic potentials                                     |                |  |  |  |
|               | 3.1  | Basic formulations. The simplest $E \otimes b_1$ and $E \otimes (b_1 + b_2)$                  |                |  |  |  |
|               |      | problems                                                                                      | 45             |  |  |  |
|               | 3.2  | The $E \otimes e$ problem                                                                     | 52             |  |  |  |
|               | 3.3  | $T \otimes e, T \otimes t_2, T \otimes (e + t_2)$ , and $\Gamma_8 \otimes (e + t_2)$ problems | 62             |  |  |  |
|               | 3.4  | $T \otimes h$ , $p^n \otimes h$ , $G \otimes (g+h)$ , and $H \otimes (g+h)$ problems for      |                |  |  |  |
|               |      | icosahedral systems                                                                           | 73             |  |  |  |
|               | 3.5  | Adiabatic potentials in the multimode problem                                                 | 91             |  |  |  |
|               | 3.6  | Multicenter systems                                                                           | 95             |  |  |  |
|               | Refe | 106                                                                                           |                |  |  |  |

### CAMBRIDGE

Cambridge University Press 0521822122 - The Jahn-Teller Effect Isaac B. Bersuker Frontmatter More information

| vii | i                                                     | Contents                                                                                                              |      |
|-----|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------|
| 4   | Pseu<br>4.1                                           | Ido Jahn–Teller, product Jahn–Teller, and Renner–Teller effects<br>Two-level and multilevel pseudo JT (PJT) problems. | 110  |
|     |                                                       | Uniqueness of the PJT origin of configuration instability                                                             |      |
|     |                                                       | and its bonding nature                                                                                                | 110  |
|     | 4.2                                                   | Pseudo JT $(A + E) \otimes e$ , $(A + T) \otimes t$ , $(T_1 + T_2) \otimes e$ , and                                   |      |
|     |                                                       | combined JT and PJT problems                                                                                          | 122  |
|     | 4.3                                                   | Product JTE problems                                                                                                  | 135  |
|     | 4.4                                                   | The Renner–Teller effect                                                                                              | 151  |
|     | 4.5                                                   | Reformulation of the JT theorem                                                                                       | 155  |
|     | Refe                                                  | erences                                                                                                               | 160  |
| 5   | Solu                                                  | tions of vibronic equations. Energy spectra and                                                                       |      |
|     | JT c                                                  | lynamics                                                                                                              | 162  |
|     | 5.1                                                   | Weak vibronic coupling, perturbation theory                                                                           | 162  |
|     | 5.2                                                   | Strong vibronic coupling                                                                                              | 169  |
|     | 5.3                                                   | Tunneling in JT systems                                                                                               | 179  |
|     | 5.4                                                   | Numerical methods and general solutions                                                                               | 198  |
|     | 5.5                                                   | Solutions of multimode problems                                                                                       | 212  |
|     | 5.6                                                   | Vibronic reduction factors                                                                                            | 227  |
|     | 5.7                                                   | The topological phase problem                                                                                         | 248  |
|     | Refe                                                  | rences                                                                                                                | 254  |
| 6   | The                                                   | JTE in spectroscopy: general theory                                                                                   | 263  |
|     | 6.1                                                   | Electronic spectra                                                                                                    | 263  |
|     |                                                       | 6.1.1 Optical band shapes                                                                                             | 263  |
|     |                                                       | 6.1.2 Vibronic fine structure, zero-phonon lines,                                                                     |      |
|     |                                                       | and tunneling splitting                                                                                               | 278  |
|     |                                                       | 6.1.3 The JTE in excited-state decay                                                                                  | 289  |
|     | 6.2                                                   | Vibronic infrared and Raman spectra                                                                                   | 291  |
|     |                                                       | 6.2.1 Vibronic infrared absorption                                                                                    | 291  |
|     |                                                       | 6.2.2 Raman spectra and birefringence                                                                                 | 305  |
|     | 6.3                                                   | Magnetic resonance and related spectra                                                                                | 318  |
|     |                                                       | 6.3.1 The JTE in electron paramagnetic resonance spectra                                                              | 318  |
|     |                                                       | 6.3.2 Random strain and relaxation in EPR                                                                             | 325  |
|     |                                                       | 6.3.3 Nuclear $\gamma$ -resonance, microwave absorption,                                                              | 2.40 |
|     |                                                       | and ultrasonic attenuation                                                                                            | 340  |
| _   | Refe                                                  | rences                                                                                                                | 345  |
| 7   | Geo                                                   | metry, spectra, and reactivity of molecular systems                                                                   | 353  |
|     | 7.1 General: JT vibronic coupling effects in geometry |                                                                                                                       | 2.52 |
|     |                                                       | and reactivity                                                                                                        |      |
|     |                                                       | 7.1.1 Dynamic molecular shapes of JT systems.                                                                         |      |
|     |                                                       | Pseudorotation                                                                                                        | 354  |

|   |      |            | Contents                                                           | ix  |
|---|------|------------|--------------------------------------------------------------------|-----|
|   |      | 7.1.2      | Types of JT and PJT distortions. The lone-pair effect              | 361 |
|   |      | 7.1.3      | JT-induced reactivity and chemical activation                      | 367 |
|   |      | 7.1.4      | Mutual influence of ligands                                        | 373 |
|   | 7.2  | Linea      | r configurations of simple molecules                               | 377 |
|   |      | 7.2.1      | Linear triatomic and tetraatomic systems                           | 377 |
|   |      | 7.2.2      | "Quasilinear" molecules                                            | 388 |
|   | 7.3  | Trigo      | nal molecular systems                                              | 393 |
|   |      | 7.3.1      | Triangular triatomics X <sub>3</sub>                               | 393 |
|   |      | 7.3.2      | Trigonal tetraatomic AB <sub>3</sub> systems                       | 402 |
|   |      | 7.3.3      | Other systems with a threefold symmetry axis                       | 406 |
|   | 7.4  | Disto      | rted tetrahedral and square-planar systems                         | 410 |
|   |      | 7.4.1      | Tetraatomic X <sub>4</sub> and pentaatomic MX <sub>4</sub> systems | 410 |
|   |      | 7.4.2      | Cyclobutadiene, cyclobutane, and tetrahedrane radical              |     |
|   |      |            | cations                                                            | 416 |
|   | 7.5  | The b      | penzene and cyclopentane families and some larger                  |     |
|   |      | syster     | ns                                                                 | 422 |
|   |      | 7.5.1      | The benzene-family molecular and radical cation                    |     |
|   |      |            | and anion systems                                                  | 422 |
|   |      | 7.5.2      | The cyclopentadienyl radical and cyclopentane:                     |     |
|   |      |            | puckering                                                          | 427 |
|   |      | 7.5.3      | Larger organic systems                                             | 431 |
|   | 7.6  | Clust      | ers, coordination and mixed-valence compounds                      | 437 |
|   |      | 7.6.1      | JT clusters and coordination systems                               | 438 |
|   |      | 7.6.2      | Vibronic coupling in mixed-valence systems                         | 452 |
|   | Refe | References |                                                                    | 461 |
| 8 | Soli | d-state    | problems: local properties and cooperative phenomena               | 479 |
|   | 8.1  | The J      | TE in local properties of solids                                   | 479 |
|   |      | 8.1.1      | Impurity centers in crystals                                       | 479 |
|   |      | 8.1.2      | The local JTE in formation of special crystal structures           | 495 |
|   | 8.2  | Coop       | erative phenomena                                                  | 504 |
|   |      | 8.2.1      | Ordering of JT distortions and structural phase                    |     |
|   |      |            | transitions                                                        | 504 |
|   |      | 8.2.2      | The simplest cooperative JT $E \otimes b_1$ problem:               |     |
|   |      |            | rare-earth zircons                                                 | 511 |
|   |      | 8.2.3      | Ordering of JT tri-minima distortions                              | 519 |
|   |      | 8.2.4      | Helicoidal structures, incommensurate phases, and                  | 505 |
|   |      | 0.2.5      | structural-magnetic ordering                                       | 525 |
|   |      | 8.2.5      | I ne band J I E, Peteris distortions, and first-order              |     |
|   |      |            | phase transitions. A general view on symmetry                      | 520 |
|   |      |            | breaking                                                           | 539 |

| Х  | Contents                                                                                                                                  |     |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|
|    | <ul><li>8.3 The cooperative PJTE. Ferroelectric phase transitions</li><li>8.4 The JTE in high-temperature superconductivity and</li></ul> | 551 |  |  |
|    | colossal magnetoresistance                                                                                                                | 566 |  |  |
|    | References                                                                                                                                |     |  |  |
| Ap | Appendix                                                                                                                                  |     |  |  |
| Su | Subject index                                                                                                                             |     |  |  |
| Fo | Formula index                                                                                                                             |     |  |  |

## Preface

The Jahn–Teller effect (JTE) is one of the most fascinating phenomena in modern physics and chemistry. It emerged in 1934 in a discussion between two famous physicists, L. Landau and E. Teller, and grew into a general tool for understanding and an approach to solving molecular and crystal problems, which is applicable to any polyatomic system. The first formulation of this effect as *instability of molecular configurations in electronically degenerate states* proved to be the beginning of a whole trend which rationalizes the origin of *all possible instabilities* of high-symmetry configurations, and the peculiar nuclear dynamics resulting from these instabilities as well as the origins of all structural symmetry breakings in molecular systems and condensed matter.

Intensive development of the JTE theory began in the late 1950s together with a wave of main applications to spectroscopy, stereochemistry, and structural phase transitions, which lasted a couple of decades. The next significant resurgence of interest in the Jahn–Teller effect is related to the late 1980s and is still continuing. It was triggered by one of the most important Nobel Prize discoveries in physics of our times inspired by the Jahn–Teller effect: the *high-temperature superconductivity*. As explained by the authors of this discovery, "*the guiding idea in developing this concept was influenced by the Jahn–Teller polaron model*" (J. G. Bednorz and K. A. Müller, in *Nobel Lectures: Physics*, Ed. G. Ekspong, World Scientific, Singapore, 1993, p. 424).

Another recent discovery in solid-state physics, the *colossal magnetoresistance*, is also explained with essential implication of the Jahn–Teller effect. With regard to recent achievements in application to molecular systems, in addition to vast numbers of solutions of *structural, spectroscopic, and magnetic problems*, the Jahn–Teller effect has been most instrumental in explaining the properties of a novel class of compounds, the fullerenes, and it is now invoked in growing applications to the origin of *reactivity and mechanisms of chemical reactions*.

xii

#### Preface

This book is devoted to presenting the JTE phenomenon in its integral unity, including the background of the theory and its main applications in physics and chemistry with emphasis on more recent achievements (as explained in more detail in the introduction). The goal is also to make the JTE more accessible to a wider circle of readers, meaning more visual explanation of the origin of the effects, omitting bulk mathematical deductions, where possible, and, in view of the multidisciplinary nature of the subject, trying to avoid heavy professional language specific for narrow groups of researchers. To compensate for any possible inconvenience for some of the readers created by this style, detailed references and cross-references have been included, allowing one to reach the desired level of description. We tried to address all aspects of the JTE theory and applications to all kinds of molecular systems and crystals, *making the book almost encyclopedic* in this respect.

The presentation in this book is based on our experience in this field. I started thinking on the Jahn-Teller effect in 1959 when reading a paper on the crystal field theory and have continued to work in this field ever since, so I witnessed and participated in its main achievements. My first book on this topic in English was published in 1984 (the first book on the JTE was published by R. Englman in 1972). Another book prepared together with V.Z. Polinger for a narrower circle of theoreticians was published in English in 1989 (the Russian version of this book was published in 1983). Together with my coworkers we published in 1984 a bibliographic review of the JTE publications. The new book follows the style of presentation of my first book and it uses some materials from, and references to, the book of 1989. In essence the new book is quite novel with regard to both the content and the level of presentation: in view of the achievements of the last two decades, the previous books, mentioned above, look rather incomplete (and in some respects obsolete). However, the book of 1989 authored with V.Z. Polinger remains valid with respect to many theoretical derivations referred to in the new book.

During the preparation of this book I benefited from the cooperation with my previous and present coworkers and colleagues from the community of scientists working in this field. My thanks are due to C. A. Bates, G. Bevilacqua, G. I. Bersuker, J. E. Boggs, S. A. Borshch, L. S. Cederbaum, A. Ceulemans, L. F. Chibotaru, J. T. Devreese, J. L. Dunn, R. Englman, J. P. Fackler, Jr., P. Garcia-Fernandez, M. D. Kaplan, H. Koizumi, H. Köppel, N. N. Kristoffel, A. A. Levin, L. Yu, W. J. A. Maaskant, N. Manini, L. Martinelli, T. A. Miller, M. Moreno, K. A. Müller, I. Ya. Ogurtsov, Yu. E. Perlin, V.Z. Polinger, D. Reinen, S. S. Stavrov, E. Teller, B. S. Tsukerblat, C.-L. Wang, and Yu. V. Yablokov. I am especially thankful to V.Z. Polinger for continuing discussion of JT problems of this book, and to J. E. Boggs for support and

#### Preface

cooperation. I am thankful also to E. Teller for an encouraging chat on some aspects of the JTE; unfortunately, he did not survive to write the (promised) foreword to this book.

I acknowledge the cooperation of many publishers of academic journals and books for their kind permission to reprint figures, including the American Chemical Society, the American Institute of Physics, the American Physical Society, Elsevier Science Publishers, Helvetica Chimica Acta Verlag, the Institute of Physics, John Wiley & Sons, Kluwer Academic Publishers, NRC Research Press, Princeton University Press, the Royal Society London, Springer Verlag, and Taylor & Francis. I am grateful to the team of Cambridge University Press for help and cooperation in the copy-editing and production of this book.

> Isaac B. Bersuker Austin, Texas, January 2005

xiii

# Abbreviations

AA – adiabatic approximation AO – atomic orbitals APES – adiabatic potential energy surface BCS - Bardeen-Cooper-Schrieffer BLYP - Becke-Lee-Yang-Parr (DFT functional) BOD - bicyclooctadienediyl CASSCF - complete active space SCF CI – configuration interaction CJTE – cooperative JTE CNDO - complete neglect of differential overlap COT – cyclooctatetraene **CPJTE** – cooperative **PJTE** DFT – density functional theory DPH - diphenylhexatriene EPR (ESR) – electron paramagnetic resonance (electron spin resonance) EXAFS - extended X-ray absorption fine structure HF – Hartree–Fock HOMO - highest occupied MO HTSC - high-temperature superconductivity INDO – intermediate neglect of differential overlap IR - infrared JT - Jahn-Teller JTE - Jahn-Teller effect LSD – local spin density LUMO - lowest unoccupied MO MCSCF - multicenter SCF MCZDO - multicenter zero differential overlap MFA – mean-field approximation

CAMBRIDGE

Cambridge University Press 0521822122 - The Jahn-Teller Effect Isaac B. Bersuker Frontmatter More information

xvi

Abbreviations

MINDO – modified INDO MO – molecular orbitals MO LCAO - MO linear combination of AOs MP – metal porphyrin MPc-metal phthalocyanine MP2 – Möller–Plesset 2 (second-order perturbation theory) MRCI - multireference CI MRSDCI – MRCI with single and double excitations MV – mixed valence NMR - nuclear magnetic resonance NGR – nuclear gamma resonance phen - phenanthroline PJT - pseudo JT PJTE – pseudo JTE QCISD - quadratic CI with single and double excitations QM/MM - quantum mechanics/molecular mechanics RF - reductions factor RMP2 – restricted MP2 ROHF - restricted open-shell HF RT – Renner–Teller RTE - Renner-Teller effect SB – symmetry breaking SCF - self-consistent field SP – square-pyramidal STO – Slater-type orbitals TBP – trigonal-bipyramidal TCNE - tetracyanoethylene TCNQ – 7,7,8,8-tetracyano-*p*-quinodimethane TTF - tetrathiofulvalene UQCISD - unrestricted QCISD ZEKE – zero electron kinetic energy