Astronomy: A Physical Perspective

Marc L. Kutner

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Marc L. Kutner 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First edition published by John Wiley & Sons, 1987

Printed in the United Kingdom at the University Press, Cambridge

Typeface Swift-Regular 9.5/12.25 System QuarkXpress [TB]

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication data

Kutner, Marc Leslie.
Astronomy: a physical perspective / Marc Kutner. p. cm.
Includes bibliographical references and index.
ISBN 0 521 82196 7–ISBN 0 521 52927 1 (pb.)
1. Astronomy. I. Title.

QB45.2 .K87 2003 520-dc21

2002034946

ISBN 0 521 82196 7 hardback ISBN 0 521 52927 1 paperback

Contents

List of abbreviations used in the figure credits Preface	Page xv
1 rejuce	AVII
1 Introduction	1
1.1 An understandable universe	1
1.2 The scale of the universe	3
Part I Properties of ordinary stars	- 7
2 Continuous radiation from stars	9
2.1 Brightness of starlight	9
2.2 The electromagnetic spectrum	10
2.3 Colors of stars	12
2.3.1 Quantifying color	12
2.3.2 Blackbodies	13
2.4 Planck's law and photons	15
2.4.1 Planck's law	15
2.4.2 Photons	16
2.5 Stellar colors	17
2.6 Stellar distances	18
2.7 Absolute magnitudes	20
Chapter summary	21
Questions	21
Problems	22
Computer problems	23
3 Spectral lines in stars	25
3.1 Spectral lines	25
3.2 Spectral types	26
3.3 The origin of spectral lines	27
3.3.1 The Bohr atom	28
3.3.2 Quantum mechanics	31
3.4 Formation of spectral lines	32
3.4.1 Excitation	32
3.4.2 Interaction	33
2.5 The Hortzprung-Puscell diagram	34
Chapter summary	38
Questions	39
Problems	39
Computer problems	40
4 Telescopes	41
4.1 What a telescope does	41
4.1.1 Light gathering	41
4.1.2 Angular resolution	42
4.1.3 Image formation in a camera	43

4.2 Refracting telescopes	45
4.3 Reflecting telescopes	46
4.4 Observatories	53
4.4.1 Ground-based observing	53
4.4.2 Observations from space	56
4.5 Data handling	58
4.5.1 Detection	58
4.5.2 Spectroscopy	60
4.6 Observing in the ultraviolet	62
4.7 Observing in the infrared	63
4.8 Radio astronomy	68
4.9 High energy astronomy	75
Chapter summary	78
Questions	78
Problems	79
Computer problems	81
5 Binary stars and stellar masses	83
5.1 Binary stars	83
5.2 Doppler shift	84
5.2.1 Moving sources and observers	84
5.2.2 Circular orbits	86
5.3 Binary stars and circular orbits	87
5.4 Elliptical orbits	91
5.4.1 Geometry of ellipses	91
5.4.2 Angular momentum in elliptical orbits	91
5.4.3 Energy in elliptical orbits	93
5.4.4 Observing elliptical orbits	93
5.5 Stellar masses	94
5.6 Stellar sizes	96
Chapter summary	97
Questions	98
Problems	99
Computer problems	100
6 The Sun: a typical star	101
6.1 Basic structure	101
6.2 Elements of radiation transport theory	101
6.3 The photosphere	105
6.3.1 Appearance of the photosphere	105
6.3.2 Temperature distribution	107
6.3.3 Doppler broadening of spectral lines	108
6.4 The chromosphere	109
6.5 The corona	110
6.5.1 Parts of the corona	110
6.5.2 Temperature of the corona	112
6.6 Solar activity	113
6.6.1 Sunspots	113
6.6.2 Other activity	116
Chapter summary	119
Questions	119

Computer problems	12
Part II Relativity	- 12
7 Special relativity	12
7.1 Foundations of special relativity	12
7.1.1 Problems with electromagnetic radiation	
7.1.2 Problems with simultaneity	
7.2 Time dilation	12
7.3 Length contraction	12
7.4 The Doppler shift	13
7.4.1 Moving source	13
7.4.2 Moving observer	13
7.4.3 General result	13
7.5 Space-time	13
7.5.1 Four-vectors and Lorentz transformation	13
7.5.2 Energy and momentum	13
Chapter summary	13
Questions	13
Problems	13
Computer problems	13
8 General relativity	13
8.1 Curved space-time	13
8.2 Principle of equivalence	14
8.3 Tests of general relativity	14
8.3.1 Orbiting bodies	14
8.3.2 Bending electromagnetic radiation	14
8.3.3 Gravitational redshift	14
8.3.4 Gravitational radiation	14
8.3.5 Competing theories	14
8.4 Black holes	14
8.4.1 The Schwarzschild radius	14
8.4.2 Approaching a black hole	14
8.4.3 Stellar black holes	15
8.4.4 Non-stellar black holes	15
Chapter summary	15
Questions	15
Problems	15
Computer problems	15

9 The main sequence	157
9.1 Stellar energy sources	157
9.1.1 Gravitational potential energy of a sphere	157
9.1.2 Gravitational lifetime for a star	158
9.1.3 Other energy sources	158

vii

CONTENTS

9.2 Nuclear physics	159
9.2.1 Nuclear building blocks	159
9.2.2 Binding energy	160
9.2.3 Nuclear reactions	161
9.2.4 Overcoming the fusion barrier	162
9.3 Nuclear energy for stars	164
9.4 Stellar structure	168
9.4.1 Hydrostatic equilibrium	168
9.4.2 Energy transport	170
9.5 Stellar models	171
9.6 Solar neutrinos	172
Chapter summary	175
Questions	175
Problems	176
Chapter problems	176
10 Stellar old age	177
10.1 Evolution off the main sequence	177
10.1.1 Low mass stars	177
10.1.2 High mass stars	179
10.2 Cepheid variables	179
10.2.1 Variable stars	179
10.2.2 Cepheid mechanism	180
10.2.3 Period–luminosity relation	181
10.3 Planetary nebulae	183
10.4 White dwarfs	186
10.4.1 Electron degeneracy	186
10.4.2 Properties of white dwarfs	188
10.4.3 Relativistic effects	189
Chapter summary	190
Questions	190
Problems	190
Computer problems	191
11 The death of high mass stars	193
11.1 Supernovae	193
11.1.1 Core evolution of high mass stars	193
11.1.2 Supernova remnants	194
11.2 Neutron stars	197
11.2.1 Neutron degeneracy pressure	197
11.2.2 Rotation of neutron stars	198
11.2.3 Magnetic fields of neutron stars	199
11.3 Pulsars	199
11.3.1 Discovery	199
11.3.2 What are pulsars?	201
11.3.3 Period changes	203
11.4 Pulsars as probes of interstellar space	205
11.5 Stellar black holes	206
Chapter summary	206
Questions	206

viii

Problems	20
Computer problem	20
12 Evolution in close binaries	20
12.1 Close binaries	20
12.2 Systems with white dwarfs	21
12.3 Neutron stars in close binary systems	21
12.4 Systems with black holes	21
12.5 An unusual object: SS433	21
Chapter summary	21
Questions	22
Problems	22
Computer problems	22
13 Clusters of stars	22
13.1 Types of clusters	22
13.2 Distances to moving clusters	22
13.3 Clusters as dynamical entities	22
13.3.1 The virial theorem	22
13.3.2 Energies	22
13.3.3 Relaxation time	22
13.3.4 Virial masses for clusters	22
13.4 HR diagrams for clusters	23
13.5 The concept of populations	23
Chapter summary	23
Questions	23
Problems	23
Computer problem	23
Part IV The Milky Way	23
14 Contents of the interstellar medium	23
14.1 Overview	23
14.2 Interstellar extinction	23
14.2.1 The effect of extinction	23
14.2.2 Star counting	23
14.2.3 Reddening	24
14.2.4 Extinction curves	24
14.2.5 Polarization	24
14.2.6 Scattering vs. absorption	24
14.3 Physics of dust grains	24
14.3.1 Size and shape	24
14.3.2 Composition	24
14.3.3 Electric charge	24
14.3.4 Temperature	24
14.3.5 Evolution	24
14.4 Interstellar gas	24
	24

14.4.2 Radio studies of atomic hydrogen

ix

CONTENTS

247

CONTENTS х

14.5 Interstellar molecules	251
14.5.1 Discovery	251
14.5.2 Interstellar chemistry	253
14.5.3 Observing interstellar molecules	254
14.6 Thermodynamics of the interstellar medium	258
Chapter summary	259
Questions	260
Problems	261
Computer problems	262
15 Star formation	263
15.1 Gravitational binding	263
15.2 Problems in star formation	266
15.3 Molecular clouds and star formation	267
15.4 Magnetic effects and star formation	270
15.5 Protostars	272
15.5.1 Luminosity of collapsing clouds	272
15.5.2 Evolutionary tracks for protostars	273
15.6 Regions of recent star formation	274
15.6.1 Hil regions	274
15.6.2 Masers	280
15.6.4 T Tauri stars and related objects	285
15.7 Picture of a star forming region: Orion	285
Chapter summary	289
Questions	205
Problems	291
Computer problems	292
16 The Milly May colour	202
16 The Milky way galaxy	293
16.1 Overview	293
16.2 Differential galactic rotation	294
16.2.1 Rotation and mass distribution	294
16.2.2 Rotation curve and Doppler shift	296
16.3 Determination of the rotation curve	300
16.4 Average gas distribution	302
16.5 Spiral structure in the Milky way	304
16.5.1 Optical tracers of spiral structure	304
16.5.2 Kadio tracers of spiral structure	304
16.6 1 Distribution of material pear the center	306
16.6.2.4 massive black hole?	300
Chapter summary	300
Questions	311
Problems	311
Computer problems	312

CONTENTS

Part V The universe at large	313
17 Normal galaxies	315
17.1 Types of galaxies	315
17.1.1 Elliptical galaxies	315
17.1.2 Spiral galaxies	317
17.1.3 Other types of galaxies	321
17.2 Star formation in galaxies	322
17.2.1 Star formation in the Large Magellanic Cloud	323
17.2.2 Star formation in spiral galaxies	324
17.3 Explanations of spiral structure	326
17.4 Dark matter in galaxies	330
Questions	333
Problems	334
Computer problems	334
computer problems	551
18 Clusters of galaxies	335
18.1 Distribution of galaxies	335
18.2 Cluster dynamics	335
18.3 Expansion of the universe	339
18.3.1 Hubble's law	339
18.3.2 Determining the Hubble constant	341
18.4 Superclusters and voids	345
18.5 Where did all this structure come from?	347
18.6 The Hubble Deep Field	349
Questions	350
Problems	351
Tiobichis	551
19 Active galaxies	353
19.1 Starburst galaxies	353
19.2 Radio galaxies	355
19.2.1 Properties of radio galaxies	355
19.2.2 Model for radio galaxies	357
19.2.3 The problem of superluminal expansion	359
19.3 Seyfert galaxies	361
19.4 Quasars	362
19.4.1 Discovery of quasars	362
19.4.2 Properties of quasars	365
19.5 Gravitationally lensed quasars	368
196 A unified picture of active galaxies?	370
19.6.1 A common picutre	370
19.6.2 Black holes in galactic nuclei?	370
Chapter summary	373
Questions	374

xi

Problems	374
Computer problems	375
20 Cosmology	377
20.1 The scale of the universe	377
20.2 Expansion of the universe	378
20.2.1 Olbers's paradox	378
20.2.2 Keeping track of expansion	380
20.3 Cosmology and Newtonian gravitation	381
20.4 Cosmology and general relativity	384
20.4.1 Geometry of the universe	384
20.4.2 Cosmological redshift	386
20.4.3 Models of the universe	388
20.5 Is the universe open or closed?	390
Chapter summary	392
Ouestions	393
Problems	394
Computer problems	394
21 The hig hang	205
21 The big bang	395
21.1 The cosmic background radiation	395
21.1.1 Origin of the cosmic background radiation	395
21.1.2 Observations of the cosmic background radiation	398
21.1.3 Isotropy of the cosmic background radiation	401
21.2 Big-bang nucleosynthesis	407
21.3 Fundamental particles and forces	410
21.3.1 Fundamental particles	410
21.3.2 Fundamental forces	411
21.3.3 The role of symmetries	412
21.3.4 Color	413
21.3.5 The unification of forces	416
21.4 Merging of physics of the big and small	417
21.4.1 Back to the earliest times	417
21.4.2 Inflation	419
21.4.3 Galaxy formation	420
21.4.4 Estimates of values of cosmological parameters	420
Chapter summary	422
Questions	423
Problems	424
Computer problems	425
Part VI The Solar System	- 427
	127
22 Overview of the Solar System	429
22.1 Motions of the planets	430
22.2 The motion of the Moon	435
22.3 Studying the Solar System	438
22.4 Traveling through the Solar System	439
Chapter summary	443
Questions	444

Problems	44
Computer problems	44
23 The Earth and the Moon	44
23.1 History of the Earth	44
23.1.1 Early history	44'
23.1.2 Radioactive dating	44
23.1.3 Plate tectonics	45
23.2 Temperature of a planet	45
23.3 The atmosphere	45
23.3.1 Pressure distribution	45
23.3.2 Temperature distribution	45
23.3.3 Retention of an atmosphere	46
23.3.4 General circulation	46
23.4 The magnetosphere	46
23.5 Tides	46
23.6 The Moon	46
23.6.1 The lunar surface	47
23.6.2 The lunar interior	47
23.6.3 Lunar origin	47
Chapter summary	47
Ouestions	47
Problems	47
Computer problems	47
24 The inner planets	47
24.1 Basic features	47
24.1.1 Mercury	47
24.1.2 Venus	47
24.1.3 Mars	48
24.1.4 Radar mapping of planets	48
24.2 Surfaces	48
24.3 Interiors	49
24.3.1 Basic considerations	49
24.3.2 Results	49
24.4 Atmospheres	49
24.5 Moons	49
Chapter summary	49
Ouestions	49
Problems	49
Computer problems	49
25 The outer planets	49
25.1 Basic features	10
23.1 Dasic realures	49
25.2 Interiors	50
20.0 Interiors	50
20.4 A Desis menoration	50
25.4.1 basic properties	50
25.4.2 King dynamics	50

xiii

CONTENTS

CONTENTS xiv

25.5 Moons	512
Chapter summary	519
Questions	520
Problems	520
Computer problem	521
26 Minor bodies in the Solar System	523
26.1 Pluto	523
26.2 Comets	524
26.3 Meteoroids	530
26.4 Asteroids	532
Chapter summary	534
Questions	534
Problems	535
Computer problem	535
27 The origin of life	537
27.1 Origin of the Solar System	537
27.2 Chemistry on the early Earth	540
27.3 Origin of life on Earth	541
27.4 Life in the rest of the Solar System?	543
27.5 Other planetary systems?	544
27.6 Searches for extraterrestrial intelligence	547
Chapter summary	549
Questions	550
Problems	550
Computer problems	550
Appendix A Glossary of symbols	551
Appendix B Physical and astronomical constants	553
Appendix C Units and conversions	554
Appendix D Planet and satellite properties	555
Appendix E Properties of main sequence stars	558
Appendix F Astronomical coordinates and timekeeping	559
Appendix G Abundances of the elements	562
Index	565

Chapter 6

The Sun: a typical star

The Sun (Fig. 6.1) is the only star we can study in any detail. It therefore serves as a guide to our pictures of other stars. Any theory of stellar structure must first be able to explain the Sun before explaining other stars. As we have seen, the Sun's spectral type places it in the mid-range of main sequence stars. If we understand the Sun, we have the hope of being able to understand a significant number of other types of stars.

6. Basic structure

We have already seen that the mass of the Sun is 2.0×10^{33} g and that its radius is 7×10^{10} cm (7×10^{5} km). Its average density is

$$\rho = \frac{M_{\odot}}{(4\pi/3)R_{\odot}^{3}}$$
$$= \frac{2 \times 10^{33} \text{ g}}{(4\pi/3)(7 \times 10^{10} \text{ cm})^{3}}$$
$$= 1.4 \text{ g/cm}^{3}$$

For comparison, the density of water is 1 g/cm³. The Sun is composed mostly of hydrogen (94% by the number of atoms), with some helium (6% by number of atoms), and only 0.1% other elements. The abundances of the elements are given in Appendix G. Our best measurement of the effective temperature of the Sun is 5762 K. The solar luminosity is 3.8×10^{33} erg/s. (The effective temperature is the temperature that we use in the Stefan-Boltzmann law to give the solar luminosity.)

When we look at the Sun, we see only the outermost layers. We have to deduce the internal structure from theories of stellar structure (which we will discuss in Chapter 9). The basic structure of the Sun is shown in Fig. 6.2. The center is the core. It is the source of the Sun's energy. Its radius is about 10% of the full solar radius. The outermost layers form the atmosphere. We divide the atmosphere into three parts. Most of the light we see comes from the photosphere, the bottom layer of the atmosphere. Above the photosphere is the chromosphere, named because it is the source of red light seen briefly during total eclipses of the Sun. The chromosphere is about 10⁴ km thick. The outermost layer is the corona, which extends far into space. It is very faint, and, for most of us, can only be seen during total solar eclipses. Beyond the corona, we have the solar wind, not strictly part of the Sun, but a stream of particles from the Sun into interplanetary space.

6.2 Elements of radiation transport theory

Radiation is being emitted and absorbed in the Sun in all layers. However, we see radiation mostly from the surface. Most radiation from below is absorbed before it reaches the surface. To understand what we are seeing when we look at the Sun, we need to understand about the interaction between radiation and matter. For example, much of what we know about the solar atmosphere comes from studying spectral lines as well as the continuum. In studying how radiation interacts with matter, known as *radiation transport theory*, we see how to use spectral lines

$$\sigma_{\rm tot} = N \sigma$$

$$\sigma_{\rm tot} = n \, A \, l \, \sigma \tag{6.3}$$

(6.2)

to extract detailed information about the solar atmosphere.

We first look at the absorption of radiation by atoms in matter. We can think of the atoms as acting like small spheres, each of radius r (Fig. 6.3). Each sphere absorbs any radiation that strikes it. To any beam of radiation, a sphere looks like a circle of projected area πr^2 . If the beam is within that circle, it will strike the sphere and be absorbed. We say that the *cross section* for striking a sphere is $\sigma = \pi r^2$. The concept of a cross section carries over into quantum mechanics. Instead of the actual size of an atom, we use the effective area over which some process (such as absorption) takes place. So then r would be how close the photon would have to be to the atom in order to be absorbed.

We consider a cylinder of these spheres, with the radiation entering the cylinder from one end. We would like to know how much radiation is absorbed, and how much passes through to the far end. We let n be the number of spheres per unit volume. The cylinder has length l and area A, so the volume is Al. The number of spheres in the cylinder is

$$N = n A l \tag{6.1}$$

We define the total cross section of all the spheres as the number of spheres multiplied by the cross section per sphere: In making this definition, we have assumed that the incoming beam can "see" all the spheres. No sphere blocks or shadows another. We are assured of little shadowing if the spheres occupy a small fraction of the area, as viewed from the end. That is

$$\sigma_{\rm (tot)} \ll A$$
 (6.4)

Under these conditions, the fraction of the incoming radiation that will be absorbed, f, is just that fraction of the total area A that is covered by the spheres. That is

$$f = \sigma_{\rm (tot)} / A \tag{6.5}$$

Using equation (6.3), this becomes

$$f = n\sigma l \tag{6.6}$$

Fig 6.3. Absorption of radiation. Radiation enters from the left. Any beam striking a sphere is absorbed.

We define the *optical depth* to be this quantity:

 $\tau = n\sigma l \tag{6.7}$

Our requirement in equation (6.4) reduces to $\tau \ll 1$. Under this restriction, the optical depth of any section of material is simply the fraction of incoming radiation that is absorbed when the radiation passes through that material. (For example, if the optical depth is 0.01, then 1% of the incoming radiation is absorbed.)

In general, σ will be a function of wavelength. For example, we know that at a wavelength corresponding to a spectral line, a particular atom will have a very large cross section for absorption. At a wavelength not corresponding to a spectral line, the cross section will be very small. To remind us that σ is a function of λ (or ν), we write it as σ_{λ} (or σ_{ν}). This means that the optical depth is also a function of λ (or ν), so we rewrite equation (6.7) as

$$\tau_{\lambda} = n l \sigma_{\lambda} \tag{6.8}$$

In our discussions, the quantity nl occurs often. It is the product of a number density and a length, so its units are measured in number per unit area. It is the number of particles along the full length, l, of the cylinder per unit surface area. For example, if we are measuring lengths in centimeters, it is the number of particles in a column whose face surface area is 1 cm², and whose length is l, the full length of the cylinder. We call this quantity the *column density*.

We can see that the optical depth depends on the properties of the material – e.g. cross section and density of particles – and on the overall size of the absorbing region. It is sometimes convenient to separate these two dependencies by defining the *absorption coefficient*, which is the optical depth per unit length through the material,

$$\kappa_{\lambda} = \frac{\tau_{\lambda}}{l} \tag{6.9a}$$
$$= n\sigma_{\lambda} \tag{6.9b}$$

If κ_{λ} gives the number of absorptions per unit length, then its inverse gives the mean distance between absorptions. This quantity is called the *mean free path*, and is given by

$$L_{\lambda} = 1/\kappa_{\lambda} \tag{6.10}$$

$$= 1/n\sigma_{\lambda} \tag{6.11}$$

In terms of these quantities, the optical depth is given by

$$\tau_{\lambda} = \frac{l}{L_{\lambda}} \tag{6.12a}$$

$$=\kappa_{\lambda}l$$
 (6.12b)

In the above discussion, we required that the optical depth be much less than unity. Our interpretation of τ as the fraction of radiation absorbed only holds for $\tau \ll 1$. What if that is not the case? We then have to divide our cylinder into several layers. If we make the layers thin enough, we can be assured that the optical depth for each layer will be very small. We then follow the radiation through, layer by layer, looking at the fraction absorbed in each layer (Fig. 6.4).

Let's look at the radiation passing through some layer with optical depth $d\tau$. Since $d\tau \ll 1$, it is the fraction of this radiation that is absorbed. The amount of radiation absorbed in this layer is $I d\tau$. The amount of radiation passing through to the next layer is $I(1 - d\tau)$. The change in intensity, dI, while passing through the layer, is

$$dI = I_{out} - I_{in} \tag{6.13}$$

$$= -I \,\mathrm{d}\tau \tag{6.14}$$

Notice that dI is negative, since the intensity is decreased in passing through the layer.

Now that we know how to treat each layer, we must add up the effect of all the layers to find the effect on the whole sample of material. We can see that we have formulated the problem so that we are following *I* as a function of τ . We let τ' be the optical depth through which the radiation has passed by the time it reaches a particular layer, and *I'* be the intensity reaching that layer. Then τ' ranges from zero, at the point where the radiation enters the material, to τ , the full optical depth where the radiation leaves the material. Over that range, *I'* varies from I_0 , the incident intensity, to *I*, the final intensity. Using equation (6.14),

$$\mathrm{d}I'/\mathrm{I}' = -\mathrm{d}\tau' \tag{6.15}$$

In this form, all of the I' dependence is on the left, and the τ' dependence is on the right. To add up the effect of the layers, we integrate equation (6.15) between the limits given above:

$$\int_{I_{0}}^{I} \frac{dI'}{I} = -\int_{0}^{\tau} d\tau'$$

$$\ln(I) - \ln(I_{0}) = -\tau$$
(6.16)

Using the fact that $\ln(a/b) = \ln(a) - \ln(b)$, this becomes

$$\ln(I/I_0) = -\tau \tag{6.17}$$

Raising e to the value on each side, remembering that $e^{\ln x} = x$, and multiplying both sides by I_0 gives

$$I = I_0 e^{-\tau}$$
(6.18)

We can check this result in the limit $\tau \ll 1$, called the *optically thin limit*, using the fact that

Fig 6.5. $e^{-\tau}$ vs. τ , showing the fall-off in transmitted radiation as the optical depth increases. Note that the curve looks almost linear for small τ . For large τ , it approaches zero asymptotically.

 $e^x \approx 1 + x$, for $x \ll 1$. In this case, equation (6.18) becomes

$$I = I_0 (1 - \tau) \tag{6.19}$$

This is the expected result for small optical depths, where τ again becomes the fraction of radiation absorbed.

As shown in Fig. 6.5, $e^{-\tau}$ falls off very quickly with τ . This means that to escape from the Sun, radiation must come from within approximately one optical depth of the surface. This explains why we only see the outermost layers. Since the absorption coefficient κ_{λ} is a function of wavelength, we can see to different depths at different wavelengths. At a wavelength where κ_{λ} is large, we don't see very far into the material. At wavelengths where κ_{λ} is small, it takes a lot of material to make $\tau_{\lambda} = 1$. We take advantage of this to study conditions at different depths below the surface.

So far we have only looked at the absorption of radiation passing through each layer. However, radiation can also be emitted in each layer, and the amount of emission also depends on the optical depth. In general, we must carry out complicated radiative transfer calculations to take all effects into account. To solve these problems, we use powerful computers to make mathematical models of stellar atmospheres. In these

105

calculations, we input the distribution of temperature, density and composition and predict the spectrum that we will see, including emission and absorption lines. We vary the input parameters until we find models that produce predictions that agree with the observations. The results of these calculations are not unique, but they do give us a feel for what processes are important in stellar atmospheres. The more observational data we can predict with the models, the more confident we can be that the temperatures, densities and compositions we derive are close to the actual ones.

6.3 | The photosphere

Most of the visible photons we receive from the Sun originate in the photosphere. One question you might ask is why we see continuum radiation at all. We have already seen how atoms can emit or absorb energy at particular wavelengths, producing spectral lines. However, we have not discussed the source of the emission and absorption of the continuum. It turns out that the continuum opacity in the Sun at optical wavelengths comes from the presence of H^- ions. An H^- ion is an H atom to which an extra electron has been added. As you might guess, this extra electron is held only very weakly to the atom. Very little energy is required to remove it again. H^- ions are present because there is so much hydrogen, and

there are a large number of free electrons to collide with those atoms.

If we have an H^- ion and a photon (γ) strikes it, the photon can be absorbed, and the electron set free:

 $H^- + \gamma \rightarrow H + e^-$

The H⁻ ion is a bound system. The final state has an H atom and a free electron. We call this process a *bound–free* process. In such a process, the wavelength of the incoming photon is not restricted, as long as the photon has enough energy to remove the electron. The electron in the final state can have any kinetic energy, so a continuous range of photon energies is possible. This process then provides most of the continuum opacity of the photosphere. The continuum emission results from the inverse process.

6.3.1 Appearance of the photosphere

We have said that the Sun is the one star that we can study in great detail. To do this, we try to observe the photosphere with the best resolution possible. When we observe the Sun, the lightgathering power of our telescope is not usually a problem. Therefore, we can try to spread the image out over as large an area as possible, making it easier to see detailed structure. We therefore want a telescope with a long focal length to give us a large image scale. The solar telescope shown in Fig. 6.6 provides this type of detailed picture.

Fig 6.6. Solar telescope on Kitt Peak (operated by NOAO). The telescope has a very long focal length, so that two can produce a large image and study the detailed appearance. Since the tube is so long, it is not reasonable to move it. Instead, the large mirror at the top (the objective) is moved to keep the sunlight directed down the tube. [NOAO/AURA/NSF]

the bright areas. [NOAO/AURA/NSF]

When we look on a scale of a few arc seconds, we see that the surface of the Sun does not have a smooth appearance (Fig. 6.7). We see a structure, called *granulation*, in which lighter areas are surrounded by darker areas. The darker areas are not really dark. They are just a little cooler than the lighter areas, and only appear dark in comparison to the light areas. The granules are typically about 1000 km across. The pattern of granulation also changes with time, with a new pattern appearing every 5 to 10 min.

We interpret this granulation as telling us about the underlying structure we cannot see directly. The granulation can be explained by circulating cells of material, called *convection zones* (Fig. 6.8). (Convection is the form of energy transport in which matter actually moves from one place to another. Strong convection on the Earth is responsible for the updrafts that produce thunderstorms. A pot of boiling water also has energy transport by convection.) The brighter regions are warmer gas rising up from below. The dark regions are cooler gas falling back down.

In addition to the granulation variations, there is also a variation called the *five minute oscillation*, in which parts of the photosphere are moving up and down. We think this convection results

from sound waves in the upper layers of the convection zone. This type of oscillation is one of many that are studied for clues to the Sun's interior structure. This area of research is called *solar seismology*. (On the Earth, seismologists study motions near the surface to learn about the interior.)

One interesting question about the photosphere concerns the sharpness of the solar limb. The Sun is a ball of gas whose density falls off continuously as one moves farther from the center. There is no sharp boundary (like the surface of the Earth), yet we see a definite edge on the Sun. In Fig. 6.9, we see some lines of sight through the

Fig 6.9. Lines of sight through the solar limb. For clarity, we think of the Sun as being composed of a series of spherical shells. The density in each shell decreases as we move farther from the center. This decreasing density is indicated by the shading; two lines of sight are indicated. Note that most of each line of sight is in the densest layer through which that particular line passes. Even though line 2 is not shifted very far from line 1, line 1 passes through much more material.

photosphere. As the line of sight passes farther from the center of the Sun, the opacity decreases because (1) the path length through the Sun is less, and (2) it passes through less dense regions. Since the amount of light getting through is proportional to $e^{-\tau}$, the effect of τ changing from line of sight to line of sight is enhanced by the exponential behavior. Therefore the transition from the Sun being mostly opaque to being mostly transparent takes place over a region that is small compared with our resolution, and the edge looks sharp.

6.3.2 Temperature distribution

Another interesting phenomenon near the solar limb can be seen in the photograph in Fig. 6.1. The Sun does not appear as bright near the limb as near the center. This *limb darkening* is also an optical depth effect, as shown in Fig. 6.10. We compare two lines of sight: (1) toward the center of the Sun from the observer, and (2) offset from

Fig 6.10. Limb darkening. Line of sight 1 is directed from the observer toward the center of the Sun, so it takes the shortest path through the atmosphere. This line allows us to see the deepest into the photosphere, and the base of the photosphere is defined to be where the optical depth τ along this line reaches unity. Line of sight 2 is closer to the edge, so it doesn't allow us to see as deep into the photosphere. If the temperature decreases with increasing height in the photosphere, then line of sight 1 allows us to see hotter material than does line of sight 2, and the edge of the Sun appears darker than the center.

the center of the Sun. In each line of sight, we can only see down to $\tau \cong 1$. Line of sight 1 is looking straight down into the atmosphere, so it gets closer to the center of the Sun before an optical depth of unity is reached than does line of sight 2, which has a longer path through any layer. We see deeper into the Sun on line of sight 1 than we do on line of sight 2. If the temperature decreases with increasing height in the photosphere, we are seeing hotter material on line of sight 1 than on 2, so line of sight 1 appears brighter than line of sight 2. Since line of sight 1 takes us the deepest into the Sun, we define the point at which aureaches unity on this line as being the base of the photosphere. When we talk about the temperature of the Sun, we are talking about the temperature at the base of the photosphere.

When we look at the Sun, it appears brighter along line of sight 1 than it does along line of sight 2. This means that the Sun is hotter at the end of 1 than at the end of 2. From this, we conclude that the photosphere cools as one moves farther from the center of the Sun. If the photosphere became hotter as one moves farther from the center, we would see limb brightening.

We obtain more useful information about the photosphere by studying its spectral lines (Fig. 6.11). The spectrum shows a few strong absorption lines and a myriad of weaker ones. The stronger lines were labeled A through K by Fraunhofer in 1814. These lines have since been identified. For example, the C line is the first Balmer line (H α); the D line is a pair of lines belonging to neutral sodium (NaI); and the H and K lines belong to singly ionized calcium (CaII). Sodium and calcium are much

less abundant than hydrogen but their absorption lines are as strong as $H\alpha$. We have already seen in Chapter 3 that this can result from the combined effects of excitation and ionization.

6.3.3 Doppler broadening of spectral lines When we study the lines with good spectral resolution, we can look at the details of the line profile. The lines are broadened by Doppler shifts due to the random motions of the atoms and ions in the gas (Figs. 6.12 and 6.13). If all the atoms were at rest, all the photons from a given transition would emerge with a very small spread in wavelength. However, the atoms are moving with random speeds in random directions. We therefore see a spread in the Doppler shifts, and the line is broadened. This process is called *Doppler broadening*. If the gas is hotter, the spread in speeds is greater, and thus the Doppler broadening is also greater. If in addition to these random motions all the objects

containing the particles have some overall motion that just shifts the center wavelength of the line, the broadening would still be the same.

We can estimate the broadening as a function of temperature. If $\langle v^2 \rangle$ is the average of the square of the random velocities in a gas, and *m* is the mass per particle, the average kinetic energy per particle is $(1/2)m\langle v^2 \rangle$. If we have an ideal monatomic gas, this should equal (3/2)kT, giving

$$(1/2)m\langle v^2 \rangle = (3/2)kT$$
 (6.20)

Solving for $\langle v^2 \rangle$ gives

$$\langle v^2 \rangle = 3kT/m \tag{6.21}$$

Taking the square root gives the root mean square (rms) speed

$$v_{\rm rms} = \left(\frac{3kT}{m}\right)^{1/2} \tag{6.22}$$

This gives us an estimate of the range of speeds we will encounter. (The range will be larger, since we can have atoms coming toward us or away from us, and since some atoms will be moving faster than this average, but the radial velocity is reduced since only the component of motion along the line of sight contributes to the Doppler broadening.) To find the actual wavelength range over which the line is spread out, we would use the Doppler shift expression in equation (5.4).

Example 6.1 Doppler broadening

Estimate the wavelength broadening in the H α line in a gas composed of hydrogen atoms at T = 5500 K. SOLUTION Using equation (6.22) gives

$$v_{\rm rms} = \left[\frac{(3)(1.38 \times 10^{-16} \, {\rm erg/K})(5.5 \times 10^3 \, {\rm K})}{1.7 \times 10^{-24} \, {\rm g}}\right]^{1/2}$$
$$= 1.2 \times 10^6 \, {\rm cm/s}$$

From equation (5.4), we estimate the linewidth as

$$\begin{aligned} \Delta \lambda &= \lambda \left(\frac{v_{\rm rms}}{c} \right) \\ &= \left(\frac{(656.28 \ {\rm nm})(1.2 \times 10^6 \ {\rm cm/s})}{(3 \times 10^{10} \ {\rm cm/s})} \right)^{1/2} \\ &= 0.03 \ {\rm nm} \end{aligned}$$

In any spectral line, smaller Doppler shifts relative to the line center are more likely than larger ones. Therefore, the optical depth is greatest in the line center, and falls off to either side. At different Doppler shifts away from the line center, we will see different distances into the Sun. The farther we are from the line center, the deeper we see. By studying line profiles in detail we learn about physical conditions at different depths. Also, each spectral line has a different optical depth in the line center, so different lines allow us to see down to different depths in the photosphere. When we perform model stellar atmosphere calculations, we try to predict as many of the features of the spectrum as possible,

including the relative strengths of various lines and the details of certain line profiles.

From observations of various spectral lines, the temperature profile for the photosphere has been derived. It is shown in Fig. 6.14. Note that the temperature falls as one goes up from the base of the photosphere. This is what we might expect, since we are moving farther from the heating source. However, an interesting phenomenon is observed. The temperature reaches a minimum at 500 km above the base of the photosphere, and then begins to rise with altitude. We will see below that this temperature rise continues into the higher layers.

6.4 The chromosphere

At most wavelengths the chromosphere is optically thin, so we can see right through it to the photosphere. Under normal conditions the continuum radiation from the photosphere overwhelms that from the chromosphere. However, during a total eclipse of the Sun, just before and after totality, the Moon blocks the light from the photosphere, but not from the chromosphere. For that brief moment, we see the red glow of the chromosphere. The red glow comes from H α emission. The optical depth of the H α line is sufficiently large that we can study the chromosphere by studying that line. At the center of the H α line we see down only to 1500 km above the base of the photosphere.

We can also study the large scale structure of the chromosphere by taking photographs through filters that only pass light from one line. One such photograph is shown in Fig. 6.15. In this picture we see granulation on an even larger scale than in the photosphere. This is called *supergranulation*. The supergranules are some 30 000 km across. As with the granules in the photosphere, the matter in the center of the supergranules is moving up and the matter at the edges is moving down. These motions can be determined from Doppler shifts of spectral lines. We also see smaller scale irregularities in the chromosphere, called *spicules*. These are protrusions from the surface some 700 km across and 7000 km high. An H α image of the chromosphere is shown in Fig. 6.16.

When the chromosphere is visible just before and after totality, we see only a thin sliver of light.

Fig 6.15. This spectroheliogram shows large scale motions at the solar surface based on the H α emission. [NOAO/AURA/NSF]

The effect is the same as if the light had been passed through a curved slit. If we then use a prism or grating to spread out the different wavelengths, we will obtain a line spectrum, though each line will appear curved. This spectrum is called a *flash spectrum* because it is only visible for the brief instant that the Moon is covering all of the photosphere but not the chromosphere. Note that the

Fig 6.16. H α image showing the chromosphere. [NASA]

spectrum shows emission lines. This is because there is no strong continuum to be absorbed.

When we study the spectra of the chromosphere we find that it is hotter than the photosphere. The chromospheric temperature is about 15 000 K. (The Sun doesn't appear this hot because the chromosphere is optically thin and doesn't contribute much to the total radiation we see.) We are faced with trying to explain how the temperature rises as we move farther from the center of the Sun. We will discuss this point in the next section, when we discuss the corona.

6.5 The corona

6.5.1 Parts of the corona

The corona is most apparent during total solar eclipses (Fig. 6.17), when the much brighter light

Fig 6.17. Two views of total solar eclipses, showing the corona. [(a) NOAO/AURA/NSF; (b) NASA]

from the photosphere and chromosphere is blocked out. The corona is simply too faint to be seen when any photospheric light is present. You might think that we can simulate the effect of an eclipse by holding a disk over the Sun. If you try this, light that would come directly from the photosphere to your eye will be blocked out. However, some photospheric light that is originally headed in a direction other than directly at you will scatter off the atoms and molecules in the Earth's atmosphere, and reach you anyway (Fig. 6.18). This scattered light is only a small fraction of the total photospheric light, but it is still enough to overwhelm the faint corona. This is not a problem during solar eclipses, because the Moon is outside the atmosphere, so there is nothing to scatter light around it.

Therefore, solar eclipses still provide us with unique opportunities to study the corona. For this purpose, we are fortunate that the Moon subtends almost the same angle as the Sun, as viewed from the Earth. The Moon can exactly block the photosphere and chromosphere, but not the corona. Unfortunately, we do not have an eclipse of the Sun every month. We would if the Moon's orbit

Observer

Fig 6.18. Effects of scattered light on corona studies. We can use an occulting disk, but sunlight can scatter off particles in the Earth's atmosphere and reach our telescope. Since the corona is very faint, and the Earth's atmosphere is very efficient at scattering, especially for blue light, this scattered light can overwhelm the direct light from the corona.

were in the same plane as the Earth's orbit around the Sun. However, the Moon's orbit is inclined by about 5°, so total eclipses of the Sun are rare events. The average time between total solar eclipses is about one and a half years. Even when one occurs, the total eclipse is observable from a band not more than 300 km wide, and totality lasts only a few minutes.

Solar astronomers take advantage of eclipses whenever possible, but also look for other ways to study the corona. It turns out that some groundbased non-eclipse observations are possible. Telescopes, called *coronagraphs*, have disks to block out the photospheric light, and reduce as much scattered light as possible. They are placed at high altitude sites, with very clear skies. For example, the Haleakala Crater on the island of Maui (operated by the University of Hawaii) is at an altitude of 3000 m (10 000 ft).

One way to get around the scattering in the Earth's atmosphere is to put a coronagraph in space. This is not quite as good as a solar eclipse, since space probes are not totally free of escaping gases. Some photospheric light is scattered by these gases. However, the results are much better than for a ground-based telescope. They also have an advantage over eclipse studies in that they allow for continuous study of the corona. For example, the Orbiting Solar Observatory 7 (OSO 7) provided observations of the corona for the period 1971–4.

There is an additional technique for studying the corona. It involves studying radio waves. Radio waves pass through the Earth's atmosphere and are not appreciably scattered. We therefore don't have to worry about the radio waves behaving like the visible light in Fig. 6.18.

In discussing what we have learned so far about the corona, we divide it into three parts:

(1) The E-corona is a source of emission lines directly from material in the corona. These lines come from highly ionized species, such as Fe XIV (13 times ionize iron). If we look at the Saha equation, discussed in Chapter 3, we see that highly ionized states are favored under conditions of high temperature and low density. The high temperature provides the energy necessary for the ionization. The low density means that collisions leading to recombinations are rare.

- (2) The K-corona (from the German Kontinuierlich, for continuous) is the result of photospheric light scattered from electrons in the corona.
- (3) The F-corona (for Fraunhofer) is not really part of the Sun. It comes from photospheric light scattered by interplanetary dust. Since we are just seeing reflected photospheric light, the light still has the Fraunhofer spectrum. Both the F- and K-coronas appear at approximately the same angular distance from the center of the Sun, but there are experimental ways of separating their contributions to the light we see.

6.5.2 Temperature of the corona

When we analyze the abundance of highly ionized states, the Doppler broadening of lines and the strength of the radio emission, we find that the corona is very hot, about 2×10^6 K. As we have stated, the density is very low, approximately 10^{-9} times the density of the Earth's atmosphere.

Again, we must explain why a part of the atmosphere farther from the center of the Sun is hotter than a part closer to the center. We should note that it is not necessarily hard to keep something hot if it can't lose heat efficiently. For example, in a well insulated oven, once the required temperature has been reached, the heat source can be turned off and the temperature of the oven still stays high. An ionized gas (plasma) like the corona can lose energy only through collisions between the particles. For example, an electron and an ion could collide, with some of the kinetic energy going to excite the ion to a higher state. The ion can then emit a photon and return to its lower energy state. The emitted photon escapes and its energy is lost to the gas. If the lost energy is not replaced, the gas will cool.

Since collisions play an important role in the above process, the rate at which the gas can lose energy will depend on the rate at which collisions occur. The rate of collisions should be proportional to the product of the densities of the two colliding species. However, the density of each species is roughly proportional to the total gas density ρ (each being some fraction of the total). This means that the collision rate is pro-

portional to ρ^2 . Of course the amount of gas to be cooled is proportional to ρ . We can define a *cooling time* which is the ratio of the gas volume to be cooled (which is proportional to ρ) to the gas cooling rate (which is proportional to ρ^2). The cooling time is then proportional to $1/\rho$. Therefore, low density gases take longer to get rid of their stored heat.

Further, if the density is very low, a very high temperature doesn't necessarily mean a lot of stored energy. The energy is (3/2)kT per particle. Even if the quantity kT is very large, if the total number of particles is very small, the energy stored is not as large as if the density were much higher.

Example 6.2 Energy density in the corona and the Earth's atmosphere

Compare the energy density (energy per unit volume) in the corona with that in the Earth's atmosphere.

SOLUTION

For each, the energy density is proportional to the density of particles n and the temperature T. (All other constants will drop out when we take the ratio.) Therefore

$$\frac{\text{energy density (corona)}}{\text{energy density (Earth)}} = \left[\frac{n(\text{corona})}{n(\text{Earth})}\right] \left[\frac{T(\text{corona})}{T(\text{Earth})}\right]$$
$$= [1 \times 10^{-9}] \left[\frac{2 \times 10^{6}}{3 \times 10^{2}}\right]$$
$$= 7 \times 10^{-6}$$

Even though the corona is so hot, its very low density gives it a lower energy density.

We must still come up with some explanation for getting energy into the corona. Some have suggested mechanisms in which oscillations near the surface of the Sun send supersonic sound waves (shock waves) into the Sun's upper atmosphere. In addition, there are mechanisms for heating that involve the Sun's magnetic field. These theories are still under study, and we still do not have a definitive picture of the energy balance in the corona.

When we study photographs of the corona, we find its structure is very irregular. We often see long streamers whose appearance varies with time. We think that these phenomena are related to the Sun's magnetic field, as are other aspects of solar activity (to be discussed in the following section).

6.6 Solar activity

6.6.1 Sunspots

When we look at photographs of the Sun (Figs. 6.1 and 6.19) we note a pattern of darker areas. As with the granulation, the dark areas are not really

Fig 6.19. Sunspot images. The darker inner area of each spot is the umbra and the lighter outer area of each spot is the penumbra. The spots appear dark because the surround-ing areas are brighter. [(a) NOAO/AURA/NSF; (b) NASA]

(b)

dark. They are just not as bright as the surrounding areas. The gas in these darker areas is probably at a temperature of about 3800 K. A closeup of these *sunspots* shows that they have a darker inner region, the *umbra*, surrounded by a lighter region, the *penumbra*.

The number of sunspots on the Sun is not even approximately constant. It varies in a regular way, as shown in Fig. 6.20. It was realized in the mid-19th century that sunspot numbers follow an 11-year cycle. The number of sunspots in a peak year is not the same as in another peak year. However, the peaks are easily noticeable.

We see more regularity when we plot the height of each sunspot group above or below the Sun's equator as a function of when in the sunspot cycle they appear. This was done in 1904 by *E. Walter Maunder*. An example of such a diagram is shown in Fig. 6.21. Early in an 11-year cycle, sunspots appear far from the Sun's equator. Later in the cycle, they appear closer to the equator. This results in a butterfly-like pattern, and in fact these diagrams are sometimes called "butterfly diagrams".

When Maunder investigated records of past sunspot activity, he found that there was an extended period when no sunspots were observed. This period, from 1645 to 1715 is known as the Maunder minimum. This minimum has recently been reinvestigated by John A. Eddy, who found records to indicate that no aurorae were observed for many years during this period. Also during this time, weak coronae were reported during total solar eclipses. An unusual correlation was also found in the growth rings in trees, suggesting that altered solar activity had some effect on growth on Earth. The mechanism by which this takes place is poorly understood, but we can use the growth rings as an indicator of solar activity farther into the past than other records. A study of growth rings in old trees indicates that the Maunder minimum is not unique. There may have been several periods in the past with extended reduced solar activity.

Sunspots appear to be regions where the magnetic field is higher than on the rest of the Sun. In discussing sunspots, we should briefly review properties of magnetic fields and their interactions with matter. Magnetic fields arise from moving

Fig 6.20. Numbers of sunspots per year as a function of year. The 11-year pattern is evident. Note that the number in a peak year is not the same from cycle to cycle. [NASA]

(including spinning) charges. Magnetic field lines form closed loops (Fig. 6.22). This is equivalent to saying that there are no point sources of magnetic charge, *magnetic monopoles*. (We will discuss the implications of the possible existence of magnetic monopoles in Chapter 21.) We call the closed loop pattern in Fig. 6.22 a *magnetic dipole*.

The magnetic field strength B is defined such that the magnetic force on a charge q, moving with velocity v, is (in cgs units)

$$\mathbf{F} = q \, \mathbf{v} \, \mathbf{x} \, \mathbf{B} / c \tag{6.23}$$

where the x indicates a vector cross product. There is no magnetic force on a charge at rest, or

Fig 6.21. Butterfly diagram. This shows the distribution of sunspots in solar latitude as a function of time in the sunspot cycle. Early in a cycle, spots appear at higher latitudes; late in a cycle, they appear close to the equator. Note that a new cycle starts before the old cycle completely ends. [Roger Ulrich, UCLA, Mt Wilson. This study includes data from the synoptic program at the 150 ft Solar Tower of the Mt Wilson Observatory. The Mt Wilson 150 ft Solar Tower is operated by UCLA, with funding from NASA, ONR and NSF, under agreement with the Mt Wilson Institute]

on a charge moving parallel to the magnetic field lines. The force is maximum when the velocity is perpendicular to the magnetic field. The force is perpendicular to both the direction of motion and to the magnetic field, and its direction is given by the so-called "right hand rule". This means that the component of motion parallel to the field lines is not altered, but the component perpendicular to the field lines is. So, charged particles will move so that they spiral around magnetic field lines.

Through the forces that it exerts on moving charges, a magnetic field will exert a torque on a current loop. We can think of a current loop as having a magnetic dipole moment (as in Fig. 6.22), and the torque will cause the dipole to line up with the field lines. In this way, the dipole moment of a compass needle lines up with the Earth's magnetic field.

How do we measure the Sun's magnetic field? For certain atoms placed in a magnetic field, energy

sunspots. (a) The placement of the spectrometer slit across a sunspot. (b) The spectrum at various positions along the slit. In the spectrum, away from the spot, the spectral lines are unsplit. In the center, near the spot, some of the spectral lines are split into three. The stronger the magnetic field the greater the splitting. [NOAO/AURA/NSF]

Fig 6.23. Zeeman effect in

levels will shift. This is known as the Zeeman effect (Fig. 6.23). Different energy levels shift by different amounts. Some transitions that normally appear as one line split into a group of lines. The amount of splitting is proportional to the strength of the magnetic field. (We can check the amount of splitting in different atoms in various magnetic fields in the laboratory.) An image of the magnetic field strength over the whole Sun is shown in Fig. 6.24.

Measurements by *George Ellery Hale* in 1908 first showed that the magnetic fields are stronger in sunspots. He also found that sunspots occur in pairs, with one corresponding to the north pole of a magnet and the other to the south pole. In each sunspot pair, we can identify the one that "leads" as the sun rotates. In a given solar hemisphere, the polarity (i.e. N or S) of the leading spot of all pairs is the same. The polarity is different in the two hemispheres.

This polarity reverses in successive 11-year cycles. During one cycle all of the leading sunspots in the northern hemisphere will be magnetic north, while those in the south will be magnetic south. In the next cycle all the leading sunspots in the northern hemisphere will be magnetic south. The Sun's magnetic field reverses every 11 years! This means that the sunspot cycle is really a 22-year cycle in the Sun's magnetic field.

If the Sun's magnetic field arose in the core, as the Earth's does, we would expect it to be quite stable. (There is geological evidence that the Earth's magnetic field reverses periodically, but on geological time scales, not every 11 years.) We now think that the Sun's magnetic field arises below the surface, rather than in the core, as the Earth's does. We also know that the Sun does not rotate as a rigid body. By following sunspot groups (Figs. 6.25 and 6.26), we see that material at the equator takes less time to go around than material at higher latitudes. For example, it takes 25 days for

Fig 6.24. Solar magnetic field. This shows the result of observations of the Zeeman effect. Brighter areas correspond to stronger fields. [NOAO/AURA/NSF]

Fig 6.25. Differential rotation of the Sun, as traced out by sunspots. Since the Sun rotates faster at the equator than at higher latitudes, sunspots at the equator take less time to make one rotation than do those at higher latitudes. In this schematic diagram, a selection of sunspots starts at the same meridian, but, after one rotation of the Sun, they are on different meridians.

material at the equator to make one circuit, while it takes 28 days at 40° latitude.

As the Sun rotates differentially, the magnetic field lines become distorted. This is because the charged particles in the matter cannot move across field lines, so the field lines are carried along with the material. We say that the magnetic field is frozen into the material. The development of the magnetic field is shown in Fig. 6.27. As the field lines wind up, the field becomes very strong in places. Kinks in the field lines break through the surface. The sunspots apparently arise through some, as yet poorly understood, dynamo motion, involving convective motion and the magnetic fields.

6.6.2 Other activity

Sunspots are just one manifestation of solar activity related to the Sun's magnetic field. Another form of activity is the *solar flare*, shown in Fig. 6.28. A flare involves a large ejection of particles. Flares develop very quickly and last tens of minutes to a few hours. Temperatures in flares are high, up to 5×10^6 K. They also give off strong H α emission, and flares are seen when the Sun is photographed through an H α filter. Flares have been detected to give off energy in all parts of the

Fig 6.27. This shows how the solar magnetic field is twisted and kinked by the differential rotation of the Sun. It takes about 8 months for the field to wrap around once. The kinked parts of the field lines represent places where these loops come outside the Sun, allowing charged particles to follow those looped paths. [NASA]

electromagnetic spectrum. The cause of flares is not understood, but they appear to be related to strong magnetic fields and the flow of particles along field lines.

Solar activity is also manifested in *plages* (from the French word for "beach"). Plages are bright regions around sunspots. They show up in H α images of the Sun. They remain after sunspots disappear. Plages are apparently chromospheric brightening caused by strong magnetic fields.

Filaments are dark bands near sunspot regions. They can be up to 10^5 km long. Filaments appear to be boundaries between regions of opposite magnetic polarity. When filaments are projected into space at the limb of the Sun, they appear as *prominences* (Fig. 6.29). Some prominences vary on short times scales while others evolve more slowly.

The solar wind is a stream of particles that are emitted from the Sun into interplanetary space. We can see the effects of the solar wind when we look at a comet that is passing near the Sun (Chapter 26). The tail of the comet always points away from the Sun. This is because the material in the tail is driven out of the head of the comet by the solar wind. The rate at which the Sun is losing mass is $10^{-14} M_{\odot}$ /yr. The wind is still accelerating in its five- to ten-day trip from the Sun to Earth. At the Earth's orbit, the speed is about 400-450 km/s, and the density of particles is 5 to 10 cm^{-3} . The particles in the solar wind are positive ions and electrons. It is thought that the solar wind originates in lower density areas of the corona, called *coronal holes*.

The solar wind can have an effect on the Earth. Most of the solar wind particles directed at Earth never reach the surface of the Earth. The Earth's magnetic field serves as an effective shield, since the charged particles cannot travel across the field lines. Some of the particles, however, travel along the field lines and come closest to the Earth near the magnetic poles. These charged particles are responsible for the aurora displays. This explains why aurorae are seen primarily near the magnetic poles. When solar activity is increased, the aurorae become more widespread. The increased abundance of charged particles in our atmosphere also creates radio interference.

Fig 6.28. Images of solar flares. (a) Looking obliquely as the flare stands out from the surface. (b) In this photograph, taken through an H α filter, we are looking down on a large solar flare from the side. This flare appears brighter than its surroundings in the H α line. [NOAO/AURA/NSF]

Fig 6.29. Images of large prominences. (a) This shows the large loop structure. (b) This H α image shows an eruptive prominence, where some of the material may actually escape from the Sun. (c) The X-ray image of the Sun gives another view of regions of activity. [(a), (b) NOAO/AURA/NSF; (c) NASA]

(a)

Chapter summary

We looked in this chapter at the one star we can study in detail, the Sun.

Most of what we see in the Sun is a relatively thin layer, the photosphere. In studying radiative transfer, we saw how we can see to different depths in the photosphere by looking at different wavelengths. The distance we can see corresponds to about one optical depth.

The photosphere doesn't have a smooth appearance. Instead, it has a granular appearance, with the granular pattern changing on a time scale of several minutes. This suggests convection currents below the surface. Supergranulation suggests even deeper convection currents. The chromosphere is difficult to study. In the chromosphere the temperature begins to increase as one moves farther from the center of the Sun. This trend continues dramatically into the corona. The best studies of the corona have come from total solar eclipses or from space.

We saw how sunspots appear in place of intensified magnetic fields, as evidenced by the Zeeman effect. The number of spots goes through a 22-year cycle, which includes a complete reversal in the Sun's magnetic field. The structure of the magnetic field is also related to other manifestations of solar activity, such as prominences.

Questions

- 6.1. In Fig. 6.3, what would be the effect on the total cross section of (a) doubling the density of particles, (b) doubling the length of the tube, (c) doubling the radius of each particle?
- *6.2. (a) What does it mean to say that some sphere has a geometric cross section of 10⁻¹⁶ cm²?
 (b) Suppose we do a quantum mechanical calculation and find that at some wavelength some atom has a cross section of 10⁻¹⁶ cm². What does that mean?
- 6.3. In studying radiative transfer effects, we let τ be a measure of where we are in a given sample, rather than position *x*. Explain why we can do this.
- 6.4. What does it mean when we say that something is optically thin?
- 6.5. Suppose we have a gas that has a large optical depth. We now double the amount of gas. How does that affect (a) the optical depth, (b) the amount of absorption?
- 6.6. Why do we need the "mean" in "mean free path"?
- 6.7. (a) Explain how we can use two different optical depth spectral lines to see different distances into the Sun. (b) Why is $H\alpha$ particularly useful in studying the chromosphere?
- 6.8. What other situations have you encountered that have exponential fall-offs?
- 6.9. Explain how absorption and emission by the H⁻ ion can produce a continuum, rather than spectral lines?

- 6.10. Explain why we see a range of Doppler shifts over a spectral line.
- 6.11. How does Doppler broadening affect the separation between the centers of the H α line and the H β line in a star?
- 6.12. What do granulation and supergranulation tell us about the Sun?
- 6.13. If the corona has $T = 2 \times 10^6$ K, why don't we see the Sun as a blackbody at this temperature?
- 6.14. Why can't you see the corona when you cover the Sun with your hand?
- 6.15. What advantages would a coronagraph on the Moon have over one on the Earth?
- 6.16. (a) Why does the F-corona still show the Fraunhofer spectrum? (b) Would you expect light from the Moon to show the Fraunhofer spectrum?
- 6.17. Why is the low density in the corona favorable for high levels of ionization?
- 6.18. (a) Why are collisions important in cooling a gas? (b) Why does the cooling rate depend on the square of the density? (c) How would you expect the heating rate to depend on the density?
- 6.19. Explain why charged particles drift parallel to magnetic field lines.
- 6.20. How are the various forms of solar activity related to the Sun's magnetic field?

Problems

- 6.1. Appendix G gives the composition of the Sun, measured by the fraction of the number of nuclei in the form of each element. Express the entries in this table as the fraction of the mass that is in each element. (Do this for the ten most abundant elements.)
- 6.2. Calculate the effective temperature of the Sun from the given solar luminosity, and radius, and compare your answer with the value given in the chapter.
- 6.3. Assume that for some process the cross section for absorption of a certain wavelength photon is 10^{-16} cm², and the density of H is 1 g/cm³. (a) Suppose we have a cylinder that is 1 m long and has an end area of 1 cm². What is the total absorption cross section? How does this compare with the area of the end? (b) What is the absorption coefficient (per unit length)? (c) What is the mean free path? (d) How long a sample of material is needed to produce an optical depth of unity.
- 6.4. Suppose we have a uniform sphere (radius R_{\odot}) of 1 M_{\odot} of hydrogen. What is the column density through the center of the sphere?
- 6.5. How large must the optical depth through a material be for the material to absorb: (a) 1% of the incident photons; (b) 10% of the incident photons; (c) 50% of the incident photons; (d) 99% of the incident photons?
- 6.6. If we have material that emits uniformly over its volume, what fraction of the photons that we see come from within one optical depth of the surface?
- *6.7. Suppose we divide a material into N layers, each with optical depth $d\tau = \tau/N$, where τ is the total optical depth through the material and $d\tau \ll 1$. (a) Show that if radiation I_0 is incident on the material, the emergent radiation is

 $I = I_0 \left(1 - \mathrm{d}\tau\right)^N$

(b) Show that this reduces to $I = I_0 e^{-\tau}$ (equation 6.19) in the limit of large *N*. (Hint: You may want to look at various representations of the function e^x .)

6.8. For what value of *x* does the error in the approximation $e^x \approx 1 + x$ reach 1%?

- *6.9. Suppose we have a uniform sphere of radius R and absorption coefficient κ . We look along various paths, passing different distances p from the center of the sphere at their points of closest approach to the center. (a) Find an expression for the optical depth τ as a function of p. (b) Calculate $d\tau/dp$, the rate of change of τ with p. (c) Use your results to discuss the sharpness of the solar limb.
- *6.10. Consider a charge Q near a neutral object. If the object is a conductor, charge can flow within it. The presence of the charge Q induces a dipole moment in the conductor, and there is a net force between the dipole and the charge. (a) Show that this force is attractive. (b) How does this apply to the possible existence of the H⁻ ion?
- 6.11. What is the thermal Doppler broadening of the H α line in a star whose temperature is 20 000 K?
- 6.12. We observe the $H\alpha$ line in a star to be broadened by 0.05 nm. What is the temperature of the star?
- 6.13. Compare the total thermal energy stored in the corona and photosphere.
- 6.14. (a) At what wavelength does the continuous spectrum from sunspots peak? (b) What is the ratio of intensities at 550 nm in a sunspot and in the normal photosphere? (c) What is the ratio of energy per second per surface area given off in a sunspot and in the normal photosphere?
- 6.15. How long does it take before material at the solar equator makes one more revolution than that at 40° latitude?
- 6.16. Calculate the energy per second given off in the solar wind?
- *6.17. (a) What is the pressure exerted on the Earth by the solar wind? (Hint: Calculate the momentum per second on an object whose cross sectional area is that of the Earth.)
 (b) How large a sail would you need to give an object with the mass of the space shuttle an acceleration of 0.1 g at the distance of the Earth from the Sun?
- *6.18. To completely describe the radiative transfer problem, we must take emission into account as well as absorption. The *source function S* is

defined so that $S d\tau$ is the increase in intensity due to emission in passing through a region of optical depth $d\tau$. This means that the radiative transfer equation should be written

 $dI/d\tau = -I + S$

Computer problems

6.1. Consider the situation in Fig. 6.4 with 1000 layers. Draw a graph of the fraction of the initial beam emerging from each layer, for total optical depths (a) 0.1, (b) 1.0, (c) 10.0. Show that the fraction emerging from the final layer agrees with equation (6.18).

(a) If *S* is a constant, solve for *I* vs. τ , assuming an intensity I_0 enters the material. (b) Discuss your result in the limits $\tau \ll 1$ and $\tau \gg 1$.

6.2. Estimate the Doppler broadening for the H α lines from the atmospheres at the mid-range of each spectral type (e.g. 05, B5, etc.). (Hint: Scale from the result in example (6.1).)