1

2

Contents

Prefe	ice	page xv
Symt	pols	xviii
Freq	uently used abbreviations	xxii
Struc	ture of non-polymeric glasses	1
1.1	Overview	1
1.2	Glass formability in metallic alloys	3
1.3	Atomic packing in disordered metallic solids	3
1.4	Energetic characterization of the structure of metallic glasses	7
	1.4.1 The atomic site stress tensor	7
	1.4.2 Calorimetry	9
1.5	Free volume	10
1.6	Viscosity of glass-forming liquids	14
1.7	Structural relaxations	16
	1.7.1 A computational model	16
	1.7.2 Kinetic models of structural relaxations in metallic glasses	20
1.8	The distributed character of structural relaxations and the	
	glass transition	21
1.9	The dependence of the glass-transition temperature on cooling rate	e 25
1.10	Crystallization in bulk metallic glasses	26
1.11	Deformation-induced alterations of atomic structure in sub-cooled	
	liquids and glasses	27
1.12	The range of metallic alloys that have been obtained as bulk	
	metallic glasses	30
1.13	The structure of amorphous silicon	30
1.14	Characterization of the structure of amorphous silicon	32
	Suggested further reading on structure of non-polymeric glasses	36
	References	37
Struc	ture of solid polymers	40
2.1	Overview	40
2.2	Structure of polymers	41
2.3	Molecular architecture	46

viii	Cont	lents	
	2.4	Malandar weight	4
	2.4	Molecular weight	4/
	2.3	2.5.1 Molecular structure models of amorphous polymers	49
		2.5.1 Molecular-structure models of amorphous polymers	47
		amorphous polymers	49
		2.5.3 Chemically non-specific models of amorphous polymer	12
		structure	53
		2.5.4 Experimental means of characterization of the structure	
		of glassy polymers	54
	2.6	Crystalline polymers	54
		2.6.1 The fringed-micelle model of semi-crystalline polymers	54
		2.6.2 Spherulites	55
		2.6.3 Hedrites	58
		2.6.4 Polymer single crystals	58
		2.6.5 Crystallization from the melt and growth of spherulites	61
	2.7	Defects in polymer crystals	66
		2.7.1 Overview	66
		2.7.2 Chain detects	67
	20	2.7.3 Lattice defects	/1
	2.8	Chain-extended polymers	/1
		References	72
3	Con	stitutive connections between stress and strain in polymers	77
	3.1	Overview	77
	3.2	Stresses and strains	77
		3.2.1 Stresses	77
		3.2.2 Strains	78
	3.3	Linear elasticity of polymers	81
	3.4	Plasticity of polymers	83
		3.4.1 Generalized yield conditions	83
		3.4.2 The associated-flow rule	85
	3.5	Thermally activated deformation	87
		References	89
4	Sma	III-strain elastic response	90
	4.1	Overview	90
	4.2	Small-strain elasticity in crystals	91
		4.2.1 The generalized Hooke's law	91
		4.2.2 Orthorhombic crystals or orthotropic solids	93
		4.2.3 Hexagonal crystals	93
		4.2.4 Cubic crystals	93
		4.2.3 Isotropic materials	93

		Contents	ix
		4.2.6 Temperature and strain dependence of elastic response	95
	4.3	Theoretical determination of elastic constants of polymers	96
		4.3.1 Glassy polymers	96
		4.3.2 Crystalline polymers	97
	4.4	Elastic response of textured anisotropic polymers	102
	4.5	Elastic properties of heterogeneous polymers	104
		4.5.1 Methods of estimating the elastic properties of	
		heterogeneous polymers	104
		4.5.2 The self-consistent method	105
		4.5.3 The Eshelby inclusion method	106
		References	109
5	Line	ar viscoelasticity of polymers	112
	5.1	Introduction	112
	5.2	Phenomenological formalisms of viscoelasticity	112
		5.2.1 Uniaxial creep or stress-relaxation response	112
		5.2.2 Dynamic relaxation response	116
		5.2.3 Temperature dependence of viscoelastic relaxations	118
	5.3	Viscoelastic relaxations in amorphous polymers	120
		5.3.1 The α -relaxation	120
		5.3.2 The free-volume model of the α -relaxation	122
		5.3.3 Dependence of the α -relaxation on the chemical structure of molecules	126
		5.3.4 Secondary relayations in the glassy regime	120
		5.3.5 Effect of physical aging on the relaxation spectra of polymers	130
		5.3.6 Secondary relaxations in polycarbonate of hisphenol-A	132
	54	Shear relaxations in partially crystalline polymers	139
	5.1	Some problems of viscoelastic-stress analysis	143
	5.6	Non-linear viscoelasticity	145
	010	Suggested further reading on linear viscoelasticity of polymers	146
		References	146
6	Rub	ber elasticity	148
	61	Overview	148
	6.2	Molecular characteristics of rubbers	149
	0.2	6.2.1 Distinctive features of rubbers	149
		6.2.2 The chemical constitution of rubbers	151
	63	Thermodynamics of rubbery behavior	151
	6.4	The Gaussian statistical model of rubber elasticity	155
	6.5	The non-Gaussian statistical model of rubber elasticity	159
	0.0	6.5.1 The freely jointed single chain	159
		6.5.2 Langevin networks	161
		6.5.3 Comparison of the Langevin-network model with experiments	164
		r ····································	

Х	Cont	Contents				
	6.6	Mode	s of deformation in rubber elasticity	167		
		6.6.1	Conditions for general response	167		
		6.6.2	Uniaxial tension or compression	167		
		6.6.3	Equi-biaxial stretch	168		
		6.6.4	Plane-strain tension and pure shear	168		
		6.6.5	Simple shear	169		
		6.6.6	Plane-strain compression flow in a channel die	171		
	6.7	Gauss	ian rubbery-type response in glassy polymers	172		
		Refere	ences	172		
7	Inela	astic bel	havior of non-polymeric glasses	174		
	7.1	Overv	iew	174		
	7.2	The m	nechanism of plasticity in non-polymeric glasses	175		
	7.3	The ki	inematics of plasticity in glassy solids by shear transformations	176		
	7.4	Nuclea	ation of shear transformations under stress	179		
		7.4.1	The elastic strain energy of a shear transformation in the			
			unstressed solid	179		
		7.4.2	The Gibbs free energy of nucleation of the shear			
			transformation under stress	180		
		7.4.3	Stages in the nucleation of the shear transformation	181		
	7.5	Yieldi	ng in metallic glasses	185		
		7.5.1	Behavior at low temperatures $(T \ll T_g)$	185		
		7.5.2	Temperature dependence of the yield stress $(T \ll T_g)$	187		
		7.5.3	Analysis of the experimental results on yield behavior of			
			metallic glasses at low temperatures	188		
		7.5.4	Yielding in metallic glasses at temperatures close to $T_{\rm g}$	189		
		7.5.5	Changing kinetics of plasticity near T_{g}	193		
	7.6	Post-y	vield large-strain plastic response of glassy solids: strain			
		soften	ing and strain hardening	199		
		7.6.1	Features of large-strain plastic flow of glassy solids	199		
		7.6.2	Plastic-flow-induced increase in the liquid-like			
			material fraction, φ	200		
		7.6.3	Plastic-strain-induced changes in structure and the kinetics			
			of associated evolutions of φ	203		
		7.6.4	Kinetics of large-strain plastic flow of glasses at $T \ll T_g$	205		
		7.6.5	Kinetics of large-strain plastic flow of glasses at T close to $T_{\rm g}$	207		
		7.6.6	Multi-axial deformation: correspondences of shear, tension,			
			and compression at low temperatures	210		
	7.7	The st	rength-differential effect in disordered solids	213		
	7.8	Shear	localization	216		
		7.8.1	The phenomenology of shear localization in metallic glasses	216		
		7.8.2	The mechanics of shear localization	217		

		Contents	xi
		7.8.3 Temperature rises associated with shear localization7.8.4 The flow state	220 221
		Appendix. Plastic-floor-induced structural alterations: the relation	
		between flow dilatations of free volume and liquid-like material	222
		References	224
8	Plas	ticity of glassy polymers	228
	8.1	Overview	228
	8.2	The rheology of glassy polymers	229
		8.2.1 Important provisos	229
		8.2.2 The phenomenology of plastic flow in glassy polymers	230
	8.3	The mechanism of plastic flow in glassy polymers	234
		8.3.1 Computer simulation of plastic flow	234
		8.3.2 Simulation results in polypropylene	236
		8.3.3 Simulation results in polycarbonate	238
	8.4	Temperature dependence of yield stresses of glassy polymers	243
	8.5	The kinetic model of plastic yield in glassy polymers	243
		8.5.1 Temperature dependence of the plastic resistance	243
		8.5.2 The thermal activation parameters	24/
	0 <i>C</i>	8.5.5 A kinetic model of now of linear-chain glassy polymers	248
	8.0	8.6.1 Development of post yield large strain plastic flow	249
		8.6.2 A model for post-yield plastic flow of glassy polymers	249
		8.6.3 Stored energy and Bauschinger back strains	258
		8.6.4 The strength-differential effect and the multi-axial	250
		vield condition	259
	87	Strain hardening in glassy polymers	262
	8.8	Comparison of experiments and simulations on the yielding and	202
		large-strain plastic flow of glassy polymers	264
		References	270
9	Plas	ticity of semi-crystalline polymers	273
	9.1	Overview	273
	9.2	Mechanisms of plastic deformation	274
	9.3	Plasticity of two semi-crystalline polymers: high-density polyethylene	
		(HDPE) and polyamide-6 (Nylon-6)	276
		9.3.1 Methodology of deformation	276
		9.3.2 Plastic strain-induced alterations of spherulite morphology in	
		Nylon-6 in uniaxial tension	277
		9.3.3 Large-strain plastic flow in HDPE in plane-strain compression	280
		9.5.4 Large-strain plastic flow in monoclinic (Nylon-6 by plane-strain	201
		compression	291

xii	Contents				
		9.3.5 Measurement of critical resolved shear stresses in textured			
		HDPE and Nylon-6 and their normal-stress dependence	292		
	9.4	The kinetics of plastic flow in semi-crystalline polymers	295		
		9.4.1 Modes of dislocation nucleation in lamellae	298		
		9.4.2 The strain-rate expression	301		
		9.4.3 The dominant nucleation mode	303		
		9.4.4 Activation volumes	304		
		9.4.5 Temperature dependence of the plastic resistance	307		
	9.5	Simulation of plastic-strain-induced texture development in HDPE	309		
		9.5.1 Characteristics of the simulation	309		
		9.5.2 Basic assumptions of the model	309		
		9.5.3 Constitutive relations	311		
		9.5.4 Composite inclusion	315		
		9.5.5 Interaction law and solution procedure	315		
		9.5.6 Parameter selection in the model	316		
		9.5.7 Predicted results of the composite model and comparison			
		with experiments	317		
		Suggested further reading on plasticity of semi-crystalline polymers	321		
		References	321		
10	Defo	rmation instabilities in extensional plastic flow of polymers	325		
	10.1	Overview	325		
	10.2	Deformation instabilities in extensional plastic flow of polymers	325		
	10.3	Conditions for impending localization in extensional deformation	326		
		10.3.1 Basic shear response	326		
		10.3.2 Basic extensional response	328		
	10.4	Stability of extensional plastic flow	331		
	10.5	The effect of strain-rate sensitivity on stability in extensional			
		plastic flow	333		
		10.5.1 In the onset of necking	333		
		10.5.2 In the post-necking behavior	335		
	10.6	Plastic drawing of polymers	336		
		References	341		
11	Crazi	ing in glassy homo- and hetero-polymers	342		
	11.1	Overview	342		
	11.2	The phenomenology of crazing in glassy homo-polymers	343		
	11.3	Simulation of cavitation in a glassy polymer at the atomic level	345		
	11.4	Craze initiation	347		
		11.4.1 Experimental observations	347		
		11.4.2 Intrinsic crazing	349		
		11.4.3 Tension-torsion experiments	349		
	11.5	A craze-initiation model	353		

		Contents	xiii
	11.6	Comparison of the predictions of the craze-initiation model with	256
	117	Croze growth	250
	11./	11.7.1 Croze stresses	250
		11.7.1 Craze microstructure	364
		11.7.2 Craze incrostructure 11.7.3 Craze growth experiments	366
	11.8	A craze-growth model	368
	11.0	Comparison of the craze-growth model with experiments	374
	11.9	Crazing in block consympts	376
	11.10	11.10.1 Mornhology of diblock copolymers	376
		11.10.2 Crazing experiments in PS/PB diblock copolymers	378
		11.10.3 A model of craze growth in a PS/PB diblock copolymer	570
		with spherical PB domains	381
		11 10.4 Comparison of the predictions of the craze-growth model	501
		in PS/PB diblock conslymers with experiments	385
		References	387
			507
12	Fractu	ire of polymers	391
	12.1	Overview	391
	12.2	Cracks and fracture	391
		12.2.1 Two complementary perspectives in crack mechanics	391
		12.2.2 Cracks in LEFM	392
		12.2.3 The energy-release rate G_1 in LEFM with crack extension	396
	12.3	Cracks with plastic zones	398
		12.3.1 Pervasiveness of plasticity at the crack tip	398
		12.3.2 Cracks with small-scale yielding (SSY)	399
		12.3.3 Crack-tip fields with contained plasticity	404
		12.3.4 Crack fields in fully developed plasticity	407
	12.4	Stability of crack advance	414
	12.5	Intrinsic brittleness of polymers	416
	12.6	Brittle-to-ductile transitions in fracture	418
	12.7	Mechanisms and forms of fracture in polymers	419
		12.7.1 The crack-tip process zone	419
		12.7.2 The role of chain scission in polymer fracture	419
		12.7.3 Fracture of unoriented polymers	420
		12.7.4 Cohesive separation	420
		12.7.5 Fracture in glassy polymers involving crazing	422
		12.7.6 Molecular-scission-controlled fracture of oriented	10.5
		semi-crystalline polymers	425
	10.0	12././ Fracture toughnesses of a selection of polymers	428
	12.8	Impact fracture of polymers	429
		12.8.1 Application of fracture mechanics to impact fracture	429
		12.8.2 Fracture of polymers at high strain rate	431

xiv	Contents				
		Cuerca	ted further and dive on freeture of relument	422	
		Referen	nces	432 433	
13	Tougl	hening of	f polymers	435	
	13.1	Overvi	ew	435	
	13.2	Strateg	gies of toughening of polymers	436	
	13.3	Differe	ent manifestations of toughness in polymers	437	
	13.4	The ge	neric fracture response of polymers in uniaxial tension	438	
	13.5	Tough	ening of crazable glassy polymers by compliant particles	440	
		13.5.1	Types of compliant composite particles	440	
		13.5.2	Brittleness of glassy homo-polymers and alleviating it		
			through craze plasticity	443	
		13.5.3	The mechanism of toughening in particle-modified crazable		
			glassy polymers	445	
		13.5.4	Elasticity of compliant particles	447	
		13.5.5	Craze initiation from compliant particles and the craze-flow		
			stress	449	
		13.5.6	The role of compliant-particle size in toughening		
			glassy polymers	449	
		13.5.7	A model for the craze-flow stress of particle-toughened		
			polystyrene	452	
		13.5.8	Special HIPS blends prepared to evaluate the		
			toughening model	454	
		13.5.9	Comparison of the behavior of special HIPS blends		
			with model predictions	457	
	13.6	Diluen	t-induced toughening of glassy polymers	459	
		13.6.1	Different manifestations of toughening with diluents	459	
		13.6.2	Factors affecting diluent toughening of PS	462	
		13.6.3	A model of diluent-induced toughening of glassy polymers	465	
		13.6.4	Comparison of the diluent-induced-toughening model with		
			experiments	472	
	13.7	Tough	ening of semi-crystalline polymers	475	
		13.7.1	Toughness of unmodified HDPE and polyamides of		
			Nylon-6 and -66	475	
		13.7.2	Toughening semi-crystalline polymers by particle		
			modification	477	
	13.8	Tough	ening of brittle thermosetting polymers	492	
		Refere	nces	497	
	Autho	or index		501	
	Subje	ct index		507	