The Physics of Deformation and Fracture of Polymers

Demonstrating through examples, this book presents a mechanism-based perspective on the broad range of deformation and fracture responses of solid polymers. It draws on the results of probing experiments and considers the similar mechanical responses of amorphous metals and inorganic compounds to develop advanced methodology for generating more precise forms of modeling. This, in turn, provides better fundamental understanding of deformation and fracture phenomena in solid polymers. Such mechanism-based constitutive response forms have far-reaching application potential in the prediction of structural responses and in tailoring special microstructures for tough behavior. Moreover, they can guide the development of computational codes for deformation processing of polymers at any level. Applications can range from large-strain industrial deformation texturing to production of precision micro-fluidic devices, making this book of interest both to advanced graduate students and to practicing professionals.

ALI S. ARGON is Quentin Berg Professor Emeritus in the Department of Mechanical Engineering at Massachusetts Institute of Technology (MIT). He is recognized world-wide as an authority on the mechanical behavior of engineering solids, has published over 300 papers and three books, and is one of the internationally most widely cited authors in materials science. He has received a number of honors and awards, including membership of the US National Academy of Engineering, Fellowship of the American Physical Society, Distinguished Life Membership of the Alpha Sigma Mu (International Professional Society of Materials and Engineering), the Nadai Medal of the American Society of Mechanical Engineers, the Heyn Medal of the German Society for Materials Science, and a US Senior Scientist Award of the Alexander von Humboldt Foundation for research in Germany. Cambridge University Press 978-0-521-82184-1 - The Physics of Deformation and Fracture of Polymers A. S. Argon Frontmatter More information Cambridge University Press 978-0-521-82184-1 - The Physics of Deformation and Fracture of Polymers A. S. Argon Frontmatter <u>More information</u>

The Physics of Deformation and Fracture of Polymers

A. S. ARGON

Massachusetts Institute of Technology

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521821841

© A. S. Argon 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data

Argon, Ali S.
The physics of deformation and fracture of polymers / A. S. Argon, Massachusetts Institute of Technology.
pages cm
Includes bibliographical references and indexes.
ISBN 978-0-521-82184-1
Polymers–Fracture. 2. Polymers–Plastic properties. 3. Plastics. I. Title.
TA455.P58A74 2013
620.1'920413–dc23

2012025871

ISBN 978-0-521-82184-1 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Cambridge University Press 978-0-521-82184-1 - The Physics of Deformation and Fracture of Polymers A. S. Argon Frontmatter More information

> This book is dedicated to Ian M. Ward of Leeds University for his long-term friendship and to my wife Xenia for her enduring support

Cambridge University Press 978-0-521-82184-1 - The Physics of Deformation and Fracture of Polymers A. S. Argon Frontmatter <u>More information</u>

> "An insightful exposition from one of the most influential material scientists of our time. A must read for anybody wishing to gain a mechanician's (not a chemist's!) perspective on the physics and mechanics of polymers." *Vasily Bulatov, Lawrence Livermore National Laboratory*

1

2

Contents

Prefe	ice	page xv
Symt	pols	xviii
Freq	uently used abbreviations	xxii
Struc	ture of non-polymeric glasses	1
1.1	Overview	1
1.2	Glass formability in metallic alloys	3
1.3	Atomic packing in disordered metallic solids	3
1.4	Energetic characterization of the structure of metallic glasses	7
	1.4.1 The atomic site stress tensor	7
	1.4.2 Calorimetry	9
1.5	Free volume	10
1.6	Viscosity of glass-forming liquids	14
1.7	Structural relaxations	16
	1.7.1 A computational model	16
	1.7.2 Kinetic models of structural relaxations in metallic glasses	20
1.8	The distributed character of structural relaxations and the	
	glass transition	21
1.9	The dependence of the glass-transition temperature on cooling rate	e 25
1.10	Crystallization in bulk metallic glasses	26
1.11	Deformation-induced alterations of atomic structure in sub-cooled	
	liquids and glasses	27
1.12	The range of metallic alloys that have been obtained as bulk	
	metallic glasses	30
1.13	The structure of amorphous silicon	30
1.14	Characterization of the structure of amorphous silicon	32
	Suggested further reading on structure of non-polymeric glasses	36
	References	37
Struc	ture of solid polymers	40
2.1	Overview	40
2.2	Structure of polymers	41
2.3	Molecular architecture	46

viii	Cont	tents	
	2.4	Molecular weight	47
	2.5	Structure of amorphous polymers	49
		2.5.1 Molecular-structure models of amorphous polymers	49
		2.5.2 Chemically specific molecular-structure models of	10
		amorphous polymers	49
		2.5.3 Chemically non-specific models of amorphous polymer	50
		structure	53
		2.5.4 Experimental means of characterization of the structure	54
	2.6	of glassy polymers Crystalline polymers	54
	2.0	2.6.1 The fringed-micelle model of semi-crystalline polymers	54
		2.6.2 Spherulites	55
		2.6.2 Spherances 2.6.3 Hedrites	58
		2.6.4 Polymer single crystals	58
		2.6.5 Crystallization from the melt and growth of spherulites	61
	2.7		66
		2.7.1 Overview	66
		2.7.2 Chain defects	67
		2.7.3 Lattice defects	71
	2.8	Chain-extended polymers	71
		Suggested further reading on structure of solid polymers	72
		References	73
3	Con	stitutive connections between stress and strain in polymers	77
	3.1	Overview	77
	3.2	Stresses and strains	77
		3.2.1 Stresses	77
		3.2.2 Strains	78
	3.3		81
	3.4		83
		3.4.1 Generalized yield conditions	83
	2.5	3.4.2 The associated-flow rule	85
	3.5	Thermally activated deformation	87
		References	89
4	Sma	III-strain elastic response	90
	4.1	Overview	90
	4.2	Small-strain elasticity in crystals	91
		4.2.1 The generalized Hooke's law	91
		4.2.2 Orthorhombic crystals or orthotropic solids	93
		4.2.3 Hexagonal crystals	93
		4.2.4 Cubic crystals	93
		4.2.5 Isotropic materials	93

		Contents	ix
		4.2.6 Temperature and strain dependence of elastic response	95
	4.3	Theoretical determination of elastic constants of polymers	96
		4.3.1 Glassy polymers	96
		4.3.2 Crystalline polymers	97
	4.4	Elastic response of textured anisotropic polymers	102
	4.5	Elastic properties of heterogeneous polymers4.5.1 Methods of estimating the elastic properties of	104
		heterogeneous polymers	104
		4.5.2 The self-consistent method	105
		4.5.3 The Eshelby inclusion method	106
		References	109
5	Line	ar viscoelasticity of polymers	112
	5.1	Introduction	112
	5.2	Phenomenological formalisms of viscoelasticity	112
		5.2.1 Uniaxial creep or stress-relaxation response	112
		5.2.2 Dynamic relaxation response	116
		5.2.3 Temperature dependence of viscoelastic relaxations	118
	5.3	Viscoelastic relaxations in amorphous polymers	120
		5.3.1 The α -relaxation	120
		5.3.2 The free-volume model of the α -relaxation	122
		5.3.3 Dependence of the α -relaxation on the chemical structure	
		of molecules	126
		5.3.4 Secondary relaxations in the glassy regime	127
		5.3.5 Effect of physical aging on the relaxation spectra of polymers	130
		5.3.6 Secondary relaxations in polycarbonate of bisphenol-A	132
	5.4	Shear relaxations in partially crystalline polymers	139
	5.5	Some problems of viscoelastic-stress analysis	143
	5.6	Non-linear viscoelasticity	145
		Suggested further reading on linear viscoelasticity of polymers References	146 146
6	Rub	ber elasticity	148
·	6.1	Overview	148
	6.2	Molecular characteristics of rubbers	149
	0.2	6.2.1 Distinctive features of rubbers	149
		6.2.2 The chemical constitution of rubbers	151
	6.3	Thermodynamics of rubbery behavior	151
	6.4	The Gaussian statistical model of rubber elasticity	155
	6.5	The non-Gaussian statistical model of rubber elasticity	159
	0.5	6.5.1 The freely jointed single chain	159
		6.5.2 Langevin networks	161
		6.5.3 Comparison of the Langevin-network model with experiments	164
		-	

X	Cont	ents	
	6.6	Modes of deformation in rubber elasticity	167
		6 1	167
		6.6.2 Uniaxial tension or compression	167
		6.6.3 Equi-biaxial stretch	168
		1	168
		1	169
		6.6.6 Plane-strain compression flow in a channel die	171
	6.7	Gaussian rubbery-type response in glassy polymers	172
		References	172
7	Inela	astic behavior of non-polymeric glasses	174
	7.1	Overview	174
	7.2	The mechanism of plasticity in non-polymeric glasses	175
	7.3	The kinematics of plasticity in glassy solids by shear transformations	176
	7.4	Nucleation of shear transformations under stress	179
		7.4.1 The elastic strain energy of a shear transformation in the	
			179
		7.4.2 The Gibbs free energy of nucleation of the shear	
		transformation under stress	180
		6	181
	7.5	6 6	185
			185
			187
		7.5.3 Analysis of the experimental results on yield behavior of	
			188
			189
			193
	7.6		
		6	199
			199
		7.6.2 Plastic-flow-induced increase in the liquid-like	
			200
		7.6.3 Plastic-strain-induced changes in structure and the kinetics	
			203
			205
			207
		7.6.6 Multi-axial deformation: correspondences of shear, tension,	
			210
	7.7		213
	7.8		216
			216
		7.8.2 The mechanics of shear localization	217

		Contents	xi
		7.8.3 Temperature rises associated with shear localization7.8.4 The flow state	220 221
		Appendix. Plastic-floor-induced structural alterations: the relation	
		between flow dilatations of free volume and liquid-like material	222
		References	224
8	Plas	ticity of glassy polymers	228
	8.1	Overview	228
	8.2	The rheology of glassy polymers	229
		8.2.1 Important provisos	229
		8.2.2 The phenomenology of plastic flow in glassy polymers	230
	8.3	The mechanism of plastic flow in glassy polymers	234
		8.3.1 Computer simulation of plastic flow	234
		8.3.2 Simulation results in polypropylene	236
		8.3.3 Simulation results in polycarbonate	238
	8.4	Temperature dependence of yield stresses of glassy polymers	243
	8.5	The kinetic model of plastic yield in glassy polymers	243
		8.5.1 Temperature dependence of the plastic resistance	243
		8.5.2 The thermal activation parameters	247
		8.5.3 A kinetic model of flow of linear-chain glassy polymers	248
	8.6	Large-strain plastic flow in glassy polymers	249
		8.6.1 Development of post-yield large-strain plastic flow	249
		8.6.2 A model for post-yield plastic flow of glassy polymers	254
		8.6.3 Stored energy and Bauschinger back strains	258
		8.6.4 The strength-differential effect and the multi-axial	
		yield condition	259
	8.7	Strain hardening in glassy polymers	262
	8.8	Comparison of experiments and simulations on the yielding and	
		large-strain plastic flow of glassy polymers	264
		References	270
9	Plas	ticity of semi-crystalline polymers	273
	9.1	Overview	273
	9.2	Mechanisms of plastic deformation	274
	9.3	Plasticity of two semi-crystalline polymers: high-density polyethylene	
		(HDPE) and polyamide-6 (Nylon-6)	276
		9.3.1 Methodology of deformation	276
		9.3.2 Plastic strain-induced alterations of spherulite morphology in	
		Nylon-6 in uniaxial tension	277
		9.3.3 Large-strain plastic flow in HDPE in plane-strain compression	280
		9.3.4 Large-strain plastic flow in monoclinic Nylon-6 by plane-strain	
		compression	291
		*	

xii	Conte	nts	
		9.3.5 Measurement of critical resolved shear stresses in textured	
		HDPE and Nylon-6 and their normal-stress dependence	292
	9.4	The kinetics of plastic flow in semi-crystalline polymers	295
		9.4.1 Modes of dislocation nucleation in lamellae	298
		9.4.2 The strain-rate expression	301
		9.4.3 The dominant nucleation mode	303
		9.4.4 Activation volumes	304
	0.5	9.4.5 Temperature dependence of the plastic resistance	307
	9.5	Simulation of plastic-strain-induced texture development in HDPE 9.5.1 Characteristics of the simulation	309
			309 309
		9.5.2 Basic assumptions of the model9.5.3 Constitutive relations	311
		9.5.4 Composite inclusion	315
		9.5.5 Interaction law and solution procedure	315
		9.5.6 Parameter selection in the model	315
		9.5.7 Predicted results of the composite model and comparison	510
		with experiments	317
		Suggested further reading on plasticity of semi-crystalline polymers	321
		References	321
10	Defor	mation instabilities in extensional plastic flow of polymers	325
	10.1	Overview	325
	10.2		325
	10.3		326
		10.3.1 Basic shear response	326
		10.3.2 Basic extensional response	328
	10.4	Stability of extensional plastic flow	331
	10.5	The effect of strain-rate sensitivity on stability in extensional	
		plastic flow	333
		10.5.1 In the onset of necking	333
		10.5.2 In the post-necking behavior	335
	10.6	Plastic drawing of polymers	336
		References	341
11	Crazi	ng in glassy homo- and hetero-polymers	342
	11.1	Overview	342
	11.2	The phenomenology of crazing in glassy homo-polymers	343
	11.3	Simulation of cavitation in a glassy polymer at the atomic level	345
	11.4		347
		11.4.1 Experimental observations	347
		11.4.2 Intrinsic crazing	349
		11.4.3 Tension-torsion experiments	349
	11.5	A craze-initiation model	353

		Contents	xiii
	11.6	Comparison of the predictions of the craze-initiation model with	
		experiments	356
	11.7	Craze growth	359
		11.7.1 Craze stresses	359
		11.7.2 Craze microstructure	364
	11.0	11.7.3 Craze-growth experiments	366
	11.8	A craze-growth model	368
	11.9	Comparison of the craze-growth model with experiments	374
	11.10		376
		11.10.1 Morphology of diblock copolymers	376
		11.10.2 Crazing experiments in PS/PB diblock copolymers	378
		11.10.3 A model of craze growth in a PS/PB diblock copolymer	201
		with spherical PB domains	381
		11.10.4 Comparison of the predictions of the craze-growth model	205
		in PS/PB diblock copolymers with experiments	385
		References	387
12	Fractu	ire of polymers	391
	12.1	Overview	391
	12.2	Cracks and fracture	391
		12.2.1 Two complementary perspectives in crack mechanics	391
		12.2.2 Cracks in LEFM	392
		12.2.3 The energy-release rate G_{I} in LEFM with crack extension	396
	12.3	Cracks with plastic zones	398
		12.3.1 Pervasiveness of plasticity at the crack tip	398
		12.3.2 Cracks with small-scale yielding (SSY)	399
		12.3.3 Crack-tip fields with contained plasticity	404
		12.3.4 Crack fields in fully developed plasticity	407
	12.4	Stability of crack advance	414
	12.5	Intrinsic brittleness of polymers	416
	12.6	Brittle-to-ductile transitions in fracture	418
	12.7	Mechanisms and forms of fracture in polymers	419
		12.7.1 The crack-tip process zone	419
		12.7.2 The role of chain scission in polymer fracture	419
		12.7.3 Fracture of unoriented polymers	420
		12.7.4 Cohesive separation	420
		12.7.5 Fracture in glassy polymers involving crazing	422
		12.7.6 Molecular-scission-controlled fracture of oriented	
		semi-crystalline polymers	425
		12.7.7 Fracture toughnesses of a selection of polymers	428
	12.8	Impact fracture of polymers	429
		12.8.1 Application of fracture mechanics to impact fracture	429
		12.8.2 Fracture of polymers at high strain rate	431

xiv	Conte	nts		
		C		422
		Sugges Refere	ted further reading on fracture of polymers nces	432 433
13	Tougl	nening of	f polymers	435
	13.1	Overvi	ew	435
	13.2	Strateg	gies of toughening of polymers	436
	13.3	Differe	ent manifestations of toughness in polymers	437
	13.4	The ge	neric fracture response of polymers in uniaxial tension	438
	13.5	Tough	ening of crazable glassy polymers by compliant particles	440
		13.5.1	Types of compliant composite particles	440
		13.5.2	Brittleness of glassy homo-polymers and alleviating it	
			through craze plasticity	443
		13.5.3	The mechanism of toughening in particle-modified crazable	
			glassy polymers	445
		13.5.4	Elasticity of compliant particles	447
		13.5.5	Craze initiation from compliant particles and the craze-flow	
			stress	449
		13.5.6	The role of compliant-particle size in toughening	
			glassy polymers	449
		13.5.7	A model for the craze-flow stress of particle-toughened	
			polystyrene	452
		13.5.8	Special HIPS blends prepared to evaluate the	
			toughening model	454
		13.5.9	Comparison of the behavior of special HIPS blends	
			with model predictions	457
	13.6	Diluen	t-induced toughening of glassy polymers	459
		13.6.1	Different manifestations of toughening with diluents	459
		13.6.2	Factors affecting diluent toughening of PS	462
		13.6.3	A model of diluent-induced toughening of glassy polymers	465
		13.6.4	Comparison of the diluent-induced-toughening model with	
			experiments	472
	13.7	Tough	ening of semi-crystalline polymers	475
		13.7.1	Toughness of unmodified HDPE and polyamides of	
			Nylon-6 and -66	475
		13.7.2	Toughening semi-crystalline polymers by particle	
			modification	477
	13.8	Tough	ening of brittle thermosetting polymers	492
		Refere	nces	497
	Auth	or index		501
				507
	Subje	ect index		307

Preface

The chemistry and physics of polymers, and their molecular microstructure, morphology, and larger-scale organization have been extensively studied and described in many treatises.

In comparison the plastic deformation and fracture processes, both in the laboratory and in industrial practice, have largely been dealt with at a phenomenological level, and often separately for different polymers and blends, rather than from a unified and comprehensive mechanistic perspective. This has left the mechanisms governing the deformation and fracture resistance of polymers far less well understood.

On the other hand, fundamental developments in polymer physics and polymer materials science in the recent past are now making it possible to consider broad ranges of their deformation and fracture from a mechanistic point of view at an appropriate molecular and morphological level. Moreover, insight gained from studies of corresponding responses of amorphous metals and semiconductors, reinforced by computational simulations and mechanistic modeling, has also broadened the perspective.

The purpose of this book is to present a coherent picture of the inelastic deformation and fracture of polymers from a mechanistic point of view, addressed to graduate students of material science and mechanical engineering and to professional practitioners in the field.

The book concentrates heavily on research conducted at the Massachusetts Institute of Technology from the mid 1980s to the mid 2000s by the author and a group of collaborators. It reports on extensive experimental studies and related computational simulations. In the latter there is much emphasis on development of mechanistic models ranging from unit plastic relaxation events to the evolution of deformation textures in channel die compression flow to large plastic strains. At every level the experimental results are compared in detail with predictions from the models.

The core of the book is devoted to subjects starting with anelastic behavior of polymers and rubber elasticity, but proceeds with greater emphasis in following chapters to mechanisms of plastic relaxations in glassy polymers and semicrystalline polymers with initial spherulitic morphology. Other chapters concentrate on craze plasticity in homo-polymers and block copolymers, culminating with a chapter on toughening mechanisms in brittle polymers. To make the

xvi Preface

main chapters on plastic flow and toughening tractable to the reader, the book starts with a brief tutorial chapter devoted to the structure of polymers from the chain molecular levels to morphological aggregation of crystalline lamellae and their further aggregation into spherulites. Since unit plastic relaxations are complex phenomena in glassy polymers, which, however, exhibit parallel phenomena that can be followed more transparently in amorphous metals and amorphous silicon, a chapter is also included at the start on the atomic structure of such simpler elemental glasses. Finally, since fracture involves propagation of cracks emanating from notches, with crack tips being modified by plastic zones of various levels of pervasiveness, a relatively comprehensive chapter on fracture mechanisms and mechanics is included to precede the chapter on toughening mechanisms.

Each chapter starts with an overview laying out the topics to be presented to give an overall perspective. Copious references are provided at the ends of chapters, often supplemented with lists of additional references that develop some topics in greater depth.

It is assumed that the reader has had an introductory course on materials science and perhaps on polymers such as e.g. *An Introduction to the Mechanical Properties of Solid Polymers* by I. M. Ward and J. Sweeney, John Wiley & Sons, second edition 2004.

Clearly, the present book covers in depth only a narrow subject area on the mechanical response of polymers; thus, as such, it is not intended as a review. The informed reader will note that much work of other investigators falling outside the main scope has not been included. This omission is intentional, in order to preserve a coherent central perspective.

Many colleagues at various levels contributed significantly to the conduct of the research discussed in the book and the overall development of the subject of this book, either in experimentation or in computational modeling. These include, in order of depth of involvement, R. Cohen, U. Suter, A. Gałęski, Z. Bartczak, E. Piórkowska, H. Brown, D. Parks, O. Gebizlioglu, S. Ahzi, M. Hutnik, P. Mott, O. Muratoglu, B. Lee, J. Vancso, J. Qin, and G. Dagli. In private discussions on many aspects of polymer research, G. Rutledge contributed some important perspective. M. Weinberg of DuPont supplied specially pedigreed polymer samples and blends for the experimental studies. P. Geil, B. Wunderlich, E. Kramer, and E. Ma generously furnished electronic files of some key micrographs and computer-generated images. The text was prepared, and numerous modifications were implemented, always cheerfully, by Doris Elsemiller. The illustrations were ably produced by Andrew Standeven. All this would not have been possible without funds provided by Deans T. Magnanti and S. Suresh and Department Heads R. Abeyaratne and M. Boyce. Finally, the very thorough copy-editing by Dr. Steven Holt on behalf of Cambridge University Press that uncovered a number of inconsistencies in referencing between the text and the lists of references at the ends of chapters is also gratefully acknowledged.

Preface

xvii

The serious entry of the author into the field of deformation and fracture of polymers started in 1971 during a sabbatical leave at Leeds University in Britain with Professor Ian Ward. The friendly association with Ward has continued until the present. For this reason the book is dedicated first of all to him in appreciation of his long-term friendship. Secondly, however, the book is dedicated in equal measure to my wife Xenia for her enduring support.

Symbols

All mathematical symbols are fully defined in the text where they are introduced. Some material parameters have been referred to by different symbols, preserving their usage in the literature.

Α	area of bar
A_0	area of perfect bar
$B(v,\beta)$	energy factor in ST
C	proportionality factor
D	diameter of craze fibril; diameter of particle
$D_{\rm c}$	critical particle diameter for craze initiation
D_0	mean spacing of craze fibrils
E	Young's modulus
F	Helmholtz free energy
F_0	self Helmholtz free energy of ST
$F_{\rm int}$	interaction (Helmholtz) energy with $\sigma_{\rm m}$ of ST
ΔF_0	$=F_0+F_{\rm int}$
$\Delta F_{ m v}$	activation free energy for viscous flow
\mathfrak{F}_{e}	edge-dislocation line energy
$\mathfrak{F}_{\mathrm{s}}$	screw-dislocation line energy
G_{I}	mode I energy-release rate
G_{IC_*}	critical mode I energy-release rate for crack advance
ΔG^{+}	Gibbs free energy of activation
ΔH^*	activation enthalpy
In	normalization factor for stresses in J integral field
J_{I}	J integral non-linear crack-tip energy-release rate
$J_{\rm IC}$	critical J integral crack driving force
J_{U}	unrelaxed creep compliance
$J_{\rm R}$	relaxed creep compliance
KI	mode I stress intensity factor
$K_{\rm IC}$	critical mode I stress intensity factor for crack growth in plane strain
$K_{\rm S}$	critical mode I stress intensity factor for crack growth for plane stress
$K_{\rm C}$	mode I stress intensity factor for growth of cracks between plane stress
T	and plane strain: $K_{\rm S} > K_{\rm C} > K_{\rm IC}$
L	load on deforming bar
£	Langevin function
$\frac{M_{\rm e}}{M}$	entanglement molecular weight in rubbers
$\frac{NI}{M}$ n	number-average molecular weight
$\frac{\frac{M_{\rm e}}{\overline{M}_{\rm n}}}{\frac{\overline{M}_{\rm w}}{\overline{M}_{\rm w}}/\overline{M}_{\rm n}}$	weight-average molecular weight
$M_{\rm W}/M_{\rm n}$	polydispersity ratio

xix

Ν	strain exponent
Q	Heat; $d\hat{Q}$, heat increment
R	rate; universal gas constant
$R_{\rm SD}$	strength differential ratio
S	entropy; dS, change in entropy
Т	temperature
T_0	$(=\Delta G^*/k)$
T_{BD}	brittle-to-ductile transition temperature
$T_{\rm g}^{\rm BD}$	glass-transition temperature
$T_{\rm m}$	melting temperature
U	internal energy; dU , change in internal energy
V	volume
W^{p}	plastic work; dW ^p , increment of plastic work
Y	tensile uniaxial yield strength
$Y_{\rm c}$	intrinsic craze yield stress
Y_0	athermal tensile yield strength
<i>Y</i> _C [°]	yield strength in compression
$Y_{\rm T}$	yield strength in tension
a	crack length; Cartesian coordinate axis
a_0	molecular diameter
a_T	viscoelastic shift factor
b	Burgers vector; Cartesian coordinate axis
С	Cartesian coordinate axis; volume fraction
$c_{\rm f}$	fraction; free-volume fraction
C_{ij}	Voigt elastic constant element
C _{ijkl}	tensor elastic constant element
e_{ij}	Voigt deviatoric strain element
f	fraction
$f_{\rm a}$	amorphous fraction
$f_{\rm c}$	crystalline fraction
$g(\lambda)$	$(=\lambda^2 - 1/\lambda)$ Gaussian orientation hardening function
k	Boltzmann's constant; yield strength in shear
k _r	rate constant
l	monomer link length; generic length
İ	elongation rate
т	$(= d \ln \dot{\gamma} / d \ln \sigma)$ phenomenological stress exponent
$m_{\rm T}$	Taylor factor in polycrystalline aggregates
р	pressure
q	cooling rate
r	radial coordinate
S	applied simple shear stress, deviatoric shear stress
<i>s</i> ₀	athermal shear resistance
S _{ij}	Voigt elastic compliance
S _{ijkl}	tensor compliance element
t	time
$t_{\rm f}$	time to fracture
<i>u</i> _r	radial displacement
$u_{ heta}$	angular displacement
u_z	axial displacement
$v_{\rm f}$	volume fraction
Ζ	polar coordinate axis

XX	Symbols	
	<i>x</i> , <i>y</i> , <i>z</i>	Cartesian axes
	Φ	fluidity
	Δ	process-zone length
	χ	interface energy, crystallinity
	Λ	matrix ligament thickness
	$\Lambda_{ m c}$	critical matrix ligament thickness where a toughness jump occurs
	Ω	atomic volume
	$\Omega_{ m f}$	volume of ST cluster
	$\Omega_{ m mon}$	monomer volume
	α	proportionality constant
	α	$(=\hat{\imath}/\mu(0))$ normalized threshold shear resistance
	$\alpha_{ m b}$	$(=v_{cb}/v_c)$ proportionality factor between craze-border velocity an
		craze-tip velocity
	β	$(=\varepsilon^{\mathrm{T}}/\gamma^{\mathrm{T}})$ activation dilatancy
	β	level of porosity, secondary relaxation
	$\beta_{ m e}$	activation-energy attenuation factor
	γ	tangential shear strain
	γ γ ^p γ ^T γ γ	plastic shear strain (deviatoric)
	γ	transformation shear strain
	Ŷ	shear strain rate
	$\gamma^{\rm P}$	plastic shear strain rate
	ý ^e	elastic shear strain rate
	Ϋ́ο	frequency factor in thermal activation
	δ	crack-tip opening displacement
	δ_{ij}	Kronecker delta
	$\mathbf{\varepsilon}^{\mathrm{T}}$	normal strain
	ε C	free-standing transformation strain tensor
	$\vec{\epsilon}^{C}_{\epsilon^{T}}$	constrained transformation strain tensor
		activation dilatation $(=\beta\gamma^{1})$
	3-P	equivalent total normal strain
	$d\varepsilon_{ij}^{p}$	plastic normal strain increment
	dē	equivalent total strain increment
	$arepsilon_{\mathrm{C}}^{\mathrm{T}}$	craze strain as dilatational transformation strain
		nominal strain rate
	$arepsilon_{ m e}^{ m p}$	equivalent strain (deviatoric)
	•	plastic strain at fracture normal strain at yield $(=\sigma_y/E)$
	Ey Ø	fraction, liquid-like-material fraction
	φ	liquid-like-material fraction at the flow state
	$arphi_{ m s}\ \lambda_1,\lambda_2,\lambda_3$	principal extension ratios in a rubber
	$\lambda_{\rm c}$	chain-extension ratio in Langevin rubbery response
	$\lambda_{\rm c}$ $\lambda_{\rm L}$	locking stretch
	λ_{e}	stress-attenuation factor in activation energy
	$\lambda_{\rm e}$ $\lambda_{\rm n}$	natural draw ratio between onset of instability and regaining of stabi
	∕∿n	ity in fiber drawing, also in craze matter fibril strain
		shear modulus
	$\mu \ \mu'$	storage modulus in viscoelasticity
	μ''	loss modulus in viscoelasticity
	·	unrelaxed modulus in viscoelasticity
	$\mu_{ m u} \ \mu_{ m r}$	relaxed modulus in viscoelasticity, friction factor

	Symbols xxi
v _D	Debye frequency
v _G	pre-exponential frequency factor, an eigenfrequency
ρ	material density
$ ho_{ m m}$	mobile dislocation density
$\sigma_{ m B}$	generally an applied shear stress, sometimes normal stress (deviatoric) brittle strength
$\sigma_{\rm B}$ $\sigma_1, \sigma_2, \sigma_3$	
$\sigma_{\rm c}$	craze-border traction
$\sigma_{\rm C}$	flow stress in compression
$\sigma_{ m e}$	uniaxial Mises equivalent axial stress
$\sigma_{ m S}$	flow stress in shear
$\sigma_{ m T}$	flow stress in tension
$\sigma_{ m m}$	mean normal stress $(=\sigma_n)$
$\sigma_{ m TH}$	thermal misfit negative pressure in particle
σ_{y}	(=Y) uniaxial yield strength
$ar{\sigma} \ \hat{\sigma}$	von Mises equivalent stress (= σ_e) ideal cavitation strength in UBER model
σ_{∞}	applied tensile stress promoting craze growth
θ^{∞}	angular coordinate
$\overset{\circ}{ heta}$	$(=\sigma/\mu(T))$ reduced shear stress normalized with shear modulus
θ	$(=T/T_g)$ reduced temperature normalized with the glass transition
	temperature
τ	stress tensor
τ	time period
$ au_{ m a}$	shear resistance of amorphous component in HDPE
τ_{c}	shear resistance of a crystalline component in HDPE
$\hat{ au}$	threshold plastic shear resistance at $T = 0$ K
$\hat{ au}_{ ext{C}}$	threshold uniaxial plastic resistance in compression

Frequently used abbreviations

CD CN CR DAM DEN DGEBA FD HDPE HRR KRO-1 LD PB PMMA PS QSC RH RVE SANS SANS SANS	constraint direction center-notched compression ratio dry as molded double-edge-notched diglycidyl ether of bisphenol-A, a common epoxy resin free direction high-density polyethylene Hutchinson-Rice-Rosengren (model) a diblock resin loading direction polybutadiene polymethyl methacrylate polystyrene quasi-single-crystalline (deformation texture) relative humidity representative volume element small-angle neutron scattering small-angle X-ray scattering
SANS	small-angle neutron scattering
	e . e
SEN ST	single-edge-notched shear transformation
TEM	transmission electron microscopy
WAXS	wide-angle X-ray scattering
WAAS	white-angle A-ray seattering