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Preface

The chemistry and physics of polymers, and their molecular microstructure,

morphology, and larger-scale organization have been extensively studied and

described in many treatises.

In comparison the plastic deformation and fracture processes, both in the

laboratory and in industrial practice, have largely been dealt with at a phenom-

enological level, and often separately for different polymers and blends, rather

than from a unified and comprehensive mechanistic perspective. This has left the

mechanisms governing the deformation and fracture resistance of polymers far

less well understood.

On the other hand, fundamental developments in polymer physics and polymer

materials science in the recent past are now making it possible to consider broad

ranges of their deformation and fracture from a mechanistic point of view at an

appropriate molecular and morphological level. Moreover, insight gained from

studies of corresponding responses of amorphous metals and semiconductors,

reinforced by computational simulations and mechanistic modeling, has also

broadened the perspective.

The purpose of this book is to present a coherent picture of the inelastic

deformation and fracture of polymers from a mechanistic point of view, addressed

to graduate students of material science and mechanical engineering and to

professional practitioners in the field.

The book concentrates heavily on research conducted at the Massachusetts

Institute of Technology from the mid 1980s to the mid 2000s by the author and

a group of collaborators. It reports on extensive experimental studies and related

computational simulations. In the latter there is much emphasis on development

of mechanistic models ranging from unit plastic relaxation events to the evolution

of deformation textures in channel die compression flow to large plastic strains. At

every level the experimental results are compared in detail with predictions from

the models.

The core of the book is devoted to subjects starting with anelastic behavior of

polymers and rubber elasticity, but proceeds with greater emphasis in following

chapters to mechanisms of plastic relaxations in glassy polymers and semi-

crystalline polymers with initial spherulitic morphology. Other chapters concen-

trate on craze plasticity in homo-polymers and block copolymers, culminating

with a chapter on toughening mechanisms in brittle polymers. To make the
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main chapters on plastic flow and toughening tractable to the reader, the book

starts with a brief tutorial chapter devoted to the structure of polymers from the

chain molecular levels to morphological aggregation of crystalline lamellae and

their further aggregation into spherulites. Since unit plastic relaxations are

complex phenomena in glassy polymers, which, however, exhibit parallel phe-

nomena that can be followed more transparently in amorphous metals and

amorphous silicon, a chapter is also included at the start on the atomic structure

of such simpler elemental glasses. Finally, since fracture involves propagation of

cracks emanating from notches, with crack tips being modified by plastic zones

of various levels of pervasiveness, a relatively comprehensive chapter on fracture

mechanisms and mechanics is included to precede the chapter on toughening

mechanisms.

Each chapter starts with an overview laying out the topics to be presented to

give an overall perspective. Copious references are provided at the ends of chap-

ters, often supplemented with lists of additional references that develop some

topics in greater depth.

It is assumed that the reader has had an introductory course on materials

science and perhaps on polymers such as e.g. An Introduction to the Mechanical

Properties of Solid Polymers by I. M. Ward and J. Sweeney, John Wiley & Sons,

second edition 2004.

Clearly, the present book covers in depth only a narrow subject area on the

mechanical response of polymers; thus, as such, it is not intended as a review. The

informed reader will note that much work of other investigators falling outside

the main scope has not been included. This omission is intentional, in order to

preserve a coherent central perspective.

Many colleagues at various levels contributed significantly to the conduct of

the research discussed in the book and the overall development of the subject of

this book, either in experimentation or in computational modeling. These

include, in order of depth of involvement, R. Cohen, U. Suter, A. Gałęski,
Z. Bartczak, E. Piórkowska, H. Brown, D. Parks, O. Gebizlioglu, S. Ahzi,

M. Hutnik, P. Mott, O. Muratoglu, B. Lee, J. Vancso, J. Qin, and G. Dagli.

In private discussions on many aspects of polymer research, G. Rutledge con-

tributed some important perspective. M. Weinberg of DuPont supplied specially

pedigreed polymer samples and blends for the experimental studies. P. Geil,

B. Wunderlich, E. Kramer, and E. Ma generously furnished electronic files of

some key micrographs and computer-generated images. The text was prepared,

and numerous modifications were implemented, always cheerfully, by Doris

Elsemiller. The illustrations were ably produced by Andrew Standeven. All this

would not have been possible without funds provided by Deans T. Magnanti

and S. Suresh and Department Heads R. Abeyaratne and M. Boyce. Finally,

the very thorough copy-editing by Dr. Steven Holt on behalf of Cambridge

University Press that uncovered a number of inconsistencies in referencing

between the text and the lists of references at the ends of chapters is also

gratefully acknowledged.
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The serious entry of the author into the field of deformation and fracture of

polymers started in 1971 during a sabbatical leave at Leeds University in Britain

with Professor Ian Ward. The friendly association with Ward has continued until

the present. For this reason the book is dedicated first of all to him in appreciation

of his long-term friendship. Secondly, however, the book is dedicated in equal

measure to my wife Xenia for her enduring support.

xviiPreface

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-82184-1 - The Physics of Deformation and Fracture of Polymers
A. S. Argon
Frontmatter
More information

http://www.cambridge.org/9780521821841
http://www.cambridge.org
http://www.cambridge.org


Symbols

All mathematical symbols are fully defined in the text where they are introduced.

Some material parameters have been referred to by different symbols, preserving

their usage in the literature.

A area of bar
A0 area of perfect bar
B(v,β) energy factor in ST
C proportionality factor
D diameter of craze fibril; diameter of particle
Dc critical particle diameter for craze initiation
D0 mean spacing of craze fibrils
E Young’s modulus
F Helmholtz free energy
F0 self Helmholtz free energy of ST
Fint interaction (Helmholtz) energy with σm of ST
ΔF0 ¼F0þFint

ΔFv activation free energy for viscous flow
Fe edge-dislocation line energy
Fs screw-dislocation line energy
GI mode I energy-release rate
GIC critical mode I energy-release rate for crack advance
ΔG* Gibbs free energy of activation
ΔH* activation enthalpy
In normalization factor for stresses in J integral field
JI J integral non-linear crack-tip energy-release rate
JIC critical J integral crack driving force
JU unrelaxed creep compliance
JR relaxed creep compliance
KI mode I stress intensity factor
KIC critical mode I stress intensity factor for crack growth in plane strain
KS critical mode I stress intensity factor for crack growth for plane stress
KC mode I stress intensity factor for growth of cracks between plane stress

and plane strain: KS>KC>KIC

L load on deforming bar
L Langevin function
Me entanglement molecular weight in rubbers
Mn number-average molecular weight
Mw weight-average molecular weight
Mw/Mn polydispersity ratio
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N strain exponent
Q Heat; dQ, heat increment
R rate; universal gas constant
RSD strength differential ratio
S entropy; dS, change in entropy
T temperature
T0 (¼ΔG*/k)
TBD brittle-to-ductile transition temperature
Tg glass-transition temperature
Tm melting temperature
U internal energy; dU, change in internal energy
V volume
Wp plastic work; dWp, increment of plastic work
Y tensile uniaxial yield strength
Yc intrinsic craze yield stress
Y0 athermal tensile yield strength
YC yield strength in compression
YT yield strength in tension
a crack length; Cartesian coordinate axis
a0 molecular diameter
aT viscoelastic shift factor
b Burgers vector; Cartesian coordinate axis
c Cartesian coordinate axis; volume fraction
cf fraction; free-volume fraction
cij Voigt elastic constant element
cijkl tensor elastic constant element
eij Voigt deviatoric strain element
f fraction
fa amorphous fraction
fc crystalline fraction
g(λ) (¼ λ2� 1/λ) Gaussian orientation hardening function
k Boltzmann’s constant; yield strength in shear
kr rate constant
l monomer link length; generic length
l_ elongation rate
m (¼ dln γ_/dln σ) phenomenological stress exponent
mT Taylor factor in polycrystalline aggregates
p pressure
q cooling rate
r radial coordinate
s applied simple shear stress, deviatoric shear stress
s0 athermal shear resistance
sij Voigt elastic compliance
sijkl tensor compliance element
t time
tf time to fracture
ur radial displacement
uθ angular displacement
uz axial displacement
vf volume fraction
z polar coordinate axis

xixSymbols
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x, y, z Cartesian axes
F fluidity
Δ process-zone length
χ interface energy, crystallinity
Λ matrix ligament thickness
Λc critical matrix ligament thickness where a toughness jump occurs
O atomic volume
Of volume of ST cluster
Omon monomer volume
α proportionality constant
α (¼ τ̂/μ(0)) normalized threshold shear resistance
αb (¼ vcb/vc) proportionality factor between craze-border velocity and

craze-tip velocity
β (¼ εT/γT) activation dilatancy
β level of porosity, secondary relaxation
βe activation-energy attenuation factor
γ tangential shear strain
γp plastic shear strain (deviatoric)
γT transformation shear strain
_γ shear strain rate
_γp plastic shear strain rate
_γe elastic shear strain rate
_γ0 frequency factor in thermal activation
δ crack-tip opening displacement
δij Kronecker delta
ε normal strain
εT free-standing transformation strain tensor
εC constrained transformation strain tensor
εT activation dilatation (¼ βγT)
ε� equivalent total normal strain
dεpij plastic normal strain increment
dε� equivalent total strain increment
εTC craze strain as dilatational transformation strain
ε_ nominal strain rate
εe equivalent strain (deviatoric)
εpf plastic strain at fracture
εy normal strain at yield (¼ σy/E)
φ fraction, liquid-like-material fraction
φs liquid-like-material fraction at the flow state
λ1, λ2, λ3 principal extension ratios in a rubber
λc chain-extension ratio in Langevin rubbery response
λL locking stretch
λe stress-attenuation factor in activation energy
λn natural draw ratio between onset of instability and regaining of stabil-

ity in fiber drawing, also in craze matter fibril strain
μ shear modulus
μ0 storage modulus in viscoelasticity
μ00 loss modulus in viscoelasticity
μu unrelaxed modulus in viscoelasticity
μr relaxed modulus in viscoelasticity, friction factor
n Poisson’s ratio

xx Symbols
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vD Debye frequency
vG pre-exponential frequency factor, an eigenfrequency
ρ material density
ρm mobile dislocation density
σ generally an applied shear stress, sometimes normal stress (deviatoric)
σB brittle strength
σ1, σ2, σ3 principal normal stresses
σc craze-border traction
σC flow stress in compression
σe uniaxial Mises equivalent axial stress
σS flow stress in shear
σT flow stress in tension
σm mean normal stress (¼ σn)
σTH thermal misfit negative pressure in particle
σy (¼ Y) uniaxial yield strength
σ� von Mises equivalent stress (¼ σe)
σ̂ ideal cavitation strength in UBER model
σ∞ applied tensile stress promoting craze growth
θ angular coordinate
θ (¼ σ/μ(T)) reduced shear stress normalized with shear modulus
θ (¼ T/Tg) reduced temperature normalized with the glass transition

temperature
τ stress tensor
τ time period
τa shear resistance of amorphous component in HDPE
τc shear resistance of a crystalline component in HDPE
τ̂ threshold plastic shear resistance at T¼ 0 K
τ̂C threshold uniaxial plastic resistance in compression

xxiSymbols
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Frequently used abbreviations

CD constraint direction
CN center-notched
CR compression ratio
DAM dry as molded
DEN double-edge-notched
DGEBA diglycidyl ether of bisphenol-A, a common epoxy resin
FD free direction
HDPE high-density polyethylene
HRR Hutchinson–Rice–Rosengren (model)
KRO-1 a diblock resin
LD loading direction
PB polybutadiene
PMMA polymethyl methacrylate
PS polystyrene
QSC quasi-single-crystalline (deformation texture)
RH relative humidity
RVE representative volume element
SANS small-angle neutron scattering
SAXS small-angle X-ray scattering
SEN single-edge-notched
ST shear transformation
TEM transmission electron microscopy
WAXS wide-angle X-ray scattering

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-82184-1 - The Physics of Deformation and Fracture of Polymers
A. S. Argon
Frontmatter
More information

http://www.cambridge.org/9780521821841
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521821841: 


