Transport in Laser Microfabrication

Emphasizing the fundamentals of transport phenomena, this book provides researchers and practitioners with the technical background they need to understand laserinduced microfabrication and materials processing at small scales. It clarifies the laser materials coupling mechanisms, and discusses the nanoscale confined laser interactions that constitute powerful tools for top-down nanomanufacturing. In addition to analyzing key and emerging applications for modern technology, with particular emphasis on electronics, advanced topics such as the use of lasers for nanoprocessing and nanomachining, the interaction with polymer materials, nanoparticles and clusters, and the processing of thin films are also covered.

Costas P. Grigoropoulos is a Professor in the Department of Mechanical Engineering at the University of California, Berkeley. His research interests are in laser materials processing, manufacturing of flexible electronics and energy devices, laser interactions with biological materials, microscale and nanoscale fluidics, and energy transport.

Transport in Laser Microfabrication: Fundamentals and Applications

COSTAS P. GRIGOROPOULOS

University of California, Berkeley

CAMBRIDGE

Cambridge University Press 978-0-521-82172-8 — Transport in Laser Microfabrication: Fundamentals and Applications Costas P. Grigoropoulos Frontmatter <u>More Information</u>

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521821728

© C. Grigoropoulos 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-82172-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CAMBRIDGE

Cambridge University Press 978-0-521-82172-8 — Transport in Laser Microfabrication: Fundamentals and Applications Costas P. Grigoropoulos Frontmatter <u>More Information</u>

To Mary, Vassiliki, and Alexandra

Contents

	Pref	face	<i>page</i> xi
1	Fun	1	
	1.1	Classical electromagnetic-theory concepts	1
	1.2	Optical properties of materials	21
		References	32
2	Lase	33	
	2.1	Lasers for materials processing	33
	2.2	Some specific laser systems	36
	2.3	Basic principles of laser operation	39
	2.4	Definition of laser intensity and fluence variables	48
	2.5	Optical components	50
	2.6	Beam delivery	51
		References	57
3	The	rmal processes in laser-materials interactions	60
	3.1	Macroscopic transport	60
	3.2	Conductive heat transfer	61
	3.3	Melting	72
	3.4	Ablative material removal	75
		References	84
4	Des	87	
	4.1	Vapor kinetics	87
	4.2	Time-of-flight instruments	90
	4.3	Kinetic distributions of ejected particles	96
		References	107
5	Dyna	amics of laser ablation	109
	5.1	Introduction	109
	5.2	Laser-induced plasma formation	111
		1	

CAMBRIDGE

Cambridge University Press 978-0-521-82172-8 — Transport in Laser Microfabrication: Fundamentals and Applications Costas P. Grigoropoulos Frontmatter <u>More Information</u>

viii	Cont	ients	
	5.3	Modeling of ablation-plume propagation	116
	5.4	Diagnostics of laser-ablated plumes	122
	5.5	Picosecond-laser plasmas	133
		References	141
6	Ultra	afast-laser interactions with materials	146
	6.1	Introduction	146
	6.2	Femtosecond-laser interaction with metals	147
	6.3	Femtosecond-laser interaction with semiconductor	
	<i>.</i>	materials	158
	6.4	Phase transformations induced by femtosecond laser	170
	65	Irradiation	160
	0.5	Ultrafact phase explosion	108
	6.7	Nonlinear absorption and breakdown in dielectric materials	172
	6.8	Application in the micromachining of glass	195
	0.0	References	195
7	Lase	er processing of thin semiconductor films	202
	7.1	Modeling of energy absorption and heat transfer in pulsed-laser	
		irradiation of thin semitransparent films	202
	7.2	Continuous-wave (CW) laser annealing	203
	7.3	Inhomogeneous semiconductor-film melting	205
	7.4	Nanosecond-laser-induced temperature fields in melting and	200
	75	resolidification of silicon thin films	209
	1.5	Indication in the supercooled liquid	217
	7.0 7.7	Lateral crystal growth induced by spatially modified irradiation	222
	1.1	References	231
8	Lase	er-induced surface modification	240
	81	Hydrodynamic stability of transient melts	240
	8.2	Capillary-driven flow	245
	8.3	Glass-surface modification	256
		References	263
9	Lase	er processing of organic materials	265
	9.1	Introduction	265
	9.2	Fundamental processes	265
	9.3	Applications	273
		References	278

		Contents	іх		
10	Pulse	ed-laser interaction with liquids	282		
	10.1	Rapid vaporization of liquids on a pulsed-laser-heated surface	282		
	10.2	Pulsed-laser interaction with absorbing liquids	292		
	10.3	Nonlinear interaction of short-pulsed lasers with dielectric liquids	304		
		References	309		
11	Laser cleaning of particulate contaminants				
	11.1	Introduction	313		
	11.2	Adhesion forces	314		
	11.3	A practical laser-cleaning system	319		
	11.4	Mechanisms of laser cleaning	321		
		References	328		
12	Laser	r interactions with nanoparticles	330		
	12.1	Size effects on optical properties	330		
	12.2	Melting of nanoparticles	333		
	12.3	Laser-induced production of nanoparticles	339		
		References	348		
13	Laser	r-assisted microprocessing	350		
	13.1	Laser chemical vapor deposition	350		
	13.2	Laser direct writing	355		
	13.3	Laser microstereolithography	368		
		References	374		
14	Nano	-structuring using pulsed laser radiation	376		
	14.1	Introduction	376		
	14.2	Apertureless NSOM nanomachining	377		
	14.3	Apertured NSOM nanomachining	383		
	14.4	Nanoscale melting and crystallization	386		
	14.5	Laser-assisted NSOM chemical processing	389		
	14.6	Plasmas formed by near-field laser ablation	392		
	14.7	Outlook	396		
		References	396		
	Index	c	399		

Preface

Lasers are effective material-processing tools that offer distinct advantages, including choice of wavelength and pulse width to match the target material properties as well as one-step direct and locally confined structural modification. Understanding the evolution of the energy coupling with the target and the induced phase-change transformations is critical for improving the quality of micromachining and microprocessing. As current technology is pushed to ever smaller dimensions, lasers become a truly enabling solution, reducing thermomechanical damage and facilitating heterogeneous integration of components into functional devices. This is especially important in cases where conventional thermo-chemo-mechanical treatment processes are ineffective. Component microfabrication with basic dimensions in the few-microns range via laser irradiation has been implemented successfully in the industrial environment. Beyond this, there is an increasing need to advance the science and technology of laser processing to the nanoscale regime.

The book focuses on examining the transport mechanisms involved in the lasermaterial interactions in the context of microfabrication. The material was developed in the graduate course on *Laser Processing and Diagnostics* I introduced and taught in Berkeley over the years. The text aims at providing scientists, engineers, and graduate students with a comprehensive review of progress and the state of the art in the field by linking fundamental phenomena with modern applications.

Samuel S. Mao of the Lawrence Berkeley National Laboratory and the Mechanical Engineering Department of UC Berkeley contributed major parts of Chapters 5, 6, and 9. I wish to acknowledge the contributions of all my former and current students throughout this text. Hee K. Park's, David J. Hwang's, and Seung-Hwang Ko's input extended beyond their graduate studies to post-doctoral stints in my laboratory. I am grateful to Gerald A. Domoto of Xerox Co. for introducing me to an interesting laser topic that evolved into my doctoral thesis at Columbia University. Dimos Poulikakos of the ETH Zürich talked me into starting this book project when I was on sabbatical in Zurich in 2000. His contributions in collaborative work form a key part of the text. I thank Professor Jean M. J. Fréchet of the UC Berkeley College of Chemistry for his contributions as well as Costas Fotakis of the IESL FORTH, Greece, and Dieter Bäuerle of Johannes Kepler University, Austria, for their support and input.

|--|

I am indebted to the NSF, DOE, and DARPA for funding work this book benefited from. The expert help of Ms. Ja Young Kim in preparing the artwork was key in completing this book.

> Costas P. Grigoropoulos Berkeley, California, USA