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1 Fundamentals of laser
energy absorption

1.1 Classical electromagnetic-theory concepts

1.1.1 Electric and magnetic properties of materials

Electric and magnetic fields can exert forces directly on atoms or molecules, resulting

in changes in the distribution of charges. Thus, an electric field �E induces an electric

dipole moment or polarization vector �P , while the magnetic induction field �B drives

a magnetic dipole moment or magnetization vector �M . It is convenient to define the

electric displacement vector �D and the magnetic field �H such that

�D = ε0
�E + �P , (1.1)

�H = 1

μ0

�B − �M, (1.2)

where ε0 and μ0 are the electric permittivity and magnetic permeability, respectively,

in vacuum. For isotropic electric materials the vectors �D, �E, and �P are collinear, while

correspondingly for isotropic magnetic materials the vectors �H , �B, and �M are collinear.

Introducing the electric susceptibility χ , the polarization vector is written as

�P = χε0
�E, (1.3)

and, therefore,

�D = ε0(1 + χ ) �E = εrε0
�E = ε �E, (1.4)

where ε is the electric permittivity of the material and εr = ε/ε0 the relative permittivity.

Analogous expressions are used to describe the magnetic properties of materials:

�B = μ �H = μrμ0
�H, (1.5)

where μ is the material’s magnetic permeability and μr the relative magnetic per-

meability. In a medium where the charge density ρ moves with velocity �v, the free

current-density vector �J is defined as

�J = ρ�v. (1.6)
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2 Fundamentals of laser energy absorption

The magnitude of this current, | �J |, represents the net amount of positive charge crossing

a unit area normal to the instantaneous direction of �v per unit time. The current-density

vector is related to the electric field vector via the electric conductivity, σ,

�J = σ �E, (1.7)

which is the continuum form of Ohm’s law. In isotropic materials, σ is a scalar quantity,

but for crystalline or anisotropic solids σ is a second-order tensor.

1.1.2 Maxwell’s equations

The system of Maxwell’s equations constitutes the basis for the theory of electromag-

netic fields and waves as well as their interactions with materials. For macroscopically

homogeneous (uniform) materials, for which ε and μ are constants independent of

position, the following relations hold:

(I)

∇ × �E = −μ
∂ �H
∂t

, (1.8)

(II)

∇ × �H = �J + ∂ �D
∂t

, (1.9)

(III)

∇ · �D = ρ, (1.10)

(IV)

∇ · �B = 0, (1.11)

where �D, �B, and �J are related to �E and �H through the constitutive Equations (1.4),

(1.5), and (1.7). In vacuum where there is no current or electric charge, the Maxwell

equations have a simple traveling plane wave solution with the electric and magnetic

field orthogonal to one another, and to the direction of propagation.

1.1.2 Boundary conditions

Consider an interface i, separating two media (1) and (2) of different permittivities

ε1, ε2 and permeabilities μ1, μ2 (Figure 1.1). According to Born and Wolf (1999) the

sharp and distinct interface is replaced by an infinitesimally thin transition layer. Within

this layer ε and μ are assumed to vary continuously. Let �n12 be the local normal at the

interface pointing into the medium (2). An elementary cylinder of volume �V and surface

area �A is taken within the thin transition layer. The cylinder faces and peripheral wall

are normal and parallel to vector �n12, respectively. Since �B and its derivatives may be

assumed continuous over this elementary control volume, the Gauss divergence theorem
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Figure 1.1. Schematics of an elementary volume of height �n and an elementary rectangular

contour of width �s across the distinct interface separating media 1 and 2.

is applied to Equation (1.11):
∫ ∫

�V

∫

∇ · �B dV =
∫

�S

∫

�B · d�S = 0. (1.12)

The second integral is taken over the surface of the cylinder. In the limit, as the height

of the cylinder �h → 0, contributions from the peripheral wall vanish and this integral

yields

( �B1 · �n1 + �B2 · �n2)�A = 0, (1.13)

where �n1 = −�n12 and �n2 = �n12. Consequently,

�n12 · ( �B2 − �B1) = 0. (1.14)

The electric displacement vector �D is treated in a similar manner by applying the Gauss

theorem to Equation (1.10):
∫ ∫

�V

∫

∇ · �D dV =
∫

�S

∫

�D · d�S =
∫ ∫

�V

∫

ρ dV. (1.15)

In the limit,

lim�h→0

∫ ∫

�V

∫

ρ dV =
∫

�A

∫

σs dA. (1.16)

The above relation defines the surface charge density σs. Owing to the vanishing contri-

bution over the peripheral wall as �h → 0, Equation (1.16) gives

�n12 · ( �D2 − �D1) = σs. (1.17)

These boundary conditions (1.14) and (1.17) can be expressed as

B2n = B1n, (1.18a)

D2n − D1n = σs, (1.18b)
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4 Fundamentals of laser energy absorption

where B2n = �B2 · �n, B1n = �B1 · �n, D2n = �D2 · �n, and D1n = �D1 · �n. In other words, the

normal components of the magnetic induction vector �B are always continuous and the

difference between the normal components of the electric displacement �D is equal in

magnitude to the surface charge density σs.

To examine the behavior of the tangential electric and magnetic field components,

a rectangular contour C with two long sides parallel to the surface of discontinuity is

considered. Stokes’ theorem is applied to Equation (1.8):

∫

�S

∫

∇ × �E · d�S =
∫

�S

∫

∇ × �E · �s dS =
∫

C

�E · d�l = −μ

∫

�S

∫

∂ �H
∂t

· �s dS. (1.19)

In the limit as the width of the rectangle �h → 0, the last surface integral vanishes and

the contour integral of �E is reduced to

�E1 · �t1 + �E2 · �t2 = 0. (1.20)

Considering the unit tangent vector �t along the interface, �t1 = −�t = −�s × �n12, �t2 = �t =
�s × �n12, Equation (1.20) gives

�n × ( �E2 − �E1) = 0. (1.21)

If a similar procedure is applied to Equation (1.9), then

�n × ( �H2 − �H1) = �K, (1.22)

where �K is the surface current density.

The boundary conditions (1.21) and (1.22) are written in the following form:

E2t = E1t, (1.23a)

H2t − H1t = Kt. (1.23b)

The subscript t implies the tangential component of the field vector. Thus, the tangential

component of the electric field vector �E is always continuous at the boundary surface

and the difference between the tangential components of the magnetic vector �H is

equal to the line current density K, and in radiation problems where σs = 0, K = 0.

Consequently, the normal components of �D and �B and the tangential components of �E
and �H are continuous across interfaces separating media of different permittivities and

permeabilities.

1.1.3 Energy density and energy flux

Light carries energy in the form of electromagnetic radiation. For a single charge qe, the

rate of work done by an external electric field �E is qe�v · �E, where �v is the velocity of

the charge. If there exists a continuous distribution of charge and current, the total rate

of work per unit volume is �J · �E, since �J = ρ�v. Utilizing (1.9),

�J · �E = �E · (∇ × �H ) − �E · ∂ �D
∂t

. (1.24)
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1.1 Classical electromagnetic-theory concepts 5

The following identity is invoked:

∇ · ( �E × �H ) = �H · (∇ × �E) − �E · (∇ × �H ), (1.25)

and applied to (1.24):

�J · �E = −∇ · ( �E × �H ) − �H · ∂ �B
∂t

− �E · ∂ �D
∂t

. (1.26)

The above equation is cast as follows:

∂U

∂t
+ ∇ · �S = − �J · �E, (1.27a)

where

U = 1

2
( �E · �D + �B · �H ), (1.27b)

�S = �E × �H. (1.27c)

The scalar U represents the energy density of the electromagnetic field and in the SI

system has units of [J/m3]. The vector �S is called the Poynting vector and has units

[W/m2]. It is consistent to view | �S| as the power per unit area transported by the

electromagnetic field in the direction of �S. Hence, the quantity ∇ · �S quantifies the net

electromagnetic power flowing out of a unit control volume. Equation (1.27a) states the

Poynting vector theorem.

1.1.4 Wave equations

Recalling the vector identity ∇ × (∇ ×) = ∇ · (∇ ·) − ∇2, Equation (1.8) yields

∇ × ∇ × �E = ∇ · (∇ · �E) − ∇2 �E = −μ∇ × ∂ �H
∂t

. (1.28)

Invoking (1.9), the right-hand side of the above is

−μ∇ × ∂ �H
∂t

= −μ
∂ �J
∂t

− με
∂2 �E
∂t2

,

and (1.28) gives

∇2 �E − ∇
(

ρ

ε

)

= μ

(

∂ �J
∂t

+ ε
∂2 �E
∂t2

)

,

or

∇2 �E − ∇
(

ρ

ε

)

= μσ
∂ �E
∂t

+ με
∂2 �E
∂t2

. (1.29a)

Similarly, it can be shown that

∇2 �H = μσ
∂ �H
∂t

+ με
∂2 �H
∂t2

. (1.29b)
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6 Fundamentals of laser energy absorption

For propagation in vacuum, ρ = 0, σ = 0, μ = μ0, and ε = ε0, and Equations (1.29a)

and (1.29b) give

∇2 �E = μ0ε0

∂2 �E
∂t2

, (1.30a)

∇2 �H = μ0 ε0

∂2 �H
∂t2

. (1.30b)

The above are wave equations indicating a speed of wave propagation c0 = 1/
√

μ0ε0,

i.e. the speed of light in vacuum. For propagation in a perfect dielectric, ρ = 0, σ = 0,

and the following apply

∇2 �E = με
∂2 �E
∂t2

, (1.31a)

∇2 �H = με
∂2 �H
∂t2

. (1.31b)

The propagation speed in this case is c = 1/
√

με. The index of refraction then is

defined:

n = c0

c
=

√

με

μ0ε0

. (1.32)

Since, at optical frequencies, μ0
∼= μ, the refractive index is approximated as

n ∼=
√

ε

ε0

. (1.33)

Equations (1.30) and (1.31) can be satisfied by monochromatic plane-wave solutions

with a constant amplitude A and of the general form

ψ = Aei(ωt−�r·�s), (1.34)

where �r and �s are the position vector and the wavevector, respectively.

The angular frequency ω and the magnitude of the wavevector �s are related by

|�s| = ω
√

με. (1.35)

According to (1.34), the field has the same values at locations �r and times t that satisfy

ωt − �r · �s = const. (1.36)

The above prescribes a plane normal to the wavevector �s at any time instant t (Figure

1.2). The plane is called a surface of constant phase, often referred to as a wavefront.

The plane-wave electromagnetic fields are expressed by

�E = �u1E0ei(ωt−�r·�s), (1.37a)

�H = �u2H0ei(ωt−�r·�s), (1.37b)

where �u1 and �u2 are constant unit vectors and E0 and H0 are the constant-in-space

complex amplitudes.
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Figure 1.2. A schematic diagram depicting a plane wave propagating normal to the direction �s.
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Figure 1.3. A schematic diagram depicting the instantaneous vectors �E and �H that form a

right-hand triad with the unit vector �s along the propagation direction.

In a homogeneous, charge-free medium, ∇ · �E = ∇ · �H = 0. Hence,

�u1 · �s = �u2 · �s = 0, (1.38)

meaning that �E and �H are both perpendicular to the direction of propagation (Figure

1.3). For this reason, electromagnetic waves in dielectrics are said to be transverse.

The curl Maxwell equations impose further restrictions on the field vectors. By apply-

ing (1.38) in (1.8), it can be shown that

�u2 = �s × �u1

|�s| . (1.39)

The triad (�u1, �u2, �s) therefore forms a set of orthogonal vectors, and �E and �H are in

phase with amplitudes in constant ratio, provided that ε and μ are both real (Figure 1.4).

The plane wave described is a transverse wave propagating in the direction �s with a

time-averaged flux of energy

�S = |E0|2
2ωμ

�u3 =
�E∗ · �E
2ωμ

�u3, (1.40)
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8 Fundamentals of laser energy absorption
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Figure 1.4. In a medium of real refractive index, the electric and magnetic fields are always in

phase.

where �E∗ is the conjugate of the complex electric field vector. The time-averaged energy

density

U = 1

2
ε|E0|2 = 1

2
ε �E · �E∗. (1.41)

1.1.5 Electromagnetic theory of absorptive materials

The optical properties of perfect dielectric media are completely characterized by the

real refractive index. In such media, it is assumed that electromagnetic radiation interacts

with the constituent atoms with no energy absorption. In contrast, especially for metals,

very little light penetrates to a depth beyond 1 �m at visible wavelengths. Consider

then media with nonzero electric conductivity that absorb energy but do not redirect a

collimated light beam. Let �E and �H be the real parts of periodic variations:

�E(x, y, z, t) = Re[ �Ec(x, y, z)eiωt ], (1.42a)

�H (x, y, z, t) = Re[ �H c(x, y, z)eiωt ]. (1.42b)

The superscript c indicates a complex quantity. Utilizing Maxwell’s equations (1.8)–

(1.11),

∇ × �Ec = −iωμ �H c, (1.43a)

∇ × �H c = (σ + iωε) �Ec, (1.43b)

∇ · �Ec = 0, (1.43c)

∇ · �H c = 0. (1.43d)

Taking the curl of (1.43a) and combining this with (1.43b) gives

∇ × ∇ × �Ec = −iωμ(σ + iωε) �Ec. (1.44)

Utilizing the identity ∇ × ∇ × �Ec = ∇ · (∇ · �Ec) − ∇2 �Ec combined with (1.43c),

∇ × ∇ × �Ec = −∇2 �Ec. (1.45)
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1.1 Classical electromagnetic-theory concepts 9

Combining the above with (1.43a) and (1.43b) gives

∇2 �Ec = iωμ(σ + iωε) �Ec, (1.46)

or

∇2 �Ec = −ω2μ

(

ε − i
σ

ω

)

�Ec, (1.47)

which is written as

∇2 �Ec + (kc)2 �Ec = 0. (1.48)

The complex wavenumber kc satisfies

(kc)2 = ω2μ

(

ε − i
σ

̟

)

= ω2μεc.

The quantity

εc = ε − i
σ

ω

is the complex dielectric constant.

A complex velocity vc and a complex refractive index nc can then be defined:

vc = 1√
μεc

, (1.49)

nc = c0

vc
=

√

μεc

μ0ε0

. (1.50)

Let nc = n − ik, where n is the real part of the complex refractive index and k the

imaginary part, the so-called attenuation index:

(nc)2 = n2 − k2 − 2ink = μc2
0

(

ε − i
σ

ω

)

. (1.51)

Equating the real and the imaginary parts, and solving for n2 and k2, gives

n2 = c2
0

2

⎡

⎣

√

μ2ε2 +
(

μσ

2πν

)2

+ με

⎤

⎦, (1.52a)

n2 = c2
0

2

⎡

⎣

√

μ2ε2 +
(

μσ

2πν

)2

− με

⎤

⎦. (1.52b)

Equation (1.48) implies wave propagation. The simplest solution is that of a plane,

time-harmonic wave:

�Ec(�r, t) = �Ec
0e−i[kc(�r·�s)−ωt], (1.53)

where �s is a unit vector along the direction of propagation. Since

kc = ωnc

c0

= ω(n − ik)

c0

,
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10 Fundamentals of laser energy absorption

the above can be written as

�Ec = �Ec
0e

− ω
c0

k(�r·�s)
e

iω[− n
c0

(�r·�s)+t]
. (1.54)

The real part of this expression represents the electric vector:

�E = �E0e
− ω

c0
k(�r·�s)

cos

{

ω

[

− n

c0

(�r · �s) + t

]}

. (1.55)

A similar expression can be developed for the magnetic field vector. The energy flux per

unit area is given by the Poynting vector, �S = �E × �H , which is then

�S = Re
( �Ec

0eiωt
)

× Re
( �H c

0 eiωt
)

, (1.56)

and then

�S = 1

4

[( �Ec
0eiωt + �Ec∗

0 e−iωt
)]

×
[( �H c

0 eiωt + �H c∗
0 e−iωt

)]

,

�S = 1

4

[ �Ec
0 × �H c

0 e2iωt + �Ec∗
0 × �H c∗

0 e−2iωt + �Ec∗
0 × �H c

0 + �Ec
0 × �H c∗

0

]

. (1.57)

Consider a time interval [−T ′, T ′] large compared with the fundamental wave period,

T = 2π/ω, which is O(10−15 s):

1

2T ′

∫ T ′

−T ′
e2iωt dt = 1

4iωT ′ [e
2iωt ]T

′
−T ′ = 1

4i
2π

T
T ′

2 cos(ωT ′) = T

2π iT ′ cos(ωT ′).

(1.58)

Evidently, if the EM energy flux given in (1.57) is averaged over [−T ′, T ′] with T ′ ≫
T, the first two periodic terms will contribute very little. Hence, the averaged energy is

�Sav = 1

2
Re

( �Ec
0 × �H c∗

0

)

= �s 1

2

Re(nc)

μc0

∣

∣ �Ec
0

∣

∣

2
. (1.59)

The above expressions indicate that the energy flux carried by a wave propagating in

an absorbing medium is proportional to the squared modulus of its complex amplitude

and to the real part of the complex refractive index of the medium. The modulus of the

Poynting vector, i.e. the monochromatic radiative intensity, I ′
λ, is

I ′
λ = | �Sav| = I ′

λ,0e
− 2ω

c0
k(�r·�s) = I ′

λ,0e−γ (�r·�s), (1.60)

where γ is the absorption coefficient of the medium:

γ = 2ωk

c0

= 4πk

λ0

. (1.61)

In the above, λ0 is the wavelength in vacuum. As shown in Figure 1.5, the energy flux

drops to 1/e of I ′
λ,0 after traveling a distance d, the so-called absorption penetration

depth:

d = 1

γ
= λ0

4πk
. (1.62)
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