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Thermostatics

The goal of this first chapter is to give a presentation of thermodynamics, due to H.

Callen, which will allow us to make the most direct connection with the statistical

approach of the following chapter. Instead of introducing entropy by starting with

the second law, for example with the Kelvin statement ‘there exists no transforma-

tion whose sole effect is to extract a quantity of heat from a reservoir and convert it

entirely to work’, Callen assumes, in principle, the existence of an entropy function

and its fundamental property: the principle of maximum entropy. Such a presen-

tation leads to a concise discussion of the foundations of thermodynamics (at the

cost of some abstraction) and has the advantage of allowing direct comparison with

the statistical entropy that we shall introduce in Chapter 2. Clearly, it is not possi-

ble in one chapter to give an exhaustive account of thermodynamics; the reader is,

instead, referred to classic books on the subject for further details.

1.1 Thermodynamic equilibrium

1.1.1 Microscopic and macroscopic descriptions

The aim of statistical thermodynamics is to describe the behaviour of macroscopic

systems containing of the order of N ≈ 1023 particles.1 An example of such a

macroscopic system is a mole of gas in a container under standard conditions of

temperature and pressure.2 This gas has 6 × 1023 molecules3 in incessant mo-

tion, continually colliding with each other and with the walls of the container.

To a first approximation, which will be justified in Chapter 2, we may consider

these molecules as classical objects. One can, therefore, ask the usual question of

classical mechanics: given the initial positions and velocities (or momenta) of the

1 With some precautions, one can apply thermodynamics to mesoscopic systems, i.e. intermediate between
micro- and macroscopic, for example system size of the order of 1 �m.

2 The reader will allow us to talk about temperature and pressure even though these concepts will not be defined
until later. For the moment intuitive notions of these concepts are sufficient.

3 In the case of a gas, we use the term ‘molecules’ instead of the generic term ‘particles’.
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2 Thermostatics

molecules at t = 0, what will the subsequent evolution of this gas be as a function

of time? Let us, for example, imagine that the initial density is non-uniform and

ask how the gas will evolve to re-establish equilibrium where the density is uni-

form. Knowing the forces among the molecules and between molecules and walls,

it should be possible to solve Newton’s equations and follow the temporal evolu-

tion of the positions, �ri (t), i = 1, . . . , N , and momenta, �pi (t), as functions of the

positions and momenta at t = 0. We could, therefore, deduce from the trajectories

the evolution of the density n(�r , t). Even though such a strategy is possible in prin-

ciple, it is easy to see that it is bound to fail: if we simply wanted to print the initial

coordinates, at the rate of one coordinate per microsecond, the time needed would

be of the order of the age of the universe! As for the numerical solution of the

equations of motion, it is far beyond the capabilities of the fastest computers we

can imagine, even in the distant future. This kind of calculation, called molecular

dynamics, can currently be performed for a maximum of a few million particles.

The quantum problem is even more hopeless: the solution of the Schrödinger

equation is several orders of magnitude more complex than that of the correspond-

ing classical problem. We keep in mind, however, that our system is, at least in

principle, susceptible to a microscopic description: positions and momenta of par-

ticles in classical mechanics, their wave function in the quantum case. If this in-

formation is available, we will say that a system has been attributed a microscopic

configuration or microstate. In fact, this microscopic description is too detailed.

For example, if we are interested, as above, in the temporal evolution of the density

of the gas, n(�r , t), we have to define this density by considering a small volume,

�V , around the point �r , and count (at least in principle!) the average number of

gas molecules in this volume during a time interval, �t , centred at t . Even though

�V is microscopic, say of the order of 1 �m on a side, the average number of

molecules will be of the order of 107. We are only interested in the average number

of molecules in �V , not in the individual motion of each molecule. In a macro-

scopic description, we need to make spatial and temporal averages over length and

time scales that are much larger than typical microscopic scales. Length and time

scales of 1 �m and 1 �s are to be compared with characteristic microscopic scales

of 0.1 nm and 1 fs for an atom. In this averaging process, only a small number of

combinations of microscopic coordinates will play a rôle, and not each of these

coordinates individually. For example, we have seen that to calculate the density,

n(�r , t), we have to count all molecules found at time t in the volume �V around

point �r , or, mathematically,

n(�r , t) =
1

�V

∫
�V

d3r

N∑
i=1

δ (�r − �ri (t)) (1.1)
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1.1 Thermodynamic equilibrium 3

This equation selects a particular combination of positions, �ri (t), and gives an

example of what we will call macroscopic variables. Another example of a com-

bination of microscopic coordinates yielding a macroscopic variable will be given

below for the energy (Equation (1.2)).

Since the microscopic approach leads to a dead end, we change descriptions,

and take as fundamental quantities global macroscopic variables related to the

sample: number of molecules, energy, electric or magnetic dipole moment, etc.

Macroscopic variables, or more precisely, their densities (density of molecules, of

energy etc.) define a macrostate. The evolution of macroscopic variables is gov-

erned by deterministic equations: Newton’s equations for elastic objects, Euler’s

equations for fluids, Maxwell’s equations for electric or magnetic media, etc. How-

ever, this purely mechanical description is insufficient since a macrostate is com-

patible with a very large number of different microstates. Therefore, we cannot

forget the microscopic degrees of freedom that have been eliminated by averag-

ing. For these microscopic degrees of freedom, which, for the moment, we have

ignored in the macroscopic approach, we will use a probabilistic description; this

will in turn lead to the concept of entropy, which is needed to complete our macro-

scopic picture. This probabilistic approach will be discussed in Chapter 2. Con-

trary to other macroscopic variables, entropy is not a combination of microscopic

variables: it plays a singular rôle compared to other macroscopic quantities.

In the remainder of this chapter, we will limit ourselves to a thermodynamic

description and only consider macroscopic variables and the entropy.

1.1.2 Walls

A particularly important macroscopic variable in thermodynamics is the energy,

which can take many forms. In a mechanical system with only conservative forces

(derivable from a potential), the mechanical energy, which is the sum of the kinetic

and potential energies, is conserved. A mechanical system protected from all exter-

nal influences, i.e. isolated, finds its energy conserved, in other words independent

of time. Mathematically, the energy can be written as

E =
N∑

i=1

�p 2
i

2m
+

1

2

∑
i �= j

U (�ri − �r j ) (1.2)

To simplify the writing, we have assumed in this equation that the particles are

identical and of mass m; �pi is the momentum of particle i , �ri its position, and U

the potential energy of two molecules. We also assumed the molecules to have

no internal structure. Equation (1.2) also gives the expression for the classical or

quantum Hamiltonian, H , of the isolated system. In the quantum case, �pi and
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4 Thermostatics

�ri are the canonically conjugate momentum and position operators for particle i .

When the system is not isolated, we know that we can transfer mechanical energy

to it: when we compress a spring, it acquires additional energy, which it stores

in the form of elastic potential energy. During the compression process, the point

where the force is applied moves with the consequence that energy is given to the

system in the form of work. Similarly, we supply energy to a gas by compressing

it with the help of a piston. In both cases, the external parameters4 of the system,

length of the spring in one case, volume of the gas in the other, are modified in

a known way. However, we know, experimentally, that we can transfer energy to

an object in many other ways. Any handyman knows that we can transfer energy

to a drill bit by drilling a hole in concrete. The bit heats up due to friction, and,

according to a popular but thermodynamically incorrect statement (Footnote 10),

some of the mechanical energy supplied by the drill motor is ‘changed to heat’.

We can obtain the same result by leaving the drill bit in the sun on a hot summer

day, which corresponds to ‘transforming electromagnetic energy into heat’, or by

immersing it in boiling water, i.e. by using thermal contact. In the latter case, there

is no visible modification of external variables (see Section 2.5.1) either of the

bit or of the water. Only the microscopic degrees of freedom are involved in the

exchange of energy. The heating of the bit corresponds to bigger vibrations of its

atoms around their equilibrium positions, the concomitant cooling of the water

corresponds to a reduction of the average speed of its molecules.5 Energy transfer

in the form of heat is characterized by the fact that neither the external parameters

of the system, nor the configuration of the external medium, are modified. This heat

transfer can be effected by conduction (the drill bit in contact with water), or by

radiation (between the sun and the bit).

In summary, a system can receive energy either in the form of work, or in the

form of heat. The energy supplied in the form of work is, at least in principle,

measurable from mechanical considerations because work is supplied by a macro-

scopic mechanical device whose parameters (masses, applied forces, etc.) are, sup-

posedly, perfectly known.6 Work is obtained by causing a change, either of the ex-

ternal parameters, or the configuration of the external medium, or both. However,

the amount of energy received by an object is not known with precision from the

principle of conservation of total energy unless we are able to eliminate energy ex-

change in the form of heat. This can be accomplished by isolating the system using

a heat insulating wall, or an adiabatic wall; on the other hand, a diathermic wall

4 External parameters are those quantities that are under the direct control of the experimentalist: volume, exter-
nal electric or magnetic fields, etc.

5 To simplify the discussion, we neglect complications due to the potential energy of the molecules.
6 From this point of view, the energy supplied by an electric device will be considered as work since it can be

determined by electric measurements performed with a voltmeter or an ammeter.
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1.1 Thermodynamic equilibrium 5

(b)(a)

xA xB

x

�F

Figure 1.1 Two ways to supply work. (a) Compressing a gas, (b) Joule’s experi-
ment.

allows heat transfer. Inversely, we eliminate energy transfer in the form of work

by using a rigid wall not penetrated by any mechanical device.7 The possibility of

a thermodynamic description is founded on the existence, at least in theory (since

walls are never perfectly adiabatic or rigid!), of walls capable of controlling the

different forms of energy transfer.

An isolated system is a system that cannot exchange energy with its surround-

ings in any form whatsoever: it is isolated from the external world by walls that

are perfectly adiabatic, rigid, impermeable to molecules and shielded electrically

and magnetically.

1.1.3 Work, heat, internal energy

We now develop more quantitatively the concepts defined above. First we need to

make an essential distinction between two different ways of supplying work. To

fix ideas, let us consider work done on a gas by compressing it with the help of a

piston displaced between positions xA and xB (Figure 1.1(a)), the position of the

piston being given by its abscissa x . If at every instant the position of the piston and

F(x), the component of the applied force parallel to Ox , are perfectly controlled,

7 Rigorously speaking, for a mechanical system one also should eliminate energy transfer by other processes
such as electric or magnetic.
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6 Thermostatics

the work WA→B can be calculated by integrating between xA and xB the element

of work d−W

d−W = F(x) dx

WA→B =

xB∫

xA

dx F(x)
(1.3)

While compressing the gas, the external parameter, x , and the force, F(x), are

entirely under the control of the experimenter who performs a quasi-static trans-

formation. This important notion will be defined in general in Section 1.2.2. An

example where work transfer is not quasi-static is studied in Problem 1.7.1. A ver-

tical cylinder containing gas is closed with a piston on which a weight is placed.

When this weight is suddenly removed, the gas expands and the piston reaches

a new equilibrium position after a few oscillations. Neglecting the friction be-

tween the piston and the cylinder, the work supplied to the gas is −Pext�V ,

where Pext is the external pressure and �V the change in volume. This change

in volume was not controlled during the expansion of the gas. Another exam-

ple of non-quasi-static transfer of work is illustrated in Figure 1.1(b). The sys-

tem is isolated from the exterior by an adiabatic wall, but a motor turns vanes

in the fluid, which heats up due to viscosity. The energy supplied in the form of

work can be calculated from the characteristics of the motor.8 These two exam-

ples of non-quasi-static work transfer appear very different but do have a point in

common. In the first example, the final temperature is higher than it would have

been had the change been quasi-static, and, as is the case in the second exam-

ple, viscous forces are responsible for the increase in temperature. The example of

the heated drill bit, given earlier, is another illustration of work done non-quasi-

statically.

We now examine the energy transfer between states of a system. Let A and B

be two possible arbitrary states. The energy of each of these states is, in principle,

a well-defined quantity, for example by Equation (1.2). In thermodynamics, this

is called the internal energy and will be denoted by E . We know that only en-

ergy differences have physical meaning, and that a priori the interesting quantity

is EB − E A. Our goal is to demonstrate that this energy difference is accessible

experimentally. Note that all transferred energies, be they in the form of work or

heat, are algebraic quantities that can be positive or negative.

Taking E A as the reference energy, we will be able to determine EB if it is

possible to go from A to B by supplying the system only with work, positive or

8 A more modern version of this experiment, which dates back to Joule, consists of putting in the fluid a known
resistance across which we apply a known potential difference: the amount of electrical energy ‘transformed
into heat’ is thus known.
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1.1 Thermodynamic equilibrium 7

negative, since this work, furnished by a mechanical device, is measurable. To

determine whether such a transformation is possible, we start from the following

empirical observation. It is possible to go either from state A to state B, or from

state B to state A by a process whose sole effect is to supply work to the system.

However, under this condition, only one of the two transformations is allowed.

We justify this statement as follows. If states A and B have the same volume,

and if EB > E A, a mechanism similar to that in Figure 1.1(b) allows us to go

from A to B, which will be impossible if EB < E A.9 If the volumes of A and B

are different, we can use an adiabatic expansion or compression, A → A′, which

brings the system to the desired volume, VA′ = VB , with an energy E A′ . If E A′ <

EB , work can be done to arrive at the final state with energy EB . To summarize,

we can determine, either EB − E A by a transformation A → B, or E A − EB by a

transformation B → A, by supplying only measurable work to the system.

If the transformation A → B is now performed in an arbitrary manner, in other

words it involves an exchange of both work and heat, we can control the work,

WA→B , which is determined by macroscopic mechanical parameters. The energy

difference, (EB − E A), has previously been determined, and we thus obtain the

amount of heat, Q A→B , supplied in this process

Q A→B = (EB − E A) − WA→B (1.4)

This equation, which simply expresses conservation of energy, constitutes the ‘first

law of thermodynamics’. It is often written in the differential form

d−Q = dE − d−W (1.5)

Unlike the increase in the internal energy, E A→B = EB − E A, the work, WA→B

and the amount of heat, Q A→B , are not determined by the initial and final states:

they depend on the transformation itself.10 This is why, unlike the differential dE ,

the infinitesimal quantities d−Q and d−W are not differentials. We can understand

this intuitively by making an analogy with mechanics. If a force, �F , is such that
�∇ × �F �= 0, the work it does between points A and B

WA→B =

B∫

A

�F · �dl

does not depend only on the points A and B. It also depends on the path taken, and

there is no function whose differential gives the infinitesimal work.

9 Anticipating what is to follow, EB > E A means that the temperature, TB , of B is greater than TA of A: it is
impossible to cool down a volume simply by exchanging work.

10 We cannot, therefore, ascribe to a system a work or heat content. The concepts of heat and work expose two
different forms of energy exchange between two systems: heat and work are ‘energy in transit’.
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8 Thermostatics

1.1.4 Definition of thermal equilibrium

For simplicity, we limit ourselves to the ideal case of a system that is shielded

from electric or magnetic influences, leaving these more complex cases to the ref-

erences. This restriction is not a limitation of the theory, but merely a convenience

to simplify the discussion. Suppose that our system is isolated in a completely arbi-

trary initial state, for example with a spatially dependent density. Experience tells

us that if we wait long enough, the system will evolve to an equilibrium state, that

is a state which depends neither on time nor on the past history of the system. The

equilibrium state is entirely characterized by macroscopic variables and external

parameters describing the system: the volume, V , the energy, E , and the numbers,

N (1), . . . , N (r), of molecules of type 1, . . . , r .

The time that characterizes the approach to equilibrium is called the relaxation

time. Relaxation times can be as short as a few microseconds, and as long as sev-

eral millennia. It is, therefore, not obvious in practice to decide whether or not we

have attained an equilibrium state. In numerous cases, we only reach a state of

metastable equilibrium whose average lifetime can be extremely long. Such a state

only appears to be independent of time, and in fact also depends on its past history.

A very familiar example is hysteresis: if we magnetize an initially unmagnetized

sample of magnetic material by applying a magnetic field, the magnetization does

not disappear when the field is removed. The evolution of the magnetization, M , as

a function of the applied magnetic field, B, describes a hysteresis cycle as shown in

Figure 1.2. On this figure, the dashed line represents the case where the initial mag-

netization is zero. The magnetic state, therefore, depends on its past history even

though we have obtained a magnet that is apparently in a stable state. However, we

may, for example, reach a state whose magnetization is opposite to the magnetic

B

M

Figure 1.2 Hysteresis cycle for a magnetic system in an external field.
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1.2 Postulate of maximum entropy 9

field, a state that is clearly metastable. Another common case is the existence of a

variety of metastable crystals: for example, graphite is the stable crystalline form

of carbon under standard conditions of pressure and temperature, and diamond

is metastable. There are many other examples: glasses, alloys, memory materials,

etc. In such cases, if we mistakenly assume that the system is at equilibrium, we

may arrive at conclusions that contradict experiment.

While keeping in mind the difficulty related to extremely long relaxation times,

we take as our first postulate the existence of equilibrium states: an isolated system

will attain, after sufficiently long time, an equilibrium state that is independent of

its past history and characterized by its own intrinsic properties such as volume

V , energy E and numbers N (i), of molecules of different types. In what follows,

we shall often limit ourselves to a single type of molecule, N in number, and to

homogeneous equilibrium states whose properties, for example the density, are

uniform. The quantities E , V , and N are said to be extensive: if we merge into one

system two identical subsystems at equilibrium, the energy, volume and number

of molecules are doubled.

1.2 Postulate of maximum entropy

1.2.1 Internal constraints

As we have emphasized in the introduction, our presentation of thermodynamics

postulates the existence of an entropy function. To define it correctly, it is necessary

to introduce the notion of internal constraint, of which we shall give a simple

example. Consider an isolated system that we have divided in two subsystems

(1) and (2), separated by a piston (Figure 1.3). As always, we assume that the

contributions of the walls (or the piston) to the energy, E , to the volume, V , and

to the total number of molecules, N , are negligible since they arise from surface

effects. Consequently, E , V , and N represent the sums of energies, volumes and

E1, V1, N1 E2, V2, N2

Figure 1.3 An isolated system which is divided into two ‘subsystems’.
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10 Thermostatics

numbers of particles in the two subsystems

E = E1 + E2 V = V1 + V2 N = N1 + N2 (1.6)

The piston creates the following internal constraints:

• If it is fixed, it creates a constraint in preventing the free flow of energy from one sub-

system to the other in the form of work.

• If it is adiabatic, it creates a constraint in preventing the free flow of energy from one

subsystem to the other in the form of heat.

• If it is impermeable to molecules, it creates a constraint in preventing the flow of

molecules from one subsystem to the other.

We lift a constraint by rendering the piston mobile, diathermic or permeable. We

can, of course, lift more than one constraint at a time.

Let us start with the following initial situation: the piston is fixed, adiabatic,

impermeable, and both subsystems are separately at equilibrium. We lift one (or

several) of the constraints and we await the establishment of a new equilibrium

state. We can then pose the following question: what can we say about this new

equilibrium state? We shall see that the answer to this fundamental question is

given by the principle of maximum entropy.

1.2.2 Principle of maximum entropy

We make the following postulates, which are equivalent to the usual statement of

the ‘second law of thermodynamics’:

(i) For any system at equilibrium, there exists a positive differentiable entropy function

S(E, V, N (1), . . . , N (r)).11 As a general rule, this function is an increasing function

of E for fixed V and N (i).12

(ii) For a system made of M subsystems, S is additive, or extensive: the total entropy Stot

is the sum of the entropies of the subsystems,

Stot =
M∑

m=1

S(Em, Vm, N (1)
m , . . . , N (r)

m ) (1.7)

(iii) Suppose the global isolated system is initially divided by internal constraints into

subsystems that are separately at equilibrium: if we lift one (or more) constraint, the

final entropy, after the re-establishment of equilibrium must be greater than or equal

to the initial entropy. The new values of (Em, Vm, N
(i)
m ) are such that the entropy

can only increase or stay unchanged. In summary: the entropy of an isolated system

cannot decrease.

11 The reader will remark that S is, at the same time, a function of an external parameter V , and macroscopic
variables E and N .

12 See Problem 3.8.2 for an exception.
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