BUSINESS SERVICES
ORCHESTRATION

THE HYPERTIER OF
INFORMATION TECHNOLOGY

WaQAR SADIQ

Electronic Data Systems

FELIX RAccA

Fuego Inc.

CAMBRIDGE
&% UNIVERSITY PRESS

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcon 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org
© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typefaces Berkeley Oldstyle 10.75/13 pt and Franklin Gothic System BTEX 2¢ [18]
A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data
Sadiq, Wagqar.

Business services orchestration : the hypertier of information technology / Waqar
Sadiq, Felix Racca.

p. cm.
Includes bibliographical references and index.
ISBN 0-521-81981-4

1. Business — Computer network resources. 2. Business information services. 1. Racca,
Felix, 1955- 1L Title.

HF54.56 .523 2002
658.4038 — dc21 2002074198

ISBN 0 521 81981 4 hardback

Contents

Foreword page Xi

Acknowledgments Xvi

Introduction Xvii

Chapter 1

A Holistic View of Enterprise Systems 1
1.1 Introduction 1
1.2 Business Services 13
1.3 Motivating Drivers 21
1.4 Future of BSO and Digital Technology 29

Chapter 2

Process of Orchestration 34
2.1 Introduction 34
2.2 Orchestration as a Paradigm 39
2.3 Impact of Orchestration on IT Disciplines 52
2.4 TImpact of Orchestration on Business 59

Chapter 3

The Hypertier of Information Technology 61
3.1 Introduction 61
3.2 Requirements 65

vii

viii

33
3.4
35

BSO Reference Model
Recursive Composibility
Trading-Partner Networks

Chapter 4

BSO Methodology: Orchestrating and Interpreting

for Success

4.1
4.2
43
4.4
4.5
4.6
4.7

Introduction

Phase 0: Plan Priorities
Phase 1: Plan a Project
Phase 2: Analyze and Design
Phase 3: Implement

Phase 4: Manage Change
Summary

Chapter 5
Basic Applications and Data Services

5.1
5.2
53
5.4
5.5
5.6

Introduction

Application Development Platforms
Programming Languages

Business Services Related

Bridges to Legacy Applications
Summary

Chapter 6
Business Services Aggregation

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Introduction

Modes of Communication

Modes of Sharing Data

Adapters and Transformation Facilities
Integration Brokers

Web Services

Integration Brokers Versus Web Services
Intelligent Business Objects (IBOs)

Contents

69
86
86

20

90
101
113
123
158
176
178

180

180
181
220
234
246
250

252

252
253
258
201
264
264
278
279

Contents

Chapter 7
Metadata and Service Discovery

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Introduction

Metadata Architecture

Discovery

Evolution of Metadata Facilities
Business Registry

Client-Side APIs

A Suitable Metadata Registry for BSO

Chapter 8
Business Services Orchestration Language (BSOL)

8.1
8.2
8.3
8.4
8.5
8.6

Introduction
Fundamental Concepts
Advanced Features
Predefined Signals
Workflow

Summary

Chapter 9
Integrating Human Services

9.1
9.2
9.3
9.4

Index

Introduction

The “Partiture” or Work Portal

Work Portal Extensions or Presentation Components
IXOs

287

287
289
295
298
303
309
314

317

317
319
335
344
345
346

348

348
351
356
358

369

A Holistic View of
Enterprise Systems

1.1 INTRODUCTION

The first part of this introduction is for the Kirks, Spocks, McCoys, and Scottys.
As it gets more technical, the Kirks may want to skip directly to Section 1.3, from
which point the content is more business oriented.

To Orchestrate is to organize the harmony and tempo of various instruments
into a single impressive musical delivery, such as in Strauss’s Blue Danube waltz.
If the result is anything but impressive, the orchestration is not worthy of such a
name. An Orchestrator differs from an Architectin that the latter designs something
static, such as a house, a bridge, or a landscape, that is, something that doesn’t
vary in time. The Architect designs only the deliverable, not the process used to
deliver it. An Orchestrator designs a delivery of music rendered in time, in the
harmony and tempo needed to achieve a desired effect.

Orchestration is nothing but a modern metaphor that describes a well-known,
but not very well understood, discipline: the automation of business process man-
agement. Traditionally, business processes were managed by people. Managers
drove the steps that employees — with or without instruments or tools — needed
to complete or fulfill a business process. This is analogous to an orchestration
being managed by a maestro by keeping tempo, cueing in the different players,
managing the intensity of what is being played, and conveying a style to the
performance.

2 A HOLISTIC VIEW OF ENTERPRISE SYSTEMS

The same way MIDI tools manage the automation of musical execution,
Business Services Orchestration (BSO) tools manage the automatic execution of
business services to fulfill an enterprisewide or interenterprise business process.

The problem with this conceptis that, since the advent of the computer era, there
have been many waves of automation, all of which could be confused with BSO. The
key to understanding the difference between BSO and other types of automation is
precisely that BSO automates those cumbersome, iterative, and mechanical things
that management was forced to do to run a business, not the highly specialized
functions of any specific discipline such as accounting, engineering, law, sales, or
procurement. Examples of these generic tasks include prompting people to do their
specialized work; prompting systems to do their specialized work; measuring what
people and systems do; interpreting, translating, and routing information; time
management; resource allocation; and many others. These activities don’t require
creativity, specialization, or great amounts of intelligence — just a huge amount of
attention to detail, patience, and a preestablished plan that rules the execution.

At this point, the technical reader will say: “That’s nothing new, thats work
flow!” But it isn’t. Or at least it isn’t work flow as it has been understood by indus-
try analysts and by software providers to date. There has been close to unanimity
of opinion in the technical community that work flow (and its more modern
successor, business process management [BPM]) are a feature set of enterprise ap-
plications (departmental work flow) or a feature set of integration suites (BPM), or
in the most generic case, a document management facility. Most industry analysts
believe that there is no chance for an overarching orchestration strategy — one that
automates the management of processes across people, applications, departments,
divisions, and enterprises — to succeed as a product category.

It is the belief of the authors that this type of solution that is specialized in being
generic, automating generic recurring tasks and automating the management of
services from inside and outside an organization, is precisely what is needed to fix
the problems of the modern enterprise. What are these problems?

* Geographic dispersion makes it difficult to coordinate work.

* Language, time zones, and cultures need to be managed.

* Platforms, computer languages, runtime environments, and disparate, special-
ized applications need to be made to work the way the business requires them
to work.

* Time that could be put to better use is spent by people interpreting data from
one application and putting it into another.

* Activities that are recurrent and mechanical are still being performed by people.

The list could go on, but let’s get to the most important problem of them all:
Although most companies have plans, these plans are at a high level and do not consti-
tute actionable plans that are understood and agreed upon by all of the management

1.1 Introduction 3

team as well as those who will execute or supervise the work required by them. There-
fore, companies have trouble understanding and communicating, at a detailed level,
which services from specialized people and systems they really need in order to succeed
in their objectives.

These actionable plans can be called company execution contracts. They are
understood by everybody involved and they rule that involvement. What generic
language is there to express these contracts or actionable plans?

The best language invented to date is the graphical representation of process
models that explain what people, systems, and other organizations need to do for
the business to fulfill its objectives. Process models are to business people and
workers as librettos are to the maestro and the musicians.

Now, let’s suppose that we can feed those process models exactly as they have
been designed and understood to a software engine and this engine prompts people
to do their job, presents them with interfaces that are adequate, receives commu-
nication from people as they complete tasks, invokes functions in underlying
applications, uses the return arguments as data for function invocations in other
applications or to present new data to people, manages due dates, presets times to
launch work from people or systems, and creates information on everything that
was done, by who, how long it took, what tools were used, etc.

What we have just described is a business services orchestration engine (BSOE).
The key here to distinguish BSO from prior technologies is that the process models
thatare executed by the BSOE need to be exactly what the management team agreed
upon. The process models deal with generic management and supervisory issues.
Activities undertaken by specialized people, systems, or organizations are business
services that the BSOE invokes, coordinates, manages, and measures according to
the process models it has been fed.

Therefore, we can say that we are in the presence of a BSO project only when:

* Management agrees among themselves and with appropriate workers on ac-
tionable plans across departmental silos and partner companies.

* These plans are represented as process models.

* These same process models can be fed into a BSOE that automates their man-
agement and execution.

* These same process models constitute the contract between senior management,
supervisors, workers, and information technology (IT) staff on the scope of what
services people and systems need to provide the business.

We are in the presence of BSO tools only when:
* Thereisaprocessdesigner thatallows the graphical creation of orchestrations by

management-level users, and a capability to automatically generate connectors
to applications and presentations for human participants by IT-level users.

4 A HOLISTIC VIEW OF ENTERPRISE SYSTEMS

* The orchestrations are the implementation framework for everything that IT
has to do thereon.

* The exact orchestrations that were designed are what runs in the BSOE.

* The orchestrations can be changed without modifying IT infrastructure or hav-
ing to retrain users.

* The BSOE creates process execution information that is easily exploited by
management to continuously improve the processes.

As can be seen, this is clearly a top-down approach toward automating cross-
enterprise processes. Traditionally, we have taken a bottom-up approach: we have
created specialized automations that do sophisticated calculations and organiza-
tions of data. We have attacked the problem correctly; we have solved the greater
pains first. However, in today’s world the greater pain has become that these spe-
cialized systems don’t work together, nor are they coordinated with work from
employees and business partners.

We dedicate the rest of the introduction to a more technical overview of what
has been done to date to support businesses through IT.

Lets investigate what companies have done in the past to orchestrate their
business functions using IT. Initially, companies developed internal software to
facilitate the work of specific working groups. IBM’s business machines provided
specific language compilers for different types of applications. Programmers spe-
cialized in languages. For example, there were COBOL programmers, dedicated
initially to creating administrative applications, and FORTRAN programmers ded-
icated initially to creating engineering applications. As time went by, programmers
started creating applications for Human Resources, Manufacturing, Logistics, Cost
Analysis, Procurement, Delivery, and many other functional areas of the enterprise.

Initially, these systems were built in-house. IBM and others were marketing a
“General Purpose Machine” capable of running virtually any program, and they
trained their customers to build internally developed programs that accelerated
business functions.

As programmers left those companies, the programs they created became un-
manageable black boxes that were difficult to use and costly to update. In response,
anew generation of software vendors introduced department-specific applications
that were supported by cost-effective maintenance contracts. Those initial software
vendors were domain experts in one or more functional silos, and they special-
ized in systems that helped the workers in those specific silos to improve their
work.

Companies soon realized that they needed to share work with other depart-
ments, and that this sharing required that transactions or reports be sent between
various departmental systems. Some smart software vendors started to sell “inte-
grated modules” that would later be known as enterprise resource planning (ERP)

1.1 Introduction 5

suites. ERP was described as the end-all, cover-all, integrated system that would
allow companies to conduct business with a minimum of paperwork. The rationale
was that by running everything under one system and one database, the company
would have access to all the functionality and information it could ever need.

That sounded great, but new times bring new challenges and, as companies
realized a growing need to manage their supply chains and customer relation-
ships, supply chain management (SCM) and customer relationship management
(CRM) software entered the marketplace. Those systems ran on their own database
structures, which had nothing to do with either the ERP or with the customer or
supplier databases. The dream of a common, centralized database had been seri-
ously compromised.

Not having been designed as a part of ERP, these new SCM and CRM applica-
tions, by nature, have data that are redundant between them and with ERP, and
have overlapping processes (i.e., purchase order data and the order fulfillment
process). When companies do business in different markets, they usually have at
least one or two systems that are not included in any of the “integrated suites.”
For example, telecommunications firms use billing and OSS systems, insurance
companies use policy and claims management, and financial services need case
management and branch office automation software.

So, the modern enterprise has deployed ERP, CRM, SCM, and two or more
industry-specific applications, their Intranet, Extranet, Internet servers, and con-
tent, plus e-mail, plus personal productivity and collaboration tools. This is the
scenario in today’s market. What do all of these applications have in common?
They were built to provide functionality to the intended user according to the
user’s perception of what is needed to do his/her job. People within the compa-
nies that use them are in charge of taking these fragmented processes and data
representations and producing a real (as opposed to virtual) business process that
satisfies their customers.

It's no wonder that, having all of these islands of integrated software, companies
are struggling to integrate their business.

The simple truth is that some employees spend a tremendous amount of time
swivel chairing from one application to another trying to maintain their data in
synchronization. It’s easy to see that this is a very cumbersome and error-prone
task. Therefore, at first blush, it would seem that companies want to integrate
applications to eliminate the swivel-chair operators. However, that improvement
alone will not convince management to buy a multimillion-dollar license for inte-
gration software, and spend five to seven times that in professional services. No.
There must be another reason.

In our experience, the reason companies integrate applications is to improve the
performance of their critical processes so that they can better serve their customers
and/or be more efficient.

6 A HOLISTIC VIEW OF ENTERPRISE SYSTEMS

They wish to do this in a way that will produce measurable returns on their
investment, if possible within the budgetary year. The challenge is made greater be-
cause various parts of these critical processes are embedded and redundant in their
CRM, SCM, and ERP applications, industry-specific suites, Web applications, per-
sonal productivity and collaboration tools, and the capacities of their employees.
Also, in a virtual enterprise, many of these critical processes are done by employees
or partners outside the four walls of the company. Still, companies have to manage
the overlaps, redundancies, inconsistencies, and white spaces among and between
those many applications, people, and organizations.

In synthesis, the problems that businesses need to solve are:

* to tightly connect business execution with business strategy and objectives;

* to ensure the constant reliability of execution by orchestrating the behavior of
people, systems, and business partners;

* to do this without disrupting the business’s culture or preferences in terms of
organization and infrastructure; and

* to avoid impairing the business’s ability to change at the rhythm of market
requirements, competitor capabilities, and internal or external innovation.

Without any doubt, it’s a tall order.

The industry’s initial approach to knitting these processes together (orchestrat-
ing their business services from applications) was to create a program that took
data from one application and automatically put it into another. This approach got
old very soon, primarily because of the enormous number of interface programs
needed to make it work.

As an example, let’s say that a company has the following applications: General
Ledger, Accounts Receivable, Accounts Payable, Human Resources and Payroll,
Manufacturing, Procurement, Inventory Management, and Billing. The initial rea-
soning was, “Let’s make an interface program between each of the modules in each
direction.” So point-to-point interfaces were developed between General Ledger
and the remaining seven modules, and then between the Accounts Payable and
the remaining modules, and so on. When we were one-tenth of the way through
this approach, we realized that we would have to build 8 x 7 = 56 interface mod-
ules. However, the problem didn’t end there! These applications started having
different versions, and so, each new version of each module implied fourteen new
interfaces (seven incoming and seven outgoing).

It got ugly in a hurry. When industry analysts started calling it the “spaghetti
interfaces” approach, we knew we needed a better way.

That new approach emerged in the late nineties when the pioneers of today’s
enterprise application integration (EAI) suites found a way to avoid creating an
almost geometric number of interface programs. There are two common EAI

1.1 Introduction 7

approaches, Hub-and-Spoke and Messaging Bus, but they are based on the same
basic concept that applications are connected to a single broker instead of among
themselves. In this way, instead of having fifty-six interface programs to maintain
as described in the example above, we would only need to create eight adapters
or connectors to the broker; one for each application. Under this approach when
a new version appeared, only a single new connector would be necessary.

The rationale was impeccable, but something went wrong. In early 2000, we
started hearing the same analysts questioning this new approach that they had
contributed to popularizing. “We went from spaghetti interfaces to spaghetti EAL,”
many observed.

Shortly thereafter, the big Internet economy bubble, already wobbling, burst
completely. The “dot com” revolution had, in many cases, been unable to either
create a viable revenue model or implement the adequate orchestration of their
internal services to fulfill the model.

These problems were already obvious when we started to complicate things
further by trying to create transparent marketplaces through business-to-
business (B2B) exchanges that stressed the hub-and-spoke paradigm to the utmost.
In B2C the spokes were implemented as Web sites and the only orchestration nec-
essary was between the Web application and the back-end applications and people.
In B2B, each spoke needed its own orchestration.

Besides, we soon discovered that companies wanted to continue to do business
their own way and were less than eager to relinquish their existing models for
a more perfect marketplace. The reason for failure becomes obvious when we
consider the cost of integrating companies into exchanges, an average of about
half a million dollars and requiring four months of effort. Although the business
reasons for the failure of B2B exchanges are clear, we can’t help thinking that the
technological approach and its limitations played an important role in accelerating
their demise.

We believe that the e-business revolution has just started. BSO will be a major
advancement in making this revolution viable. It will provide an approach and
tools that, although building on previous ideas and technologies, will greatly di-
minish the risk of e-business by improving the time-to-market of solutions and
providing the flexibility needed for their continuous improvement. The causes of
our present predicament are many and varied but, on the technical side, the rigidity
of integration solutions is probably one of the most important. For some reason,
early on, work flow and integration were divorced. BSO sustains that they are one
and the same thing, and that services from people and services from applications
need to be regarded under the same light as process activities.

One of the main causes of inflexibility is that the messaging approach did not
completely replace the point-to-point integration programs as we thought it would.
Although the point-to-point integration programs were many, they were programs,

8 A HOLISTIC VIEW OF ENTERPRISE SYSTEMS

not connectors or adapters. What's the difference? The fundamental objectives of
a connector or adapter are:

1. Take standard data from the broker, transform it so that the target application
can understand it, and then call a procedure in the target application using the
transformed data.

2. Take the output parameters from an invoked procedure, transform them into
broker standard constructs, and then hand the result to the broker.

In contrast, the objective of a point-to-point interface program is much broader:
To do anything and everything necessary to make application A work seamlessly
with application B for a given transaction or set of transactions. The interface
program might apply rules, manage exceptions, and drive the process of knitting
together the two applications. Adapters or connectors simply cannot do this. The
problem with an interface program is that it is tightly coupled and point to point.
This makes the program difficult to change and requires a quadratic number of
interfaces to be built as the number of applications grows, doesn't it?

Not necessarily. The quadratic multiplication of interface programs depends on
the layer of abstraction in which the program is built. Initially, they were built as
peer programs to the two applications that were being integrated. The issue was in
the point-to-point nature of the interface programs, not in the fact that they lacked
a central means of connectivity. The inflexibility of those programs had more to
do with the fact that they were developed in programming languages rather than
generated from process models that could be graphically constructed and changed
on-the-fly as needed, and that they were designed as interfaces, not as overarching
processes.

We should recall that the EAI approach was initially limited to passing data
from one application to another, assuming that the content of those data and the
queue in which they were published would suffice for the adapter to invoke all
adequate procedures in the target application. For this to be true, two conditions
would have to be met:

1. An adapter or connector to an application would have to connect to all methods
of an application programmer interface (API), and that API would need to be
exhaustively complete for whatever the external world might want from the
application.

2. There could be no mismatch between what one application provided and what
all others required from it.

When the difficulty of meeting these conditions became apparent, EAI vendors
started adding a logic layer inside the brokers. They called it process logic. It should
be called event-handling logic, and for a very simple reason: Most EAI vendors

1.1 Introduction 9

built this supplementary logic tier as a set of rules that reacted to the appearance
of certain events on the bus. Therefore, it was logic driven by events, which is the
opposite of activities driven by logic (which we consider to be the definition of
process).

Although it is also true that a decade before the EAI vendors came up with
the idea of integration brokers, work-flow vendors had pioneered the approach
of integrating applications inside process definitions, the ability to interact with
underlying applications was very poor at that time. The first work-flow products
concentrated mainly on routing documents among people, applying process rules
to manage the behavior of the document flow, and people activities. BSO sees
applications as if they were service providers analogous to people. In today’s world,
there are already technologies and technology bridges that allow the process to
manage the behavior of underlying applications as well as the behavior of people.

As customers realized that the passive-state engine logic as provided by EAI
vendors was not enough, systems integrators ended up building auxiliary inter-
face programs that connected to the bus and supplemented the lack of active logic,
or they started putting this logic within the connectors or adapters. These adden-
dums seriously compromised the maintainability and flexibility of the resulting
constructs.

If the main reason for integrating those applications is to improve the perfor-
mance of a company’s processes, we should ask ourselves: Does it make sense to
focus on connecting applications? Or does it make more sense to focus on au-
tomating a company’s processes as the work-flow vendors did originally? What
did we really achieve by trying to make these applications send electronic mes-
sages to one another? Haven't the results of this approach been highly redundant,
overlapping, inconsistent, and clunky processes that are usually worse than the
one driven by swivel-chair users or interface applications, and haven’t we ended
up building auxiliary interface programs anyway? Haven't we ended up distribut-
ing the logic and centralizing the technology, creating a maintenance nightmare,
a single point of failure, and a scalability problem?

This critique implies that a partial approach (just throwing messages over appli-
cation walls into a bus) is insufficient to drive and improve company performance.
Even if it were possible to eventually make the EAI approach work by supplement-
ing the magical event-driven scenario with the interface process logic that we were
trying to eliminate, the effort necessary for event-enabling applications to be able
to integrate them takes too long, costs too much, and is exponentially more dif-
ficult to maintain as the number of integrated applications grow. We have traded
exponential point-to-point interfaces for an exponential maintenance nightmare.

What the industry needs today is a holistic and self-propelled approach.

The holistic approach starts by focusing on all of a company’s generic customer-
facing and interdepartmental processes instead of only the company’s specialized
user-facing applications. These customer-facing and interdepartmental processes

10 A HOLISTIC VIEW OF ENTERPRISE SYSTEMS

are, by nature, cross-function, cross-division and cross-ecosystem. We call the
approach holistic precisely because it starts by analyzing the complete end-to-
end services to be delivered, rather than looking at the individual functions from
specific applications. The holistic approach recognizes applications, people, and
organizations as containers of a wealth of services that can be orchestrated into new,
internal or external customer-facing services. This is done through the execution
of a process model that automates the iterative and routine tasks that people have
to perform to make sense out of disparate processes and data representations in
their fragmented application base. It is an approach in which the orchestration
engine acts as a hub that runs flexible process models. These process models
invoke fragmented services from people and systems, through any technology, and
apply business rules to them, transforming them into new and improved business
services. This approach does not aggregate applications through one proprietary
means of connectivity. Rather, it orchestrates services through process logic applied
to existing services and exposed through any means of connectivity.

BSO is this holistic approach. BSO is not only a product or a product category.
It is also an approach toward business integration that requires certain types of
tools and technologies that respond to a specific architecture. We discuss this
architecture in Chapter 3, and describe the approach by using a methodology
framework in Chapter 4.

At its highest level, the BSO approach consists of seven steps for continuous
improvement. Those are:

1. Identify and prioritize the critical services needed for company success.

. Discover how the company fulfills these services (model the “as-is” processes).

3. Define the improvement objectives in terms of process metrics (cycle time,
quality, volume, cost, etc.).

4. Modify the as-is process to try to meet those objectives by modeling the should-
be process and determining the services it needs to invoke from the business
ecosystem.

5. Identify any existing and useful services that can be provided by people, appli-
cations, or third parties.

6. Harmonize these services so they can be consumed by the should-be process.

7. Implement the process and put it into production. Monitor metrics. Return to
step 3 and repeat as necessary.

N

For those who appreciate business process reengineering (BPR), this approach
no doubt sounds very familiar. BSO derives a good part of its high-level method-
ology and approach from BPR, but the objectives and end results are different.

The primary objective of BPR is to help a company discover and streamline
(reengineer) its internal processes. The results of a good BPR project are a number

1.1 Introduction 11

Current Approaches BSO

App 3

Ss—
Proprietary ‘
Message

< Process Logic

7Y 7\ 7\
CORBA, COM, EJB, WSDL, XML, SQL, etc.

J \J \J

App 1 App 2 App 3

\i Http, XML, SOAP, WSDL |
/ \
Bus

Connector Connector

Ficure 1.1. Current Messaging-Centric Approaches Versus the BSO Approach.

of documents that specify a complete set of internal processes and policies. It’s
the company’s responsibility to train its employees in those procedures, and the
implementation of the process logic in the company’s systems is done, if at all,
through the trained employees. There is no way to enforce BPR processes on
third-party organizations.

The objective of BSO is to use existing internal or external services (automated
ornot) to create a new automated service for any internal or external customer. The
result of an orchestration project is a computer-driven process that uses services
from people, computer applications, and other organizations to deliver a product
or service. BSOs are process models and rules that, rather than being subject to
human interpretation and execution, are executed by a computer. This execution
is consistent, metrics driven, and easily adaptable to changing business conditions.

Orchestration is a departure from BPR because its goal is to create a computer-
driven service. BSO needs the abilities found in traditional work-flow systems
intermingled with the capabilities of traditional EAI and business-to-business
integration (B2Bi) systems, but the BSO approach differs significantly from the
traditional EAI approach because it focuses on creating processes that drive the
execution of services, instead of creating adapters that listen to and create events
on a centralized messaging bus.

Figure 1.1 compares current messaging-centric approaches with the BSO ap-
proach. We notice the following from this comparison:

* BSO focuses on improving company performance by orchestrating the corre-
sponding services, more like work-flow solutions would approach the problem.

12 A HOLISTIC VIEW OF ENTERPRISE SYSTEMS

Data sources, employees, applications, and external systems alike are seen
as containers of business services to be used as needed by the orchestration
intelligence.

There is no distinction among EAI, B2Bi, and B2C. Under the BSO approach,
companies build and use services — internal or external, human or automated,
standard or nonstandard and from any technology — to improve enterprise
performance.

For orchestration to be possible, BSO technologies must provide a capability
that we will call harmonization, which we address at length later in this book.
In essence, harmonization provides the ability of an orchestration to work with
services from any type or origin.

Like work-flows, orchestrations are self-propelled; it is the orchestration en-
gine that invokes business services from people, applications, and organizations
and not the other way around; this allows processes to run independently of the
implementation of the underlying services.

* BSO uses the process logic as the hub that drives the integration of people,
applications, and organizations, therefore allowing this process logic and these
services to be shared. This is in contrast to the EAI approach, which only
shares data among application systems. Also, in contrast to the point-to-point
interfaces that are peers with two applications instead of a layer of logic on top
of many, it is in perfect agreement with the work-flow approach.

BSO is, in many ways, the opposite of current approaches, and herein lies the
difficulty that people have in understanding it. It’s a logical view, not a physical
one. In this chapter, we want to make sure that we leave you an image that you
can refer to as we get into more detail and the trees start hiding the forest.

Imagine a hub and its spokes. In the current approaches, the hub is in charge
of connectivity through one technology and the spokes are in charge of process
(applications), which in turn interact with people. People do not interact directly
with the hub. In BSO the hub is in charge of executing process models and the
spokes are in charge of connectivity through any technology to services from people,
systems, or other process hubs. The orchestration engine in Figure 1.1 is clearly a
generic connector across many technologies.

The fundamental difference between BSO and the traditional EAI approaches is
that the traditional EAI approaches are technology centric. This is sort of a loaded
claim because in IT, everything could be perceived as a technology. EAI, however,
relies on proprietary technologies to build adapters and connectors to applications.
This requires an IT department to make key strategic decisions on an integration
platform. This is so because the adapters and connectors to the applications being
integrated are proprietary. The BSO approach that we have talked about so far,

1.2 Business Services 13

and will continue to dive into, is IT-strategy independent because it relies on the
process of harmonization across one or multiple strategies. As long as the services
that are being integrated have been harmonized by creating metadata about them
and populating standards’ registries, they can be easily orchestrated. One might
argue that you need technology to express metadata and discover services. That
is true, but with standards-based technologies, such as Web Services Definition
Language (WSDL) and UDDI, that can be used to describe metadata and discover it;
and with synthesis tools that can discover metadata in already-existing component
repositories such as CORBA, COM, Java, EJB containers, and others, orchestration
becomes a logical configuration rather than a physical one.

Figure 1.1 should reinforce the concept of BSO as a holistic, logical approach
toward orchestrating services from any origin through any enabling technology,
which is, among other important things, the clear remedy to “spaghetti EAL”

1.2 BUSINESS SERVICES

Let’s define what we mean by business services. Activities such as catering, trans-
portation, and legal and financial work are classic examples of business services.
However, for the purposes of discussing orchestrations, our definition of business
services is broader.

At a high level, a business service is anything a company does to fulfill a re-
quest from an internal or external customer. This may include actions a company
employee takes on behalf of an internal or external customer, a task a company
system performs for an internal or external customer, or virtually any combination
of the above. One characteristic of any business service is that the customer has the
power to request it or not. Unsolicited activities are not considered to be business
services. Those unasked-for actions are more properly called business waste or
business noise.

To be usable by an orchestration engine, a business service must expose an
interface that makes it accessible for invocation by a computer program. So, a more
complete definition would be:

A business service is what a company does to fulfill to a programmatic request from
an internal or external customer.

You might ask, “Are Web services business services?” The answer is yes because
Web services provide a simple programmatic interface implemented on standard
Web protocols and are addressable by a URL. Web services are the ultimate way to
externalize business services on the internet. However, not all business services are
Web services. There are business services that need not be exposed as Web services,
such as database queries, the invocation of an API from an ERP system, or human
services driven by the invocation of a graphical user interface. In this scenario it is

14 A HOLISTIC VIEW OF ENTERPRISE SYSTEMS

illogical to try to make any technology, including Web services, the centerpiece of
an orchestration. The centerpiece of any orchestration should be the orchestration
itself. The services are the instruments that are being orchestrated into a whole.
Therefore, as we said earlier, in BSO the hubs of multiple EAI approaches become
the spokes, and the spokes with their integration logic become the hub.

For a more complete understanding of the new paradigm, and to provide vocab-
ulary that we will be using throughout the book, let us classify business services
according to the following categories: complexity, source, and enabling technology.

1.2.1 Classification by Complexity

What a customer sees of a business service, as we explained previously, is the ser-
vice’s programmatic interface. So, from the customer perspective, the complexity
of a service is nothing more than the complexity of its interface. There are three
basic levels of complexity in interfaces: discrete, composite, and orchestrated.

1.2.1.1 Discrete Services

These are services that present a discrete interface. This means that a single interac-
tion with the interface completes the service, and this interaction is, to all intents
and purposes, executed as a whole without parts. This is the case for services
that consist of posting a message, listening for an event, or for some API services
that return arguments. Examples include services that allow posting of an e-mail,
returning of the temperature in a turbine, posting a message to a Pub/Sub bus,
presenting a graphical interface to a user, geting a purchase order from a back-end
system, etc. Discrete services can be synchronous or asynchronous.

1.2.1.2 Composite Services
These are services that require more than one interaction to be completed, and
therefore consist of multiple parts. For example, some APIs that allow the customer
program to query data in a back-end system return a reference to a record set. To
get useful data, the program that invoked the initial service must also invoke a
new service such as “get next record” from the record set. When programmatically
querying a relational database, there are services such as open cursor and get next
cursor that allow the calling program to read a set of selected records. In the same
way, there may be human services that require a series of interactions to be com-
pleted, for example, a negotiation, where the customer solicits an offer and man
makes counteroffers until an agreement is reached. From a technical perspective,
composite services can usually be decomposed into their parts and their parts
considered as discrete services. However, from a BSO perspective, it is important
to try to abstract them into a discrete service that offers a single interaction.
From a business perspective, services must have a granularity that makes busi-
ness sense, not technical sense. This is why any orchestration must accept, natively,

1.2 Business Services 15

composite services from people or applications as well as other appropriate dis-
crete services, and compose them into a new discrete business-level service or,
as we will see later, an orchestrated service. If this activity is done simply from
an aggregation perspective without any orchestration, we can call it composition.
These compositions also present either a synchronous or asynchronous interface.
Composition is done by creating intelligent business objects (IBOs) that abstract
the complexities of one or more composite or discrete business services into an
object that offers discrete services. We call them intelligent, not because they
are inference engines, but because they “know” how to integrate with the native
services from applications or people, making the implementation transparent to
the process that uses them. Therefore, the process relies on IBOs to do the right
things from the implementation perspective. From the academic perspective, it
might be more appropriate to refer to them as “abstract business objects.” We will
talk more about composition in Chapter 3 and throughout the rest of the book.

1.2.1.3 Orchestrated Services

Certain services present the customer with a complex interface that requires a
series of predefined, timed interactions controlled by a business-level protocol.
We call these higher-level services orchestrated services. As an example, consider
an order fulfillment service requiring the following interactions: Send the PO,
wait for proposed delivery dates, accept or reject delivery dates, wait for bill of
materials, notify when delivery is complete, wait for invoice. This is what we call
multisynchronous interaction, meaning that it is composed of a sequence of syn-
chronous or asynchronous interactions spread out in time, and always following a
predefined protocol. The service that implements the above interface is by neces-
sity an orchestrated service. Orchestrated services are essential when attempting
to synchronize two business processes. There is no easier and more secure way of
implementing orchestrated services than BSO.

1.2.2 Classification by Source

A fundamental step toward understanding the BSO paradigm is the ability to see
people, systems, and organizations as sources of services or as “service providers.”
Therefore, it may be helpful to classify services according to these three primary
sources.

1.2.2.1 Services from People

This category consists of actions taken by individual people for internal or ex-
ternal customers. These services can be invoked by computer programs, and can
range from tightening a screw on an assembly line to handcrafting a piece of
art or approving a multimillion-dollar contract. There are certain attributes that
distinguish business services from other activities that people do.

