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1

Dynamic Modeling with Difference Equations

Whether we investigate the growth and interactions of an entire population,
the evolution of DNA sequences, the inheritance of traits, or the spread of
disease, biological systems are marked by change and adaptation. Even when
they appear to be constant and stable, it is often the result of a balance of
tendencies pushing the systems in different directions. A large number of
interactions and competing tendencies can make it difficult to see the full
picture at once.

How can we understand systems as complicated as those arising in the bio-
logical sciences? How can we test whether our supposed understanding of the
key processes is sufficient to describe how a system behaves? Mathematical
language is designed for precise description, and so describing complicated
systems often requires a mathematical model.

In this text, we look at some ways mathematics is used to model dynamic
processes in biology. Simple formulas relate, for instance, the population of a
species in a certain year to that of the following year. We learn to understand
the consequences an equation might have through mathematical analysis, so
that our formulation can be checked against biological observation. Although
many of the models we examine may at first seem to be gross simplifications,
their very simplicity is a strength. Simple models show clearly the implications
of our most basic assumptions.

We begin by focusing on modeling the way populations grow or decline
over time. Since mathematical models should be driven by questions, here
are a few to consider: Why do populations sometimes grow and sometimes
decline? Must populations grow to such a point that they are unsustainably
large and then die out? If not, must a population reach some equilibrium? If an
equilibrium exists, what factors are responsible for it? Is such an equilibrium
so delicate that any disruption might end it? What determines whether a given
population follows one of these courses or another?

1
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To begin to address these questions, we start with the simplest mathematical
model of a changing population.

1.1. The Malthusian Model

Suppose we grow a population of some organism, say flies, in the laboratory.
It seems reasonable that, on any given day, the population will change due to
new births, so that it increases by the addition of a certain multiple f of the
population. At the same time, a fraction d of the population will die.

Even for a human population, this model might apply. If we assume humans
live for 70 years, then we would expect that from a large population roughly
1/70 of the population will die each year; so, d = 1/70. If, on the other hand,
we assume there are about four births in a year for every hundred people,
we have f = 4/100. Note that we have chosen years as units of time in this
case.

� Explain why, for any population, d must be between 0 and 1. What
would d < 0 mean? What would d > 1 mean?

� Explain why f must be at least 0, but could be bigger than 1. Can you
name a real organism (and your choice of units for time) for which f
would be bigger than 1?

� Using days as your unit of time, what values of f and d would be in
the right ballpark for elephants? Fish? Insects? Bacteria?

To track the population P of our laboratory organism, we focus on �P ,
the change in population over a single day. So, in our simple conception of
things,

�P = f P − d P = ( f − d)P.

What this means is simply that given a current population P , say P = 500,
and the fecundity and death rates f and d, say f = .1 and d = .03, we
can predict the change in the population �P = (.1 − .03)500 = 35 over a
day. Thus, the population at the beginning of the next day is P + �P =
500 + 35 = 535.

Some more notation will make this simpler. Let

Pt = P(t) = the size of the population measured on day t,

so

�P = Pt+1 − Pt
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Table 1.1. Population Growth
According to a Simple Model

Day Population

0 500
1 (1.07)500 = 535
2 (1.07)2500 = 572.45
3 (1.07)3500 ≈ 612.52
4 (1.07)4500 ≈ 655.40
...

...

is the difference or change in population between two consecutive days. (If
you think there should be a subscript t on that �P , because �P might be
different for different values of t , you are right. However, it’s standard practice
to leave it off.)

Now what we ultimately care about is understanding the population Pt ,
not just �P . But

Pt+1 = Pt + �P = Pt + ( f − d)Pt = (1 + f − d)Pt .

Lumping some constants together by letting λ = 1 + f − d, our model of
population growth has become simply

Pt+1 = λPt .

Population ecologists often refer to the constant λ as the finite growth rate
of the population. (The word “finite” is used to distinguish this number from
any sort of instantaneous rate, which would involve a derivative, as you learn
in calculus.)

For the values f = .1, d = .03, and P0 = 500 used previously, our entire
model is now

Pt+1 = 1.07Pt , P0 = 500.

The first equation, relating Pt+1 and Pt , is referred to as a difference equation
and the second, giving P0, is its initial condition. With the two, it is easy to
make a table of values of the population over time, as in Table 1.1.

From Table 1.1, it’s even easy to recognize an explicit formula for Pt ,

Pt = 500(1.07)t .

For this model, we can now easily predict populations at any future times.
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It may seem odd to call Pt+1 = (1 + f − d)Pt a difference equation, when
the difference �P does not appear. However, the equations

Pt+1 = (1 + f − d)Pt

and

�P = ( f − d)P

are mathematically equivalent, so either one is legitimately referred to by the
same phrase.

Example. Suppose that an organism has a very rigid life cycle (which might
be realistic for an insect), in which each female lays 200 eggs, then all the
adults die. After the eggs hatch, only 3% survive to become adult females,
the rest being either dead or males. To write a difference equation for the
females in this population, where we choose to measure t in generations, we
just need to observe that the death rate is d = 1, while the effective fecundity
is f = .03(200) = 6. Therefore,

Pt+1 = (1 + 6 − 1)Pt = 6Pt .

� Will this population grow or decline?
� Suppose you don’t know the effective fecundity, but do know that the

population is stable (unchanging) over time. What must the effective
fecundity be? (Hint: What is 1 + f − d if the population is stable?)
If each female lays 200 eggs, what fraction of them must hatch and
become females?

Notice that in this last model we ignored the males. This is actually a
quite common approach to take and simplifies our model. It does mean we
are making some assumptions, however. For this particular insect, the precise
number of males may have little effect on how the population grows. It might
be that males are always found in roughly equal numbers to females so that
we know the total population is simply double the female one. Alternately,
the size of the male population may behave differently from the female one,
but whether there are few males or many, there are always enough that female
reproduction occurs in the same way. Thus, the female population is the
important one to track to understand the long-term growth or decline of the
population.

� Can you imagine circumstances in which ignoring the males would be
a bad idea?
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What is a difference equation? Now that you have seen a difference
equation, we can attempt a definition: a difference equation is a formula
expressing values of some quantity Q in terms of previous values of Q. Thus,
if F(x) is any function, then

Qt+1 = F(Qt )

is called a difference equation. In the previous example, F(x) = λx , but often
F will be more complicated.

In studying difference equations and their applications, we will address
two main issues: 1) How do we find an appropriate difference equation to
model a situation? 2) How do we understand the behavior of the difference
equation model once we have found it?

Both of these things can be quite hard to do. You learn to model with dif-
ference equations by looking at ones other people have used and then trying to
create some of your own. To be honest, though, this will not necessarily make
facing a new situation easy. As for understanding the behavior a difference
equation produces, usually we cannot hope to find an explicit formula like we
did for Pt describing the insect population. Instead, we develop techniques
for getting less precise qualitative information from the model.

The particular difference equation discussed in this section is sometimes
called an exponential or geometric model, since the model results in exponen-
tial growth or decay. When applied to populations in particular, it is associated
with the name of Thomas Malthus. Mathematicians, however, tend to focus
on the form of the equation Pt+1 = λPt and say the model is linear. This
terminology can be confusing at first, but it will be important; a linear model
produces exponential growth or decay.

Problems

1.1.1. A population is originally 100 individuals, but because of the com-
bined effects of births and deaths, it triples each hour.
a. Make a table of population size for t = 0 to 5, where t is measured

in hours.
b. Give two equations modeling the population growth by first ex-

pressing Pt+1 in terms of Pt and then expressing �P in terms of
Pt .

c. What, if anything, can you say about the birth and death rates for
this population?
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1.1.2. In the early stages of the development of a frog embryo, cell division
occurs at a fairly regular rate. Suppose you observe that all cells
divide, and hence the number of cells doubles, roughly every half-
hour.
a. Write down an equation modeling this situation. You should spec-

ify how much real-world time is represented by an increment of 1
in t and what the initial number of cells is.

b. Produce a table and graph of the number of cells as a function of
t .

c. Further observation shows that, after 10 hours, the embryo has
around 30,000 cells. Is this roughly consistent with your model?
What biological conclusions and/or questions does this raise?

1.1.3. Using a hand calculator, make a table of population values at times
0 through 6 for the following population models. Then graph the
tabulated values.
a. Pt+1 = 1.3Pt , P0 = 1
b. Nt+1 = .8Nt , N0 = 10
c. �Z = .2Z , Z0 = 10

1.1.4. Redo Problem 1.1.3(a) using MATLAB by entering a command se-
quence like:

p=1

x=p

p=1.3*p

x=[x p]

p=1.3*p (Because this repeats an earlier command, you can save

x=[x p] some typing by hitting the “↑” key twice.)
...

Explain how this works.
Now redo the problem again by a command sequence like:

p=1

x=1

for i=1:10

p=1.3*p (The indentation is not necessary, but helps make

x=[x p] the for-end loop clearer to read.)

end

Explain how this works as well.
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Graph your data with:

plot([0:10],x)

1.1.5. For the model in Problem 1.1.3(a), how much time must pass before
the population exceeds 10, exceeds 100, and exceeds 1,000? (Use
MATLAB to do this experimentally, and then redo it using logarithms
and the fact that Pt = 1.3t .) What do you notice about the difference
between these times? Explain why this pattern holds.

1.1.6. If the data in Table 1.2 on population size were collected in a labora-
tory experiment using insects, would it be consistent with a geometric
model? Would it be consistent with a geometric model for at least
some range of times? Explain.

1.1.7. Complete the following:
a. The models Pt = k Pt−1 and �P = r P represent growing popu-

lations when k is any number in the range and when r is any
number in the range .

b. The models Pt = k Pt−1 and �P = r P represent declining popu-
lations when k is any number in the range and when r is any
number in the range .

c. The models Pt = k Pt−1 and �P = r P represent stable popula-
tions when k is any number in the range and when r is any
number in the range .

1.1.8. Explain why the model �Q = r Q cannot be biologically meaningful
for describing a population when r < −1.

1.1.9. Suppose a population is described by the model Nt+1 = 1.5Nt and
N5 = 7.3. Find Nt for t = 0, 1, 2, 3, and 4.

1.1.10. A model is said to have a steady state or equilibrium point at P∗ if
whenever Pt = P∗, then Pt+1 = P∗ as well.
a. Rephrase this definition as: A model is said to have a steady state

at P∗ if whenever P = P∗, then �P = . . . .
b. Rephrase this definition in more intuitive terms: A model is said

to have a steady state at P∗ if . . . .
c. Can a model described by Pt+1 = (1 + r )Pt have a steady state?

Explain.

Table 1.2. Insect Population Values

t 0 1 2 3 4 5 6 7 8 9 10
Pt .97 1.52 2.31 3.36 4.63 5.94 7.04 7.76 8.13 8.3 8.36
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Table 1.3. U.S. Population Estimates

Year Population (in 1,000s)

1920 106,630
1925 115,829
1930 122,988
1935 127,252
1940 131,684
1945 131,976
1950 151,345
1955 164,301
1960 179,990

1.1.11. Explain why the model �P = r P leads to the formula Pt = (1 +
r )t P0.

1.1.12. Suppose the size of a certain population is affected only by birth,
death, immigration, and emigration – each of which occurs in a yearly
amount proportional to the size of a population. That is, if the pop-
ulation is P , within a time period of 1 year, the number of births is
bP , the number of deaths is d P , the number of immigrants is i P ,
and the number of emigrants is eP , for some b, d, i, and e. Show
the population can still be modeled by �P = r P and give a formula
for r .

1.1.13. As limnologists and oceanographers are well aware, the amount of
sunlight that penetrates to various depths of water can greatly affect
the communities that live there. Assuming the water has uniform
turbidity, the amount of light that penetrates through a 1-meter column
of water is proportional to the amount entering the column.
a. Explain why this leads to a model of the form Ld+1 = kLd , where

Ld denotes the amount of light that has penetrated to a depth of d
meters.

b. In what range must k be for this model to be physically meaningful?
c. For k = .25, L0 = 1, plot Ld for d = 0, 1, . . . , 10.
d. Would a similar model apply to light filtering through the canopy

of a forest? Is the “uniform turbidity” assumption likely to apply
there?

1.1.14. The U.S. population data in Table 1.3 is from (Keyfitz and Flieger,
1968).
a. Graph the data. Does this data seem to fit the geometric growth

model? Explain why or why not using graphical and numerical
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evidence. Can you think of factors that might be responsible for
any deviation from a geometric model?

b. Using the data only from years 1920 and 1925 to estimate a growth
rate for a geometric model, see how well the model’s results agree
with the data from subsequent years.

c. Rather than just using 1920 and 1925 data to estimate a growth
parameter for the U.S. population, find a way of using all the data
to get what (presumably) should be a better geometric model. (Be
creative. There are several reasonable approaches.) Does your new
model fit the data better than the model from part (b)?

1.1.15. Suppose a population is modeled by the equation Nt+1 = 2Nt , when
Nt is measured in individuals. If we choose to measure the population
in thousands of individuals, denoting this by Pt , then the equation
modeling the population might change. Explain why the model is
still just Pt+1 = 2Pt . (Hint: Note that Nt = 1000Pt .)

1.1.16. In this problem, we investigate how a model must be changed if we
change the amount of time represented by an increment of 1 in the time
variable t . It is important to note that this is not always a biologically
meaningful thing to do. For organisms like certain insects, gener-
ations do not overlap and reproduction times are regularly spaced,
so using a time increment of less than the span between two con-
secutive birth times would be meaningless. However, for organisms
like humans with overlapping generations and continual reproduc-
tion, there is no natural choice for the time increment. Thus, these
populations are sometimes modeled with an “infinitely small” time
increment (i.e., with differential equations rather than difference equa-
tions). This problem illustrates the connection between the two types
of models.

A population is modeled by Nt+1 = 2Nt , N0 = A, where each
increment of t by 1 represents a passage of 1 year.
a. Suppose we want to produce a new model for this population,

where each time increment of t by 1 now represents 0.5 years, and
the population size is now denoted Pt . We want our new model to
produce the same populations as the first model at 1-year intervals
(so P2t = Nt ). Thus, we have Table 1.4. Complete the table for Pt

so that the growth is still geometric. Then give an equation of the
model relating Pt+1 to Pt .

b. Produce a new model that agrees with Nt at 1-year intervals, but
denote the population size by Qt , where each time increment of
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Table 1.4. Changing Time Steps in a Model

t 0 1 2 3
Nt A 2A 4A 8A

t 0 1 2 3 4 5 6
Pt A 2A 4A 8A

t by 1 represents 0.1 years (so, Q10t = Nt ). You should begin by
producing tables similar to those in part (a).

c. Produce a new model that agrees with Nt at 1-year intervals, but
denote the population size by Rt , where each time increment of t
by 1 represents h years (so R 1

h t = Nt ). (h might be either bigger
or smaller than 1; the same formula describes either situation.)

d. Generalize parts (a–c), writing a paragraph to explain why, if our
original model uses a time increment of 1 year and is given by
Nt+1 = k Nt , then a model producing the same populations at 1-
year intervals, but that uses a time increment of h years, is given
by Pt+1 = kh Pt .

e. (Calculus) If we change the name of the time interval h to �t , part
(d) shows that

�P

�t
= kh − 1

h
P.

If �t = h is allowed to become infinitesimally small, this means

d P

dt
= lim

h→0

kh − 1

h
P.

Illustrate that

lim
h→0

kh − 1

h
= ln k

by choosing a few values of k and a very small h and comparing
the values of ln k and kh−1

h .
This result is formally proved by:

lim
h→0

kh − 1

h
= lim

h→0

k0+h − k0

h
= d

dx
kx

∣∣∣∣
x=0

= ln k kx
∣∣
x=0 = ln k.

f. (Calculus) Show the solution to d P
dt = ln k P with initial value

P(0) = P0 is

P(t) = P0et ln k = P0kt .
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How does this compare to the formula for Nt , in terms of N0 and
k, for the difference equation model Nt+1 = k Nt ? Ecologists often
refer to the k in either of these formulas as the finite growth rate
of the population, while ln k is referred to as the intrinsic growth
rate.

1.2. Nonlinear Models

The Malthusian model predicts that population growth will be exponential.
However, such a prediction cannot really be accurate for very long. After
all, exponential functions grow quickly and without bound; and, according to
such a model, sooner or later there will be more organisms than the number
of atoms in the universe. The model developed in the last section must be
overlooking some important factor. To be more realistic in our modeling, we
need to reexamine the assumptions that went into that model.

The main flaw is that we have assumed the fecundity and death rates
for our population are the same regardless of the size of the population. In
fact, when a population gets large, it might be more reasonable to expect a
higher death rate and a lower fecundity. Combining these factors, we could
say that, as the population size increases, the finite growth rate should de-
crease. We need to somehow modify our model so that the growth rate de-
pends on the size of the population; that is, the growth rate should be density
dependent.

� What biological factors might be the cause of the density dependence?
Why might a large population have an increased death rate and/or de-
creased birth rate?

Creating a nonlinear model. To design a better model, it’s easiest to focus

on
�P

P
, the change in population per individual, or the per-capita growth rate

over a single time step. Once we have understood the per-capita growth rate
and found a formula to describe it, we will be able to obtain a formula for
�P from that.

For small values of P , the per-capita growth rate should be large, since we
imagine a small population with lots of resources available in its environment
to support further growth. For large values of P , however, per-capita growth
should be much smaller, as individuals compete for both food and space. For
even larger values of P , the per-capita growth rate should be negative, since
that would mean the population will decline. It is reasonable then to assume
�P/P , as a function of P , has a graph something like that in Figure 1.1.
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K

r

P

P/P∆

Figure 1.1. Per-capita growth rate as a function of population size.

Of course we cannot say exactly what a graph of �P/P should look
like without collecting some data. Perhaps the graph should be concave for
instance. However, this is a good first attempt at creating a better model.

� Graph the per-capita growth rate for the Malthusian model. How is your
graph different from Figure 1.1?

For the Malthusian model �P/P = r , so that the graph of the per-capita
growth rate is a horizontal line – there is no decrease in �P/P as P increases.

In contrast, the sloping line of Figure 1.1 for an improved model leads to
the formula �P/P = m P + b, for some m < 0 and b > 0. It will ultimately
be clearer to write this as

�P

P
= r

(
1 − P

K

)

so that K is the horizontal intercept of the line, and r is the vertical intercept.
Note that both K and r should be positive. With a little algebra, we get

Pt+1 = Pt

(
1 + r

(
1 − Pt

K

))

as our difference equation. This model is generally referred to as the discrete
logistic model, though, unfortunately, other models also go by that name as
well.

The parameters K and r in our model have direct biological interpretations.
First, if P < K , then �P/P > 0. With a positive per-capita growth rate, the
population will increase. On the other hand, if P > K , then �P/P < 0. With
a negative per-capita growth rate, the population will decrease. K is therefore
called the carrying capacity of the environment, because it represents the
maximum number of individuals that can be supported over a long period.
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However, when the population is small (i.e., P is much smaller than K ), the
factor (1 − P/K ) in the per-capita growth rate should be close to 1. Therefore,
for small values of P , our model is approximately

Pt+1 ≈ (1 + r )Pt .

In other words, r plays the role of f − d, the fecundity minus the death
rate, in our earlier linear model. The parameter r simply reflects the way
the population would grow or decline in the absence of density-dependent
effects – when the population is far below the carrying capacity. The standard
terminology for r is that it is the finite intrinsic growth rate. “Intrinsic” refers
to the absence of density-dependent effects, whereas “finite” refers to the fact
that we are using time steps of finite size, rather than the infinitesimal time
steps of a differential equation.

� What are ballpark figures you might expect for r and K , assuming you
want to model your favorite species of fish in a small lake using a time
increment of 1 year?

As you will see in the problems, there are many ways different authors
choose to write the logistic model, depending on whether they look at �P or
Pt+1 and whether they multiply out the different factors. A key point to help
you recognize this model is that both �P and Pt+1 are expressed as quadratic
polynomials in terms of Pt . Furthermore, these polynomials have no constant
term (i.e., no term of degree zero in P). Thus, the logistic model is about the
simplest nonlinear model we could develop.

Iterating the model. As with the linear model, our first step in under-
standing this model is to choose some particular values for the parameters
r and K , and for the initial population P0, and compute future population
values. For example, choosing K and r so that Pt+1 = Pt (1 + .7(1 − Pt/10))
and P0 = 0.4346, we get Table 1.5.

� How can it make sense to have populations that are not integers?

Table 1.5. Population Values from a Nonlinear Model

t 0 1 2 3 4 5 6
Pt .4346 .7256 1.1967 1.9341 3.0262 4.5034 6.2362

t 7 8 9 10 11 12 . . .
Pt 7.8792 9.0489 9.6514 9.8869 9.9652 9.9895 . . .
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Figure 1.2. Population values from a nonlinear model.

If we measure population size in units such as thousands, or millions of
individuals, then there is no reason for populations to be integers. For some
species, such as commercially valuable fish, it might even be appropriate to
use units of mass or weight, like tons.

Another reason that noninteger population values are not too worrisome,
even if we use units of individuals, is that we are only attempting to approxi-
mately describe a population’s size. We do not expect our model to give exact
predictions. As long as the numbers are large, we can just ignore fractional
parts without a significant loss.

In the table, we see the population increasing toward the carrying capacity
of 10 as we might have expected. At first this increase seems slow, then it
speeds up and then it slows again. Plotting the population values in Figure 1.2
shows the sigmoid-shaped pattern that often appears in data from carefully
controlled laboratory experiments in which populations increase in a lim-
ited environment. (The plot shows the population values connected by line
segments to make the pattern clearer, even though the discrete time steps of
our model really give populations only at integer times.) Biologically, then,
we have made some progress; we have a more realistic model to describe
population growth.

Mathematically, things are not so nice, though. Unlike with the linear
model, there is no obvious formula for Pt that emerges from our table. In
fact, the only way to get the value of P100 seems to be to create a table with
a hundred entries in it. We have lost the ease with which we could predict
future populations.
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This is something we simply have to learn to live with: Although nonlinear
models are often more realistic models to use, we cannot generally get explicit
formulas for solutions to nonlinear difference equations. Instead, we must rely
more on graphical techniques and numerical experiments to give us insight
into the models’ behaviors.

Cobwebbing. Cobwebbing is the basic graphical technique for under-
standing a model such as the discrete logistic equation. It’s best illustrated by
an example. Consider again the model

P0 = 2.3, Pt+1 = Pt

(
1 + .7

(
1 − Pt

10

))
.

Begin by graphing the parabola defined by the equation giving Pt+1 in terms
of Pt , as well as the diagonal line Pt+1 = Pt , as shown in Figure 1.3. Since the
population begins at P0 = 2.3, we mark that on the graph’s horizontal axis.
Now, to find P1, we just move vertically upward to the graph of the parabola
to find the point (P0, P1), as shown in the figure.

We would like to find P2 next, but to do that we need to mark P1 on
the horizontal axis. The easiest way to do that is to move horizontally from
the point (P0, P1) toward the diagonal line. When we hit the diagonal line,
we will be at (P1, P1), since we’ve kept the same second coordinate, but
changed the first coordinate. Now, to find P2, we just move vertically back
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Figure 1.3. Cobweb plot of a nonlinear model.
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Figure 1.4. Cobweb plot of a nonlinear model.

to the parabola to find the point (P1, P2). Now it’s just a matter of repeating
these steps forever: Move vertically to the parabola, then horizontally to the
diagonal line, then vertically to the parabola, then horizontally to the diagonal
line, and so on.

It should be clear from this graph that if the initial population P0 is anything
between 0 and K = 10, then the model with r = .7 and K = 10 will result
in an always increasing population that approaches the carrying capacity.

If we keep the same values of r and K , but let P0 = 18, the cobweb looks
like that in Figure 1.4.

Indeed, it becomes clear that if P0 is any value above K = 10, then we
see an immediate drop in the population. If this drop is to a value below
the carrying capacity, there will then be a gradual increase back toward the
carrying capacity.

� Find the positive population size that corresponds to where the parabola
crosses the horizontal axis for the model Pt+1 = Pt (1 + .7(1 − Pt/10))
by setting Pt+1 = 0.

� What happens if P0 is higher than the value you found in the last
question?

If the population becomes negative, then we should interpret that as
extinction.


