
Part I

Classical mechanics

The visible Universe contains hundreds of billions of galaxies, each consisting of
billions of stars. Recent discoveries of extrasolar planets lead us to believe that
a typical galaxy may contain billions of planets (and presumably, asteroids and
comets). The planets, stars and galaxies interact on a hierarchy of scales ranging
from AU to parsec to megaparsec, experiencing forces arising from gravity, on all
scales, and cosmic expansion on the larger scales. The combination of gravitational
attraction and cosmic expansion has shaped the visible matter in the Universe into
a hierarchy of structures leading to clusters and superclusters of galaxies.

A full description of the interactions that define the large-scale structure of the
Universe and its constituent parts requires the application of general relativity on
all scales and the introduction of a new force, as embodied in the recently proposed
cosmological constant, on the largest scales. In this part, however, we limit ourselves
largely to the application of classical (Newtonian) mechanics which is sufficiently
accurate to describe the topics covered in this part and has the advantage of being
more intuitive and accessible to the reader.

This part begins with a review of the basic elements of classical mechanics,
subsequently used to derive Kepler’s laws, the Virial theorem and various aspects
of orbital motion. The resulting derivations are applied to specific astrophysical
problems such as planetary motion, extrasolar planets, binary stars, galaxy rotation
curves, dark matter, the large scale structure of the Universe and cosmic expansion.
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Chapter 1

Orbital mechanics

I begin this part by reviewing some basic concepts that underlie Newtonian gravi-
tation. The concepts of universal gravitation, center of mass and reduced mass are
defined and subsequently used in the following chapters.

1.1 Universal gravitation

The gravitational force acting between two bodies, m1 and m2, located at �R1 and
�R2, is given by

�F = ± Gm1m2

| �R1 − �R2|3
( �R1 − �R2) (1)

where the quantities are defined in Fig. 1.1 and G is the gravitational constant. The
± signs reflect the fact that the same magnitude of force acts on m1 and m2 but with
opposite sign.

1.1.1 Center of mass

Consider a point on a line, joining m1 and m2, which is the centroid of the total
mass distribution. We call this centroid the center of mass of the two-body system.
The vector �r , separating the two masses, can then be decomposed into �r1 and �r2

relative to the center of mass, such that

�r = �r1 − �r2.

From Newton’s Second Law

�F1 = m1�̈r1 = −Gm1m2

|�r |3 �r . (2)
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4 Orbital mechanics

m2 m1+
r2 r1

R2 R1

cm

Fig. 1.1 The universal law of gravitation. Gravity is a mutual force that acts
between the masses m1 and m2.

Similarly

�F2 = Gm1m2

|�r |3 �r (3)

⇒ �̈r1 − �̈r2 = �̈r = −G(m1 + m2)

|�r |3 �r = −G M

|�r |3 �r . (4)

The acceleration of the two bodies toward each other is proportional to the total
mass and inversely proportional to the square of the distance between them. The
location of the center of mass (CM) can now be found

m1�̈r1 = −m2�̈r2 ⇒ −m1
G M

|�r |3 �r1 = m2
G M

|�r |3 �r2 ⇒ �r1 = −m2

m1
�r2 (5)

where r1 and r2 represent the distance of m1 and m2 from the center of mass,
respectively. The center of mass is a useful concept in astronomy. It marks the
center about which two astronomical bodies orbit. In an isolated two-body system,
the center of mass is not seen to accelerate.

1.1.2 Reduced mass

Let us define a mass such that

�F = µ�̈r = −G Mµ

|�r |3 �r = −Gm1m2

|�r |3 �r

⇒ µ = m1m2

m1 + m2
. (6)

The concept of reduced mass allows us to transform any two-body problem into a
one-body problem where the reduced mass responds to a central force emanating
from a point whose distance is equal to the separation of the original two bodies.
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1.2 Kepler’s laws 5

1.2 Kepler’s laws

We are now in a position to derive the most famous orbital laws used in astronomy,
Kepler’s laws. We begin, as with so many other problems in classical mechanics,
with the Lagrangian

L = T − V (7)

where T is the kinetic energy and V is the potential energy. Let us set m = m1

and M = m2 in anticipation of defining planetary orbits where the planets have
much lower masses than the Sun (that is m � M). We are considering a two-
body interaction so that the expected motion is in a plane and possibly periodic.
It therefore makes sense to use polar coordinates, r and θ for this problem. Equation
(7) then becomes

L = 1

2
m(ṙ2 + r2θ̇2) − V (r ). (8)

We are now in a position to determine the angular momentum pθ from the
Lagrangian. Recall that

pθ = ∂L

∂θ̇
= mr2θ̇ .

We now use the Lagrange equation of motion

d

dt

∂L

∂θ̇
− ∂L

∂θ
= 0.

so that

d

dt
(mr2θ̇ ) = 0.

Integrating

mr2θ̇ = l = constant. (9)

Equation (9) represents the conservation of angular momentum. Rearranging
terms

1

2
r2θ̇ = 1

2

l

m
= constant.

Recall that the area of an elemental triangle is given by dA = r2/2 dθ , so that

dA

dt
= r2

2

(
dθ

dt

)
= constant. (10)

According to (10), a radius vector sweeps out equal areas in equal time which, of
course, is Kepler’s Second Law.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521819679 - Advanced Astrophysics
Neb Duric
Excerpt
More information

http://www.cambridge.org/0521819679
http://www.cambridge.org
http://www.cambridge.org


6 Orbital mechanics

The Hamiltonian or total energy of a two-body system is given by

E = T + V = 1

2
m(ṙ2 + r2θ̇2) + V (r ). (11)

Rearranging (11) and solving for ṙ

ṙ2 = 2

m
(E − V (r )) − r2θ̇2.

But, r2θ̇ = l/m so that

ṙ2 = 2

m
(E − V (r )) −

(
l

rm

)2

⇒ ṙ =
√

2

m

(
E − V (r ) − l2

2mr2

)
.

The above can be solved for dt so that

dt = dr√
(2/m)(E − V (r ) − (l2/(2mr2)))

. (12)

Equation (12) can now be used to determine the shape of the orbit resulting
from the two-body interaction. What we really want is a function r (θ ) which
means converting (12) into a relationship between r and θ and eliminating t in the
process.

We begin by noting that r2θ̇ = r2(dθ/dt) = l/m so that l dt = mr2 dθ

⇒ d

dt
= l

mr2

d

dθ

so that

mr2

l
dθ = dr√

(2/m)(E − V (r ) − (l2/(2mr2)))

⇒ dθ = l dr

mr2
√

(2/m)(E − V (r ) − (l2/(2mr2)))

⇒ θ =
∫ r

r0

dr

r2
√

(2m E/ l2) − (2mV/ l2) − (1/r2)
+ θ0. (13)

Let µ = 1/r and substitute into (13)

⇒ θ = θ0 −
∫ µ

µ0

dµ√
(2m E/ l2) − (2mV/ l2) − µ2

.
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1.2 Kepler’s laws 7

For V = −(GmM)/r = −k/r = −kµ

⇒ θ = θ0 −
∫ µ

µ0

dµ√
(2m E/ l2) + (2mkµ/ l2) − µ2

(14)

which can be put into standard form and solution with µ = x∫
dx√

a + bx + cx2
= 1√−c

cos−1

[−b + 2cx

q

]
(15)

where

q = b2 − 4ac.

Comparison of (14) and (15) yields

a = 2m E

l2
b = 2mk

l2
c = −1

q =
(

2mk

l2

)2 (
1 + 2El2

mk2

)

so that the solution to (14) becomes

θ = θ ′ − cos−1

[
(l2µ/mk) − 1√
1 + (2El2/mk2)

]
(16)

where θ ′ incorporates the additional constants resulting from the integration. Putting
µ = 1/r back into (16) and taking the cosine of both sides yields

1

r
= mk

l2

(
1 +

√
1 + 2El2

mk2
cos(θ − θ ′)

)
. (17)

We now have a solution, r (θ ), that determines the shape of the orbit and clearly
depends on the energy, E , and the angular momentum, l. This equation can be
compared with the general expression for a conic section

1

r
= C(1 + ε cos(θ − θ ′)). (18)

By equating (17) to (18) we see that

C = mk

l2
(19)

ε =
√

1 + 2El2

mk2
.
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8 Orbital mechanics

Fig. 1.2 Orbits as conic sections. Circular, elliptical and parabolic/hyperbolic
classes of orbits are shown. The total energy, E , determines the class of orbit
while the combination of E and the angular momentum, l, determines the shape
of the orbit within a class. The Sun is shown as the small filled circle at the center.

The only variable that can be negative is the total energy of the two-body system
so that

E > 0 → ε > 1 hyperbola

E = 0 → ε = 1 parabola

E < 0 → ε < 1 ellipse

E = −1

2
V = −mk2

2l2
→ ε = 0 circle.

These define conic sections, as illustrated in Fig. 1.2.
In the solar system, planets have closed orbits (E < 0) and move in elliptical

trajectories (Kepler’s First Law). Kepler’s Third Law can now be derived, beginning
with the second law. Integrating (10) over a complete period of the orbit yields∫ P

0
Ȧ dt = 1

2

l

m
P = �ab (20)

where �ab is the area of an ellipse and a and b are the semi-major and semi-minor
axes of the elliptical orbit. Now from (18) we can define a as the sum of distances
that correspond to θ = θ ′ and θ = θ ′ + �

a = 1

C(1 − ε2)
.

Combining this with the well-known relationship between a and b

b = a
√

(1 − ε2)
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1.2 Kepler’s laws 9

yields

b =
√

a

C
. (21)

Combining (19) and (21) yields

b = √
a

√
l2

mk
. (22)

Combining (20) and (22)

1

2

l

m
P = �a3/2

√
l2

mk

⇒ P = 2�a3/2

√
m

k

⇒ P = 2�√
G M

a3/2. (23)

Equation (23) represents Kepler’s Third Law – the square of the period is propor-
tional to the cube of the diameter of the orbit.

1.2.1 Planetary orbits

The planets follow orbits as described by (18). However, the orbits differ signifi-
cantly from each other and do not fall in exactly the same plane. Consequently, it
is necessary to describe planetary orbits in three dimensions relative to a standard
reference frame, as shown in Fig. 1.3.

There are two major reference points for a planetary orbit and both are related
to the Earth. The Earth’s orbit (plane NB) is used as the standard reference plane
called the ecliptic. The intersection of the Earth’s celestial equator with the ecliptic
defines the vernal and autumnal equinoxes. The former is denoted as γ in Fig. 1.3.
It is used as the fundamental reference point for defining the orbital elements. The
plane of the Earth’s orbit (the ecliptic) is γ N′B while the plane of the planet’s
orbit is NQN′. The intersection of the two planes is called the line of nodes which
connect the ascending and descending nodes (N and N′, respectively – the direction
of motion of the planet is indicated by the arrow). The Sun is located at the center
and its position is denoted by S. The true orbit of the planet is shown as the ellipse
pLA. The perihelion position is marked as A and the position of the planet, at time
t , is denoted as p. The planet and the Sun define a radius vector, Sp, that cuts the
great circle, NQN′, at P1.
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10 Orbital mechanics
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Fig. 1.3 The orbit of a planet relative to the Earth’s orbit. A planetary orbit can
be uniquely defined in 3-D space relative to γ and the Earth’s orbit. The various
parameters that characterize the planetary orbit are defined in the text.

With the help of Fig. 1.3, we can define the following parameters of the apparent
orbit of the planet

v = A1 − P1 = true anomaly

ω = N − A1 = argument of perihelion

θ = γ − N = longitude of ascending node

ω̄ = θ + ω = longitude of the perihelion

L = θ + ω + v = true longitude of planet

i = B − N − A1 = inclination of orbit

τ = time when planet is at perihelion, A.

The six elements that completely define the orbit are a, e, θ, ω̄, i, τ . To complete
the connection to (18), which we derived earlier, we see that v = θ − θ ′. The
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1.3 Binary stars 11

Table 1.1. Planetary orbits – elements on January 1, 2000

Planet a (AU) e P (years) i (degree) θ (degree) θ + ω (degree)

Mercury 0.387 0.206 0.241 7.00 48.33 77.46
Venus 0.723 0.007 0.615 3.39 76.68 131.53
Earth 1.000 0.017 1.000 0.0 −11.26 102.95
Mars 1.524 0.093 1.85 1.85 49.58 336.04
Jupiter 5.203 0.048 11.862 1.31 100.56 14.75
Saturn 9.537 0.054 29.458 2.49 113.72 92.43
Uranus 19.191 0.047 84.012 0.77 74.23 170.96
Neptune 30.069 0.009 164.796 1.77 131.72 44.97
Pluto 39.482 0.249 246.378 17.14 110.30 224.07

additional elements allow us to determine the orbit relative to our perspective at the
Earth. Table 1.1 lists the orbital elements of the planets in our solar system.

1.3 Binary stars

1.3.1 Visual binaries

Roughly half of all stars in the Galaxy are binaries. Analysis of binary star orbits
via the equations we have derived thus far, provides valuable information regarding
stellar properties and stellar evolution, information that would otherwise be diffi-
cult to obtain. Binary systems in which both stars are visible are known as visual
binaries.

1.3.2 The apparent orbit

Binary stars represent the most general two-body problem. Their orbits are oriented
randomly in space and are described fully in three dimensions in much the same
way as were the planets we discussed earlier. However, because we only see a
projection of the orbit on the sky we must somehow recover the orbital elements
from an analysis of the 2-D orbit. The 2-D orbit is measured according to Fig. 1.4.

The most general form of an ellipse is given by

ax2 + 2hxy + by2 + 2gx + 2 f y + 1 = 0 (24)

where x = ρ cos θ and y = ρ sin θ and all coefficients are real constants. The equa-
tion of the apparent orbit is obtained by fitting (24) to a large number of measure-
ments of ρ and θ . The more observations the better the fit and the more accurate
the coefficients that define the shape of the apparent orbit. The procedures for
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