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Introduction

1.1 Scope

The book focuses primarily on many-body (or better, many-electron) meth-
ods for electron correlation. These include Rayleigh–Schrödinger pertur-
bation theory (RSPT), particularly in its diagrammatic representation (re-
ferred to as many-body perturbation theory, or MBPT ), and coupled-cluster
(CC) theory; their relationship to configuration interaction (CI) is included.
Further extensions address properties other than the energy, and also excited
states and multireference CC and MBPT methods.

The many-body algebraic and diagrammatic methods used in electronic
structure theory have their origin in quantum field theory and in the study
of nuclear matter and nuclear structure. The second-quantization formal-
ism was first introduced in a treatment of quantized fields by Dirac (1927)
and was extended to fermion systems by Jordan and Klein (1927) and by
Jordan and Wigner (1928). This formalism is particularly useful in field
theory, in scattering problems and in the study of infinite systems because
it easily handles problems involving infinite, indefinite or variable numbers
of particles. The diagrammatic approach was introduced into field theory
by Feynman (1949a,b) and applied to many-body systems by Hugenholtz
(1957) and by Goldstone (1957). Many-body perturbation theory and its
linked-diagram formalism were first introduced by Brueckner and Levinson
(1955) and by Brueckner (1955), and were formalized by Goldstone (1957).
Other important contributions to the methodology, first in field theory and
then in the theory of nuclear structure, are due to Dyson (1949a,b), Wick
(1950), Hubbard (1957, 1958a,b) and Frantz and Mills (1960). Applications
to the electronic structure of atoms and molecules began with the work
of Kelly (1963, 1964a,b, 1968), and molecular applications using finite an-
alytical basis sets appeared in the work of Bartlett and Silver (1974a,b).
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2 Introduction

More complete accounts of the history of these methods have been given by
Lindgren and Morrison (1986) and by Lindgren (1998).

The coupled-cluster method also has origins in nuclear structure theory,
with the seminal papers of Coester (1958) and Coester and Kümmel (1960).
It was introduced to electronic structure theory and formalized by Č́ıžek
(1966, 1969) and Č́ıžek and Paldus (1971). A historical account of its origins
and development was given by Paldus (2005).

Additional references to the development and extensions of the many-body
methods are given in the relevant chapters.

The rest of this chapter provides some background material, including
a brief discussion of the independent-particle model and the configuration-
interaction method. We discuss the limitations of these methods and the
need for the perturbation-theoretical and many-body methods that form the
subject of the rest of this book. We also provide a preliminary introduction
to the cluster ideas that form the basis of coupled-cluster theory. Readers
in need of a more extensive introduction are referred to the excellent book
by Szabo and Ostlund (1982).

A detailed exposition of formal perturbation theory is given in Chapter 2.
A number of different derivations and approaches are included in this ex-
position in order to provide a broad foundation for the terminology and
techniques employed in this field. The many-body technique of second quan-
tization is introduced in Chapter 3, and the diagrammatic representation is
described in Chapter 4. The application of the many-body and diagram-
matic techniques to perturbation theory is described in Chapter 5, and this
is followed by proof of the crucial linked-diagram theorem in Chapter 6 and a
discussion of some practical aspects of many-body perturbation-theory cal-
culations in Chapter 7. Open-shell and quasidegenerate perturbation theory
is presented in Chapter 8. Coupled-cluster theory is discussed in Chapters 9
and 10, again including several forms of the derivations in order to pro-
vide better understanding. The calculation of properties in the coupled-
cluster method is described in Chapter 11. Several additional aspects of
coupled-cluster theory are discussed in Chapter 12, and the equation-of-
motion (EOM) coupled-cluster method for excited-state calculations is de-
scribed in Chapter 13. Finally, multireference coupled-cluster methods are
presented in Chapter 14.

1.2 Conventions and notation

Throughout this book we use atomic units, setting m = e = � = 1 where m

and −e are the mass and charge of the electron and � = h/2π is Planck’s
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1.3 The independent-particle approximation 3

Table 1.1. Terminology for excitation levels

Level Symbol Name Alternative

1 S singles mono-excited
2 D doubles bi-excited
3 T triples tri-excited
4 Q quadruples tetra-excited
5 P pentuples penta-excited
6 H hextuples hexa-excited

constant. As is customary in quantum chemistry, these constants are omit-
ted from the expressions in this book but their implied presence is needed
for proper dimensionality.

With a few exceptions, lower-case letters (a, b, . . . , φ, ψ, . . . , etc.) are used
for one- and two-particle entities, and upper-case letters (A, B, . . . ,Φ, Ψ, . . . ,

etc.) are used for many-particle entities. Operators are designated by a caret
over a roman letter (â, î, F̂ , Ĥ, etc.), by a script upper-case letter (H,P,
etc.) or by an Greek upper-case letter (Λ, Ω, etc.). Vectors and matrices are
represented by boldface lower- and upper-case letters, respectively.

The acronyms used to specify excitation-level combinations included in
the different computational models have evolved, first in configuration
interaction (CI) and then in coupled-cluster (CC) theory, using a mixture of
English, Greek and Latin roots, in view of the need to provide a unique ini-
tial letter for each level, as listed in Table 1.1. For example, a CI calculation
that includes all single, double and triple excitations is described as CISDT.
The fourth column in Table 1.1 lists some alternative excitation-level names
that have been used.

1.3 The independent-particle approximation

In this section we briefly summarize several aspects of the procedures used to
obtain starting approximations for correlated molecular electronic structure
calculations. For more complete discussions and detailed derivations the
reader is referred to other sources, such as Szabo and Ostlund (1982) or
standard textbooks.

Most electronic structure calculations begin with a relatively simple ap-
proximation based on the independent-particle model. The wave function
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4 Introduction

for such a model is a single Slater determinant (SD),

Φ =
1√
N !

∣∣∣∣∣∣∣∣∣

ψ1(1) ψ2(1) · · · ψN (1)
ψ1(2) ψ2(2) · · · ψN (2)

...
...

. . .
...

ψ1(N) ψ2(N) · · · ψN (N)

∣∣∣∣∣∣∣∣∣
= Aψ1ψ2 . . . ψN , (1.1)

where ψi(µ) is a spinorbital, a function of the space and spin coordinates
of the µth electron (typically a product of a spatial orbital and a spin func-
tion), and A is the antisymmetrizer. The most commonly used independent-
particle model is the Hartree–Fock (HF) or self-consistent field (SCF) wave
function,† in which the spinorbitals are varied to minimize the energy expec-
tation value of the single-determinant wave function. The minimization can
be achieved by solving a set of coupled one-electron eigenvalue equations for
the spinorbitals,

f̂ψi = εiψi , (1.2)

in which the Fock operator f̂ depends on all the spinorbitals (this depen-
dence is given explicitly later in this section). Iterative procedures are re-
quired to obtain consistency between the spinorbitals used to define f̂ and
the spinorbitals obtained as its eigenfunctions.

Because a determinant is invariant to unitary transformations of its col-
umns or rows, the SD wave function (1.1) is invariant under unitary transfor-
mations of the occupied spinorbitals {ψi, i = 1, 2, . . . , N} among themselves.
Therefore, any unitary transformation of the occupied spinorbitals provides
an alternative representation of the same SD wave function. The particular
representation of the wave function in which the spinorbitals are solutions
of (1.2), i.e., are eigenfunctions of f̂ (so that the matrix representation of
f̂ in terms of these spinorbitals is diagonal, 〈ψi|f̂ |ψj〉 = εiδij), is called
the canonical HF wave function; the corresponding spinorbitals (including

† It was common to distinguish between the original type of Hartree–Fock solution, which
achieves the absolute minimum of the energy of an SD wave function (1.1) with respect to
any variation of the spinorbitals (subject only to appropriate restrictions in the restricted HF
case) and usually require numerical (finite difference) methods of solution as employed by
Hartree and others for atomic wave functions, and the self-consistent field form (also known
as Hartree–Fock–Roothaan or matrix Hartree–Fock), in which the spinorbitals are expanded
in a basis set and the lowest energy solution within the space generated by that basis set is
sought. This second approach converts the operator eigenvalue equation (1.2) to a matrix
eigenvalue equation for the eigenvectors of expansion coefficients. The HF solution is thus the
limiting result (the HF limit) of the self-consistent field procedure as the basis set approaches
completeness. In current usage, however, the distinction has unfortunately been lost, and the
terms Hartree–Fock and self-consistent field are used interchangeably, both commonly referring
to the basis-set expansion approach. We shall follow this practice in this book.
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1.3 The independent-particle approximation 5

the unoccupied or virtual spinorbitals obtained as additional eigenfunctions
of f̂ that are not used in the SD wave function) are the canonical spinor-
bitals. All other representations of the HF solution are called noncanonical
and produce a block-diagonal matrix representation of f̂ with two inter-
nally non-diagonal blocks representing the occupied and virtual spinorbital
spaces, respectively. The orbital energies εi, which are the eigenfunctions of
f̂ , are invariant under unitary transformations but are associated one-to-one
with the canonical spinorbitals only.

The degree of freedom provided by the invariance of the HF wave function
under unitary transformations of the occupied spinorbitals (and, separately,
of the unoccupied spinorbitals) is sometimes used to transform the spinor-
bitals to a localized form, in which the individual spinorbitals are localized
to the regions of individual atoms or bonds. Such localized forms of the
solution often offer advantages of simpler interpretation and provide a basis
for more compact descriptions of correlated wave functions.

Several variants of the Hartree–Fock approach are in common use; these
are defined by the restrictions, if any, that are placed on the spinorbitals
{ψi}. In the usual form of the unrestricted Hartree–Fock (UHF) model
there are no restrictions other than that each spinorbital is a product of a
spatial orbital and a spin-up (α) or spin-down (β) spin function. This form
is often used for open-shell states and sometimes for the description of bond
dissociation. The most common restriction constrains pairs of spinorbitals to
share the same spatial orbital, leading to the restricted Hartree–Fock (RHF)
model in which each spatial orbital can accommodate at most two electrons.
The RHF model is most commonly used for closed-shell molecules near their
equilibrium geometry. When applied to open-shell cases, in which one or
more spinorbitals are unpaired, it is often referred to as restricted open-shell
Hartree–Fock (ROHF). For closed-shell molecules near their equilibrium ge-
ometry the UHF and RHF solutions are generally equivalent and produce
the same set of doubly occupied spatial orbitals.†

Independently of whether spin restrictions are used, restrictions can be
placed on the symmetry properties of the spatial orbitals requiring them
to belong to irreducible representations (irreps) of the point group of the
molecule. Such restrictions can often cause difficulties in the descriptions
of potential-energy surfaces, when symmetry-restricted solutions at high-
symmetry points may be higher in energy than symmetry-unrestricted solu-
tions at the same points (a phenomenon referred to as symmetry breaking)

† Except where stated explicitly otherwise, the treatment in this book is in terms of unrestricted
spinorbitals, and the terms orbitals and Hartree–Fock (or SCF) generally refer to spinorbitals
and UHF.
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6 Introduction

and thus do not connect continuously with the solutions for distorted (lower-
symmetry) structures.

In most cases, a Hartree–Fock solution provides an excellent initial ap-
proximation for the electronic wave function and energy of a molecular sys-
tem, often accounting for more than 99% of the total electronic energy and
95% of the wave function. Nevertheless, because the energy differences of in-
terest in chemical and spectroscopic processes are a fraction of one percent of
the total electronic energy and because the accuracy of the HF model tends
to vary considerably between different structures and different electronic
states, this model does not usually provide adequately accurate solutions
by itself. In most cases, though, it provides a satisfactory zero-order solu-
tion that can then be used as the starting point for the post-Hartree–Fock
methods discussed in this book. There are however cases in which HF does
not provide an adequate zero-order function; these are due primarily to near
degeneracies between several Slater-determinantal contributions to the wave
function. In such cases a multideterminantal (“multiconfigurational”) func-
tion can provide a better zero-order wave function. The multiconfigurational
Hartree–Fock (MCHF) model, also referred to as multiconfigurational SCF
(MCSCF), can be particularly effective in providing good zero-order solu-
tions in such cases, but the use of such multiconfigurational zero-order func-
tions requires multireference methods in the post-HF stage and introduces
additional complications for the many-body methods that are the principal
topic of this book.

It is instructive to consider an alternative derivation of the Hartree–Fock
model that provides physical insight into the reasons for its success and
introduces some important concepts. We shall do this in terms of the un-
restricted model, because of its generality and its relatively simple nota-
tion. Instead of invoking the variational principle and minimizing the en-
ergy of a single-determinant wave function with respect to the spinorbitals,
the same Fock equation (1.2) can be obtained by a physically motivated
argument.

The difficulty in the solution of the electronic Schrödinger equation is prin-
cipally due to the interelectron repulsion terms 1/rµν in the Hamiltonian.
Those terms couple the motions of the different electrons and prevent sepa-
ration of the equation into individual one-electron equations. It is therefore
natural to seek an approximate solution in which the instantaneous inter-
electron interaction terms are replaced by averaged interactions, describing
the motion of each electron in the time-averaged field of the other electrons.
The averaged interaction energy of an electron in spinorbital ψi, when the
total electron distribution is described by the single-SD wave function (1.1),
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1.4 Electron correlation 7

is obtained as

〈ψi|û|ψi〉 =
N∑

j (j �=i)

〈
ψi(1)ψj(2)

∣∣∣ 1
r12

∣∣∣ψi(1)ψj(2) − ψj(1)ψi(2)
〉

=
N∑

j=1

〈ψi(1)|Ĵj − K̂j |ψi(1)〉 , (1.3)

where the restriction on the summation in the first line can be ignored be-
cause of the cancellation between the first (Coulomb or direct) term and the
second (exchange) term when i = j. The Coulomb and exchange operators
are defined by

Ĵi(1)φ(1) =
〈
ψi(2)

∣∣∣ 1
r12

∣∣∣ψi(2)
〉
2
φ(1) ,

K̂i(1)φ(1) =
〈
ψi(2)

∣∣∣ 1
r12

∣∣∣φ(2)
〉
2
ψi(1) ,

(1.4)

the integration being over the coordinates of electron 2 only. With the
replacement of the instantaneous electron repulsion by the average form,
the Schrödinger equation becomes separable, the equation for each electron
takes the form (1.2) and the Fock operator is given by

f̂ = ĥ +
N∑

i=1

(Ĵi − K̂i) , (1.5)

where ĥ is the one-electron operator in the Hamiltonian. Because of the can-
cellation of the Coulomb and exchange terms in (1.3) when i = j, and thus
the removal of the restriction on the summation, the Fock operators for all
the spinorbitals are equal and we have only one eigenvalue equation for the
spinorbitals, with the different spinorbitals obtained as different eigenfunc-
tions of that operator. The iterative and coupled nature of the equations is
due to the dependence of the Coulomb and exchange operators on all the
occupied orbitals.

The average-interaction approach leads to exactly the same equations as
the energy-minimization approach and serves to provide a physical rationale
for the Hartree–Fock model. It also provides the basis for defining the
concept of electron correlation, as discussed in the next section.

1.4 Electron correlation

The purpose of all many-body methods is to describe electron correlation,
defined as representing the difference between the Hartree–Fock description
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8 Introduction

of the electronic wave function and the exact solution of the nonrelativis-
tic time-independent Schrödinger equation (Löwdin 1959, Kutzelnigg 2003).
(Note that this definition is not necessarily unique, because of the different
types of Hartree–Fock model that can be used as the reference point.) We
are interested in the correlation correction to the energy, called the correla-
tion energy ,

∆Ecorr = Eexact − EHF (1.6)

(where EHF implies the exact solution of the Hartree–Fock problem, i.e.,
in an infinite, complete, basis set), and also in the correction to the wave
function,

Ψexact = ΦHF + χcorr , (1.7)

which determines the electron density and all other properties of molecules.
The naming of the correlation correction reflects the fact that the Hartree–

Fock model describes the motion of the electrons in the average field of
the other electrons, neglecting the instantaneous correlation in the mo-
tions of the electrons due to their mutual repulsion. However, this dy-
namic effect is not the only type of error in the Hartree–Fock model. In
many cases, especially for excited states and other open-shell states and
even for ground-state closed-shell molecules when bonds are stretched to
near breaking (if the RHF model is used as the reference), near degenera-
cies between single-configuration descriptions cause the single-configuration
Hartree–Fock model to be deficient even as a zero-order approximation for
the wave function and energy. Therefore we distinguish between the two
components of the correlation effect: dynamic correlation, reflecting the in-
stantaneous correlation in electron motions due to their mutual repulsion,
and nondynamic correlation, reflecting the effect of near degeneracies and
other substantial inadequacies of the single-configuration model. While it is
difficult to provide a quantitative separation between these two components
of the correlation error, the understanding provided by these concepts is
important in designing methods for obtaining satisfactory solutions of the
Schrödinger equation.

The two components of the correlation error respond best to two different
types of treatment. Nondynamic correlation is handled most efficiently by
using a multiconfigurational zero-order description such as multiconfigura-
tional SCF (MCSCF). Dynamical correlation is handled efficiently by the
perturbation methods and coupled cluster approaches described in the rest
of this book. Unfortunately, unlike the situation in the configuration inter-
action model, the multireference extension of the perturbation and coupled-
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1.5 Configuration interaction 9

cluster models is quite difficult, and general methods for this type of ap-
proach are still not widely available. Nevertheless, single-reference coupled-
cluster theory, when carried to a high enough level, has proved to be capable
of overcoming the nondynamic correlation problem to a considerable extent.

1.5 Configuration interaction

The simplest approach to treating electron correlation is by the configuration-
interaction (CI) method. If we start with the self-consistent field (SCF)
wave function and orbitals (the Hartree–Fock solution limited to the space
spanned by a given basis set), we can write the CI expansion of an N -electron
wave function in the (unnormalized) form

Ψ = ΦSCF +
∑
i,a

Ca
i Φa

i +
∑

i<j, a<b

Cab
ij Φab

ij + · · · (up to N excitations),

(1.8)

where Φa
i is a singly excited configuration in which an occupied orbital φi

of the SCF wave function has been replaced by a virtual orbital φa (an
orbital not occupied in the SCF function, which can also be chosen to be an
eigenfunction of the Fock operator, f̂φa = εaφa), Φab

ij is a double-excitation
configuration etc.

If m is the number of SCF occupied orbitals and n is the number of virtual
orbitals (m + n equals the number of basis functions) then the number of
k-fold excited configurations is O(mknk) (as long as k � m). This number
grows very rapidly with k, so that a complete solution is impractical and the
CI expansion needs to be truncated. Usually the truncation is made after
the double-excitation level, producing CISD, i.e. CI with single (S) and
double (D) excitations. Because ΦSCF is (usually) a reasonable starting
approximation to Ψ and because the Hamiltonian Ĥ has no more than
two-electron operators (so that 〈ΦSCF|Ĥ|Φab...

ij... 〉 = 0 for higher than double
excitations), this represents a reasonable approximation in most cases.

The contribution of single excitations to a CI expansion (1.8) based on
an SCF function (unrestricted or closed-shell restricted) as the initial term
is quite small. This is due to the Brillouin theorem, which states that
the Hamiltonian matrix element between the SCF function and a single
excitation vanishes,

〈ΦSCF|Ĥ|Φa
i 〉 = 0 . (1.9)

This theorem holds for both canonical and noncanonical forms of the SCF
function and is a consequence of the block-diagonal nature of the Fock oper-
ator f̂ (Section 1.3) given by fia = 〈ΦSCF|Ĥ|Φa

i 〉 = 0 (see Chapter 3). As a
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10 Introduction

consequence of the Brillouin theorem, a CI expansion with single excitations
only (CIS) based on an unrestricted or closed-shell restricted SCF function
provides no improvement over SCF. It is only through the interaction of the
single excitations with the doubles (and, to a much smaller extent, triples)
that the singles acquire nonzero coefficients Ca

i in the expansion. These
arguments do not apply to the restricted open-shell SCF (ROHF) case, for
which the f̂ matrix is not block diagonal, the Brillouin theorem does not
hold, and a CIS wave function can provide a useful improvement over SCF.

The contribution of single excitations to the CI expansion (as well as to
perturbation expansions and coupled-cluster wave functions) can be elim-
inated completely by a suitable transformation of the orbitals. Such a
transformation involves some mixing of occupied and virtual orbitals and
therefore the initial term in the transformed expansion is no longer exactly
equivalent to the SCF function. The resulting orbitals are called Brueckner
orbitals and can be obtained by an iterative procedure in which, in each
iteration, pairs of occupied and virtual orbitals are mixed to eliminate the
corresponding single-excitation contributions in first order. This process
must be applied to an expansion that includes at least double excitations,
because it is the interaction of the single excitations with the doubles that
is responsible for almost all of the contribution of the single excitations to
the expansion.

Natural orbitals (NOs) are very similar to Brueckner orbitals; they are
obtained by transforming the orbitals so as to diagonalize the one-particle
density matrix of the correlated wave function. For two-electron systems,
the natural orbitals are the same as the Brueckner orbitals, making it rela-
tively easy to eliminate single excitations from correlated two-electron wave
functions. In natural-orbital-based expansions for systems of more than two
electrons the contribution of single excitations tends to be very small, in
fact much smaller than even the small contributions in the SCF case.

The exact solution, within the given basis set, is obtained by using all
terms of the CI expansion, up to N excitations. This is called full CI and
is invariant under any linear transformation of the orbitals.

1.6 Motivation

The motivation for studying perturbation theory (PT) and other many-body
(MB) techniques comes from the following principal sources.

1. Unlike truncated CI, most PT formulations provide properly exten-
sive descriptions. These concepts are discussed in Section 1.7; briefly,
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