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Chapter 1

Declarative programming in AnsProlagntroduction
and preliminaries

Among other characteristics, an intelligent entity — whether an intelligent au-
tonomous agent, or an intelligent assistant — must have the ability to go beyond
just following direct instructions while in pursuit of a goal. This is necessary to be
able to behave intelligently when the assumptions surrounding the direct instruc-
tions are not valid, or there are no direct instructions at all. For example even a
seemingly direct instruction of ‘bring me coffee’ to an assistant requires the assis-
tant to figure out what to do if the coffee potis out of water, or if the coffee machine
is broken. The assistant will definitely be referred to as lacking intelligence if he
or she were to report to the boss that there is no water in the coffee pot and ask the
boss what to do next. On the other hand, an assistant will be considered intelligent
if he or she can take a high level request of ‘make travel arrangements for my trip
to International Al conference 20XX' and figure out the lecture times of the boss;
take into account airline, hotel and car rental preferences; take into account the
budget limitations, etc.; overcome hurdles such as the preferred flight being sold
out; and make satisfactory arrangements. This example illustatebenchmark
of intelligence —the level of request an entity can hangéit®ne end of the spectrum
the request is a detailed algorithm that spellstmwto satisfy the request, which
no matter how detailed it is may not be sufficient in cases where the assumptions
inherent in the algorithm are violated. At the other end of the spectrum the request
spells outwhatneeds to be done, and the entity has the knowledge — again in the
whatform rather than theowform —and the knowledge processing ability to figure
out the exact steps (that will satisfy the request) and execute them, and when it does
not have the necessary knowledge it either knows where to obtain the necessary
knowledge, or is able to gracefully get around its ignorance through its ability to
reason in the presence of incomplete knowledge.

The languages for spelling onbware often referred to ggocedural while the
languages for spelling outhatare referred to adeclarative. Thus our initial thesis
that intelligent entities must be able to comprehend and process descriptiametof
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leads to the necessity of inventing suitable declarative languages and developing
support structures around those languages to facilitate their use. We consider the
development of such languages to be fundamental to knowledge based intelligence,
perhaps similar to the role of the language of calculus in mathematics and physics.
This book is about such a declarative language — the languagas®rolog*. We

now give a brief history behind the quest for a suitable declarative language for
knowledge representation, reasoning, and declarative problem solving.

Classical logic which has been used as a specification language for procedu-
ral programming languages was an obvious initial choice to represent declarative
knowledge. But it was quickly realized that classical logic embodies the monotonic-
ity property according to which the conclusion entailed by a body of knowledge
stubbornly remains valid no matter what additional knowledge is added. This disal-
lowed human like reasoning where conclusions are made with the available (often
incomplete) knowledge and may be withdrawn in the presence of additional knowl-
edge. This led to the development of the fielchohmonotonic logicand several
nonmonotonic logics such as circumscription, default logic, auto-epistemic logic,
and nonmonotonic modal logics were proposed. The Al journal special issue of
1980 (volume 13, numbers 1 and 2) contained initial articles on some of these log-
ics. In the last twenty years there have been several studies on these languages on
issues such as representation of small common-sense reasoning examples, alterna-
tive semantics of these languages, and the relationship between the languages. But
the dearth of efficient implementations, use in large applications — say of more than
ten pages, and studies on building block support structures has for the time being
diminished their applicability. Perhaps the above is due to some fundamental defi-
ciency, such as: all of these languages which build on top of the classical logic syntax
and allow nesting are quite complex, and all except default logic lack structure, thus
making it harder to use them, analyze them, and develop interpreters for them.

An alternative nonmonotonic language paradigm with a different origin whose
initial focus was to consider a subset of classical logic (rather than extending it) is
the programming language PROLOG and the class of languages clubbed together
as ‘logic programming’. PROLOG and logic programming grew out of work on
automated theorem proving and Robinson’s resolution rule. One important land-
mark in this was the realization by Kowalski and Colmerauer that logic can be used
as a programming language, and the term PROLOG was developed as an acronym
from PROgramming in LOGic. A subset of first-order logic referred to as Horn
clauses that allowed faster and simpler inferencing through resolution was chosen
as the starting point. The notion of closed world assumption (CWA) in databases
was then imported to PROLOG and logic programming and the negation as failure
operatomot was used to refer to negative information. The evolution of PROLOG
was guided by concerns that it be made a full fledged programming language with
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efficient implementations, often at the cost of sacrificing the declarativeness of
logic. Nevertheless, research also continued on logic programming languages with
declarative semantics. In the late 1980s and early 1990s the focus was on finding
the right semantics for agreed syntactic sub-classes. One of the two most popular
semantics proposed during that time is #reswer set semanticalso referred to
as thestable model semantics

This book is about the language of logic programming with respect to the an-
swer set semantics. We refer to this language as AnsPrcdaga short form of
‘Programming inlogic with Answer sets!. In the following section we give an
overview of how AnsProlagis different from PROLOG and also the other non-
monotonic languages, and present the case for AnsPradobe the most suit-
able declarative language for knowledge representation, reasoning, and declarative
problem solving.

1.1 Motivation: Why AnsProlog*?

In this sectioR, for the purpose of giving a quick overview without getting into a
lot of terminology, we consider an AnsProfogrogram to be a collection of rules
of the form:

LoOI’u-OI’ Lk < Lk+1,..., Lm, not Lm+1,...,not Ln.

where each of the; s is a literal in the sense of classical logic. Intuitively, the above
rule means that it.,4, ..., Ly are to be true and if 1,1, ..., L, can be safely
assumed to be false then at least one@f. .., Ly must be true.

This simple language has a lot going for it to be the leading language for knowl-
edge representation, reasoning, and declarative problem solving. To start with, the
nonclassical symbols-, andnot in AnsProlog give it a structure and allow us to
easily define syntactic sub-classes and study their properties. It so happens that these
various sub-classes have a range of complexity and expressiveness thus allowing us
to choose the appropriate sub-classes for particular applications. Moreover, there
exists amore tractable approximate characterization which can be used — at the pos-
sible cost of completeness —when time is a concern. Unlike the other nonmonotonic
logics, AnsProlognow has efficient implementations which have been used to pro-
gram large applications. In addition, the expressiveness studies show AngProlog
to be as expressive as some of these logics, while syntactically it seems less intimi-
dating as it does not allow arbitrary formulas. Finally, the most important reason to
study and use AnsProlbgs that there is now a large body (much larger than for any
other knowledge representation language) of support structure around AngProlog

1 In the recent literature it has also been referred to as A-Prolog [BGNOO, Gel01].
2 In Section 1.2 we introduce more specific terminologies and use those in the rest of the book.
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that includes the above mentioned implementations and theoretical building block
results that allow systematic construction of AnsProlmggrams, and assimilation
of new information. We now expand on these points in greater detalil.

1.1.1 AnsProlog vs PROLOG

Although, PROLOG grew out of programming with Horn clauses — a subset of first-
order logic, several nondeclarative features were included in PROLOG to make
it programmer friendly. We propose AnsProfogs a declarative alternative to
PROLOG. Besides the fact that AnsPrai@diows disjunction in the head of rules,

the following are the main differences between AnsProlmgd Prolog.

* The ordering of literals in the body of a rule matters in PROLOG as it processes them
from left to right. Similarly, the positioning of a rule in the program matters in PROLOG
as it processes them from start to end. The ordering of rules and positioning of literals in
the body of a rule do not matter in AnsProtodgrrom the perspective of AnsProlog
program is asetof AnsProlog rules, and in each AnsProlbgule, the body is &etof
literals and literals preceded Iopt.

* Query processing in PROLOG is top-down from query to facts. In AnsPtajogry-
processing methodologynot part of the semantics. Most sound and complete interpreters
with respect to AnsProldgdo bottom-up query processing from facts to conclusions or
queries.

* Because of the top-down query processing, and start to end, and left to right processing
of rules and literals in the body ofrale respectively, a PROLOG program may get into
an infinite loop for even simple programs without negation as failure.

* The cut operator in PROLOG is extra-logical, although there have been some recent
attempts at characterizing it. This operator is not part of AnsPtolog

e There are certain problems, such as floundering and getting stuck in a loop, in the way
PROLOG deals with negation as failure. In general, PROLOG has trouble with programs
that have recursions through the negation as failure operator. AnsPreg not have
these problems, and as its name indicates it usesth@er sesemantics to characterize
negation as failure.

In this book, besides viewing AnsPrologs a declarative alternative to PROLOG,

we also view PROLOG systems as top-down query answering systems that are
correct with respect to a sub-class of AnsProlamder certain conditions. In
Section 8.4 we present these conditions and give examples that satisfy these
conditions.

1.1.2 AnsProlog vs Logic programming

AnsProlog is a particular kind of logic programming. In AnsProfoge fix the
semantics t@answer set semanticand only focus on that. On the other hand logic
programming refers to a broader agenda where different semantics are considered
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as alternatives. We now compare AnsProlog (a sub-class of AnsPritigonly
one atomin the head, and without classical negation in the body) with the alternative
semantics of programs with AnsProlog syntax.

Since the early days of logic programming there have been several proposals for
semantics of programs with AnsProlog syntax. We discuss some of the popular ones
in greater detail in Chapter 9. Among them, the most popular ones astatie
model semanticand thewell-founded semantic¥he stable models are same as the
answer sets of AnsProlog programs, the main focus of this book. The well-founded
semantics differs from the stable model semantics in that:

* Well-founded models are three-valued, while stable models are two valued.
e Each AnsProlog program has a unique well-founded model, while some AnsProlog
programs have multiple stable models and sam@ot have any.

For example, the prograifp < not p.} has no stable models while it has the unique
well-founded model where is assigned the truth valusmknown.

The programb < nota.,a <- notbh., p < a., p < b.} has two stable models, a}
and{p, b} while its unique well-founded model assigns the truth valoknowrto p, a,
andb.

e Computing the well-founded model or entailment with respect to it is more tractable
than computing the entailment with respect to stable mo@gighe other hand the latter
increases the expressive power of the language.

As will be clear from many of the applications that will be discussed in Chapters 4
and 5, the nondeterminism that can be expressed through multiple stable models
plays an important role. In particular, they are important for enumerating choices
that are used in planning and also in formalizing aggregation. On the other hand,
the absence of stable models of certain programs, which was initially thought of
as a drawback of the stable model semantics, is useful in formulating integrity
constraints whose violation forces elimination of models.

1.1.3 AnsProlog vs Default logic

The sub-class AnsProlog can be considered as a particular subclass of default logic
that leads to a more efficient implementation. Recall that a default logic is a pair
(W, D), whereW is afirst-order theory anB is a collection of defaults of the type
w wherea, B, andy are well-founded formulas. AnsProlog can be consid-
ered as a special case of a default theory whére: ¢, y is an atomg is a con-
junction of atoms, ang; s are literals. Moreover, it has been shown that AnsP¥olog
and default logic have the same expressiveness. In summary, AnsHsdggtac-

tically simpler than default logic and yet has the same expressiveness, thus making
it more usable.
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1.1.4 AnsProlog vs Circumscription and classical logic

The connective<-" and the negation as failure operataot’ in AnsProlog: add
structure to an AnsProldgrogram. The AnsProldgulea < b. is different from
the classical logic formuléd > a, and the connective<-’ divides the rule of an
AnsProlog program into two parts: the head and the body.

This structure allows us to define several syntactic and semi-syntactic notions
such assplitting, stratification, signingetc. Using these notions we can define
several subclasses of AnsPralggrograms, and study their properties such as:
consistency, coherence, complexity, expressiveness, filter-abduc#itilyompi-
lability to classical logic

The sub-classes and their specific properties have led to several building block
results and realization theorems that help in developing large AnsPmiograms
in a systematic manner. For example, suppose we have a set of rules with the
predicatesps, ..., pn in them. Now if we add additional rules to the program
such thatpy, ..., p, only appear in the body of the new rules, then if the overall
program is consistent the addition of the new rules does not change the meaning
of the original predicate®s, ..., p,. Additional realization theorems deal with
issues such as: When can closed world assumption (CWA) about certain predicates
be explicitly stated without changing the meaning of the modified program? How
to modify an AnsPrologprogram which assumes CWA so that it reasons appro-
priately when CWA is removed for certain predicates and we have incomplete
information about these predicates?

The non-classical operater encodes a form of directionality that makes it eas-
ier to encode causality, which can not be expressed in classical logic in a straight-
forward way. AnsProlotis more expressive than propositional and first-order
logic and can express transitive closure and aggregation that are not expressible in
them.

1.1.5 AnsProlog as a knowledge representation language

There has been extensive study about the suitability of AnsPrakbg knowledge
representation language. Some of the properties that have been studied are:

* When an AnsProldgprogram exhibitsestricted monotonicityThat is, it behaves mono-
tonically with respect to addition of literals about certain predicates. This is important
when developing an AnsProlog* program where we do not want future information to
change the meaning of a definition.

* When is an AnsProldgprogramlanguage independentWhen is itlanguage tolerarf
When is itsort-ignorable i.e., when can sorts be ignored?

* When can new knowledge be added through filtering?
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In addition it has been shown that AnsPralqgovidescompact representation
in certain knowledge representation problems; i.e., an equivalent representation in
a tractable language would lead to an exponential blow-up in space. Similarly, it
has been shown that certain representations in AnsPrakg not bemodularly
translated into propositional logic. On the other hand problems such as constraint
satisfaction problems, dynamic constraint satisfaction problems, etc. can be modu-
larly represented in AnsProldgn a similar manner to its relationship with default
logic, subclasses of other nonmonotonic formalisms such as auto-epistemic logic
have also been shown to be equivalent to AnsProlog

Finally, the popular sub-class AnsProlog has a sound approximate characteri-
zation, called the well-founded semantics, which has nice properties and which is
computationally more tractable.

1.1.6 AnsProlog implementations: Both a specification
and a programming language

Since AnsProloy is fully declarative, representation (or programming) in
AnsProlog can be considered both as a specification and a program. Thus
AnsProlod representations eliminate the ubiquitous gap between specification and
programming.

There are now some efficient implementations of AnsProtad-classes, and
many applications are built on top of these implementations. Although there are also
some implementations of other nonmonotonic logics such as default logic (DeReS
at the University of Kentucky) and circumscription (at the Lopkig University),
these implementations are very slow and very few applications have been developed
based on them.

1.1.7 Applications of AnsProlot

The following is a list of applications of AnsProlotp database query languages,
knowledge representation, reasoning, and planning.

¢ AnsProlog has a greater ability than Datalog in expressing database query features. In
particular, AnsProlofcan be used to give a declarative characterization of the standard
aggregate operatorsand recently it has been used to define new aggregate operators, and
even data mining operators. It can also be used for querying in the presence of different
kinds of incomplete information, includingull values

¢ AnsProlog has been used in planning and allows easy expression of different kinds
of (procedural, temporal, and hierarchical) domain control knowledge, ramification and
qualification constraints, conditional effects, and other advanced constructs, and can be
used for approximate planning in the presence of incompleteness. Unlike propositional
logic, AnsProlog can be used for conformant planning, and there are attempts to use
AnsProlog for planning with sensing and diagnostic reasoning. It has also been used for
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assimilating observation of an agent and planning from the current situation by an agent
in a dynamic world.

* AnsProlog has been used in product configuration, representing constraint satisfaction
problems (CSPs) and dynamic constraint satisfaction problems (DCSPs).

* AnsProlog has been used for scheduling, supply chain planning, and in solving combi-
natorial auctions.

* AnsProlog has been used in formalizing deadlock and reachability in Petri nets, in
characterizing monitors, and in cryptography.

* AnsProlog has been used in verification of contingency plans for shuttles, and also has
been used in verifying correctness of circuits in the presence of delays.

* AnsProlog has been used in benchmark knowledge representation problezhsas
reasoning about actions, plan verificatiamd the frame problem thereiim reasoning
with inheritance hierarchies, and in reasoning with prioritizecdks. It has been used
to formulate normative statements, exceptions, weak exceptions, and limited reasoning
about what is known and what is not.

* AnsPrologd is most appropriate for reasoning with incomplete information. It allows vari-
ous degrees of trade-dietween computing B€iency and completeness whesasoning
with incomplete information.

1.2 Answer set frameworks and programs

In this section we define the syntax of an AnsProélpgbgram (and its extensions
and sub-classes), and the various notations that will be used in defining the syntax
and semantics of these programs and in their analysis in the rest of the book.

An answer set framewotkconsists of two alphabets (an axiom alphabet and a
guery alphabet), two languages (an axiom language, and a query language) defined
over the two alphabets, a set of axioms, and an entailment relation between sets of
axioms and queries. The query alphabet will be closely associated with the axiom
alphabet and the query language will be fairly simple and will be discussed later in
Section 1.3.5. We will now focus on the axiom language.

Definition 1 The axiom alphabet (or simply ttedphabe} of an answer set frame-
work consists of seven classes of symbols:

(1) variables,

(2) object constants (also referredas constants),
(3) function symbols,

(4) predicate symbols,

(5) connectives,

(6) punctuation symbols, and

(7) the special symbal;

3 In contrast logical theories usually have a single alphabet, a single language, and have inference rules to derive
theorems from a given set of axioms. The theorems and axioms are both in the same language.
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where the connectives and punctuation symbols are fixed to th¢-setor,
<, not,)} and{ ‘(, ), "’ } respectively; while the other classes vary from
alphabet to alphabet. |

We now present an example to illustrate the role of the above classes of symbols.
Consider a world of blocks in a table. In this world, we may have object constants
such aslockl, block2,. .. corresponding to the particular blocks and the object
constantablereferring to the table. We may have predicaiagable, andonthat
can be used to describe the various properties that hold in a particular instance of the
world. For examplegn_table(blockl) means thablockl is on the table. Similarly,
on(block2, block3) may mean thablock2is on top ofblock3 An example of a
function symbol could ben_top, whereon_top(block3) will refer to the block (if
any) that is on top of block3.

Unlike the earlier prevalent view of considering logic programs as a subset of first
order logic we consider answer set theories to be different from first-order theories,
particularly with some different connectives. Hence, to make a clear distinction
between the connectives in a first-order theory and the connectives in the axiom
alphabet of an answer set framework, we use different symbols than normally used
in first-order theoriesor instead ofv, and ‘,’ instead ofA.

We use some informal notational conventions. In general, variables are arbitrary
strings of English letters and numbers that start with an upper-case letter, while
constants, predicate symbols and function symbols are strings that start with a
lower-case letter. Sometimes — when dealing with abstractions — we use the addi-
tional convention of using letters, q, . . . for predicate symbolsX, Y, Z, ... for
variables,f, g, h, ... for function symbols, and, b, c, . ... for constants.

Definition 2 A termis inductively defined as follows:

(1) A variable is a term.
(2) A constantis aterm.

(3) If f is an n-ary function symbandt, ..., t, are terms therf (t, ..., t,) is a term.
O
Definition 3 A term is said to bground if no variable occurs in it. O

Definition 4 Herbrand Universe and Herbrand Base

* The Herbrand Universe of a languagedenoted byHU,, is the set of all ground terms
which can be formed with the functions and constants.in

¢ An atomis of the formp(ty, .. ., t,), wherep is a predicate symbol and eatlis a term.
If each of thet;s is ground then the atom is said to be ground.

* The Herbrand Base of a languagedenoted byH B, is the set of all ground atoms that
can be formed with predicates frofhand terms fronHU .
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* A literal is either an atom or an atom preceded by the symbdlhe former is referred
to as a positive literal, while the latter is referred to as a negative literal.

A literal is referred to as ground if the atom in it is ground.
e A naf-literal is either an atom or an atom preceded by the symbal

The former is referred to as a positive naf-literal, while the latter is referred to as a negative
naf-literal.
* A gen-literal is either a literal or a literal preceded by the symbot. O

Example 1 Consider an alphabet with variabl&sandY, object constanta, b,
function symbolf of arity 1, and predicate symbols of arity 1. Let£; be the
language defined by this alphabet.

Then f(X) and f(f(Y)) are examples of terms, whilé(a) is an example of a
ground term. Bothp( f (X)) and p(Y) are examples of atoms, whilga) and
p( f(a)) are examples of ground atoms.

The Herbrand Universe of; is the set{a, b, f(a), f(b), f(f(a)), f(f(b)),

FE(f @), F(ECF D)), .. ).
The Herbrand Base of; is the set{p(a), p(b), p(f(a)), p(f (b)), p(f(f(a))),

p(f(f(b))), p(f(f(f(a)))), p(f(f(f(b))),...}. m]
Definition 5 A rule is of the form:
Loor---or Ly < Lgy1,..., Lm, NOt Liyyq, ..., NOt L. (1.2.2)

wherelL;s are literals or whek = 0, Lo may be the symbal , andk > 0, m > Kk,
andn > m.

Arule is said to be ground if all the literals of the rule are ground.

The parts on the left and on the right 6" are called thehead(or conclusion
and thebody(or premisé of the rule, respectively.

A rule with an empty body and a single disjunct in the head (ke=,0) is called
a fact, and then ifLo is a ground literal we refer to it as a ground fact.

A fact can be simply written without the- as:

Lo. (1.2.2)
Od

Whenk = 0, andLq = L, we refer to the rule ase@onstraint
The Ls in the heads of constraints are often eliminated and simply written as
rules with empty head, as in

<~ Lg,...,Lm,n0t Lmyq, ..., N0t Ly. (1.2.3)
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Definition 6 Letr be arule in a languag@. The grounding of in £, denoted by
groundr, £), is the set of all rules obtained fromby all possible substitutions of
elements oH U, for the variables im. O

Example 2 Consider the rulep(f(X)) < p(X). and the languagel; from
Example 1. Theground(r, £1) will consist of the following rules:

p(f(a)) < p(a).
p(f(b)) < p(b).
p(f(f(a))) < p(f(@)).
p(f(f (D)) < p(f(b)).

|

Definition 7 The answer set languaggiven by an alphabet consists of the set of
all ground rules constructed from the symbols of the alphabet. O

It is easy to see that the language given by an alphabet is uniquely determined
by its constant€), function symbolsF, and predicate symbolB. This triple
o = (0O, F, P) is referred to as thsignatureof the answer set framework and
often we describe a language by just giving its signature.

1.2.1 AnsProlog programs

An AnsProlodg program is a finite set of rules of the form (1.2.1), and is used to
succintly express a set of axioms of an answer set framework. ‘AnsProlog’ is a
short form forAnswer set programming in logiand the *’ denotes that we do not
place any restrictions on the rules.

With each AnsPrologprogramll, when its language is not otherwise specified,
we associate the languag¥IT) that is defined by the predicates, functions, and
constants occurring il. If no constant occurs ifl, we add some constants to
L(TT) for technical reasons. Unless stated otherwise, we use the simplified notation
HUp andH By instead ofH Uy andH By, respectively. When the context is
clear we may just uselU andH B, without the subscripts.

Example 3 Consider the following AnsProldgprogramiT:

p(@)-
p(b).
p(c)-
p(f (X)) < p(X).
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Then £(IT) is the language defined by the predicatdunction f, and constants
a, b, andc.

HUp is the set{a,b,c, f(a), f(b), f(c), f(f(a), f(f(b)), f(f(c)),
f(f(f(@)). f(f(f(0)). f(f(f(0))....}.
HBp is the set{p(a), p(b), p(c), p(f(a)), p(f(0)), p(f(c)), p(f(f(a),
p(f(f (b)), p(f(f(c))). p(f(f(f(@)), p(f(f(f (b)), p(f(f(f(c)))....}.
O
Throughout this book we consider several distinct sub-classes of AnsProlog
programs. The important ones are:

* AnsProlog program: A set of rules whelgs are atoms anl = 0. This is the most
popular sub-class, and to make it easier to write and refer, it does not have a superscript.

Such programs are syntacticdlieferred to agieneral logic programandnormal logic
programsin the literature. The program in Example 3 is an AnsProlog program.

Example 4 Following is an example of another AnsProlog progrfaom which we can
conclude thatweetyflies while skippyis abnormal and does not fly.

fly(X) <« bird(X), not ab(X).

ab(X) < penguir{X).

bird(X) <« penguirfX).

bird(tweety «.

penguirfskippy <. O

. AnsProIog’”ot program: A set of rules wherg s are atomsk = 0, andm = n.

Such programs are referred to dsfinite programsand Horn logic programsin the
literature.

Example 5 The following is an examplef an AnsProIognOt program from which we
can make conclusions about taacestorrelationship between the constaatd, c, d,
ande, for the particular parent relationship specified in the program:

anqX,Y) <« par(X,Y).

andX,Y) < par(X, Z),anqZ,Y).
par(a, b) «.

par(b, c) «.

par(d, €) «.

The first two rules of the above program can be used to define the ancestor relationship
over an arbitrary set gharentatoms. This is an example of ‘transitive closure’ and in
general it cannot be specified using first-order logic. O

4 AnsProlog programs also denote a particular semantics, while several different semantics may be associated
with general logic programs.
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¢ AnsProlog program: A set of rules whete= 0.

Such programs are syntactically referred t@aended logic programs the literature.

Example 6 The following is an example of an AnsPrologrogram from which we can
conclude thatweetyflies whilerockydoes not.

fly(X) <« bird(X), not —fly(X).

—fly(X) < penguir{X).

bird(tweety «.

bird(rocky) <.

penguirfrocky) <. ]

* AnsProlo@" program: A set of rules whete s are atoms.

Such programs are syntactically referred tonasmal disjunctive logic programia the
literature. Sub-classes of them whene= n are syntactically referred to aksjunctive
logic programs

Example 7 The following is an example of an AnsProfgprogram from which we can
conclude thaslinkyis either a bird or a reptile but not both.

bird(X) or reptile(X) « lays.egd X).
lays eggslinky) <. ]

¢ |n each of the above classes if we allow constraints (i.e., rules Wwiththe head) then
we have AnsPrology, AnsPrologtL AnsProlog-+ , and AnsProlo§' -+ programs
respectively.

« AnsProlog” "+ program: It is the same as an AnsPrdlggogram.

* AnsDatalog program: An AnsProlog program, with the restriction that the underlying
language does not have function symbols. The programs in Example 4 and Example 5
are also AnsDatalog programs, while the program in Example 3 is not an AnsDatalog
program.

. AnsDatan@‘ program,X € { ‘—not’, **',*=', ‘or’, ‘=, or', * —not, L', ‘=, L', ‘or, L,

‘=, or, L’ }: An AnsProlog’ program, with the restriction that the underlying language
does not have function symbols. The programs in Exarbplexample 6, and Exam-
ple 7 are examples of AnsDatald!, AnsDatalog, and AnsDatalo§ programs,
respectively.

* PropositionalY program, whereY is one of the above classes: A program from the
classY with the added restriction that all the predicates are of arity 0, i.e., all atoms are
propositional ones. An example of a propositional AnsProlog program is the program
{a <~ notb.b < not a.}.

¢ AnsProlog(n) program: An AnsProlog(n) program is an AnsProldgorogram that has
at mostn literals in the body of its rules. We can make similar restrictions for other
sub-classes of AnsProlbg
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The following table relates our terminologies to the various terminologies used in
the literature.

AnsProlog terminology Earlier terminologies
answer sets (of AnsProlog programnis) stable models
AnsProlog "0 definite programs, Horn logic programs
AnsProlog general logic programs, normal logic programs
(with stable model semantics)
AnsProlog extended logic programs
(with answer set semantics)
AnsProlo@"’ normal disjunctive logic programs
(with stable model semantics)
AnsProloghot.or disjunctive logic programs
AnsDatalogOt Datalog
AnsDatalog Datalod'®! (with stable model semantics)
AnsDatalo§" Datalod©t-9" (with stable model semantics

1.2.2 AnsProlog notations

In this section we will present an almost comprehensive list of additional notations
that will be used in the rest of this book. The reader should not become concerned
with the large range of notations, and does not need to grasp them all at the same
time. Only a small subset of them will be used together in a section or a chapter.
The reason we give them here together instead of distributing them over the various
chapters is that some of the notations are very similar and may create confusion if
presented separately. By presenting them together we can contrast them easily.

e Given arule of the form (1.2.1):
headr) = {Lo, ..., Lk},
bodyr) = {Lks1,..., Lm, NOt Limy1, ..., N0t Ly},
pogr) = body"(r) = {Lk+1, .-, Lm},
neqr) = body (r) = {Lm+1. ..., Lal,
lit(r) = headr) U poqr) U nedr), and
r is said to beactivewith respect to a paitX, Y) of sets of literals, ifpoqr) € X, and
negr)NyY =@.
Given a set of literal$, not Sdenotes the set of naf-literajsot | : | € S}. Using this
notation we writed < B*, not B~ to denote the rule where A is headr), B is
pogr), and5~ is nedr).
* For any progranil, HeadTIl) = | J, .; headr).
* Various notations for sets of atoms.
For a predicate, atomgp) will denote the subset dfi By formed with predicatep.
For a set of predicates, atomgA) will denote the subset ofl By formed with the
predicates inA.
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For a list of predicate®y, ..., pn, atomgps, ..., pn) denotes the set of atoms formed
with predicate;, ..., pn.
For a signature, atomgo’) denotes the set of atoms over
Given a set of naf-literalS, atomgS) denotes the s¢a : ais an atom, and € S} U {a:
ais an atom, andota € S}.
* Various notations for sets of literals.
For a progranl, lit(IT) = |J, . lit(r).
For a predicatep, Lit(p) denotes the collection of ground literals formed by the
predicatep.
For a languagé, Lit(£) denotes the set of all literals if.
For a progranTl, Lit; denotes the set of all literals in its associated languaige when
the context is clear we may just ukk.
For a list of predicategy, ..., pn, lit(ps, . . ., pn) denotes the set of literals formed with
predicatesy, ..., pn.
For a signature, lit(o) denotes the set of literals over
* For any logic progranil, we define

ground[T, £) = _J groundr, £)

rell

and writegroundIT) for ground 1, £(IT)).

Example 8 Consider the programi from Example 3. The progragroundIT) consists
of the following rules:

p@) «.

p(b) « .

p(c) <.

p(f(a) < p(a).
p(f(0)) < p(b).
p(f(c)) < p(c).
p(f(f(a))) < p(f(a)).
p(f(f(0))) < p(f(0)).
p(f(f(c)) < p(f(c)).

O

e Signatures; = {Oq, F1, Py} is said to be a sub-signature of signatage= {O,, F>, Py}
if O, € Oy, FL C F,andP; C Ps.
o1 + o denotes the signatuf®; U O,, F; U Fp, P U Py},
The sets of all ground terms over signatarare denoted byermgo).
Consistent sets of ground literals over signatur@re calledstatesof o and denoted by

statego).
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* For any literall, the sy_mboll_denotes the literal opposite in sign ltoThat is for an
atoma, if | = —a thenl = a, and ifl = a thenl = —a. Moreover, we say andl are
complementargr contraryliterals.

Similarly for a literall, not(l) denotes the gen-literalot |, while not(not |) denoteg.

* For a set of literalsS, S denotes the set B \ S

e For a set of literalss, =S denotes the se{t_ les).

e For aset of literal§, Cn(S) = Lit if Shas complementary literals; otherwise(S) = S.

* Two sets of literals§, and$; are said to disagree 8, N =S, # @. Otherwise we say that

they agree.
e Given a set of literald. and an AnsPrologprogramI1, IT U L means the AnsProldg
programITuU{l <. : | € L}.

* LetIT be an AnsProlog programbe a set of naf-literals, ariBibe a set of atom® is said
toagreewith A, if {a : ais an atom, and € A} C B and{a : ais an atom, andot a
AN B=0.

* A setSofliterals is said to beompletewith respect to a set of literaR if for any atom
in P either the atom or its negation is i WhenP = Sor P is clear from the context,
we may just saysis complete.

* AsetX of literals is said to beaturatedf every literal in X has its complement ix.

A set X of literals is said to besupported byan AnsProlog:-+ programl, if for every
literal L in X there is a rule ifl1 with L in its head and_4, ..., Ly, not L1, Not Ly
asits body suchthgt;..., Ly} € Xand{Ln1,...,La} N X =4.

* A rule is said to beange restrictedor allowed) if every variable occurring in a rule
of the form 1.2.1 occurs in one of the literdlg,, ..., Ln. In the presence of built-in
comparative predicates such egual, greater thanetc., the variables must occur in a
nonbuilt-in literal amond_x.1, - .., Lm. A programIl is range restricted (or allowed) if
every rule inI is range restricted.

The programs in Examples 3—7 are all range restricted. The program consisting of the
following rules is not range restricted, as its first rule has the varidlaethe head which
does not appear in its body at all.

p(X) < q.

r(a <.

The program consisting of the following rules is also not range restrictets st rule
has the variablé&y, which appears imot r (X, Y) in the body, but does not appear in a
positive naf-literal in the body.

p(X) < q(X), notr(X,Y).

r(a, b) <.

q(c) <.

1.3 Semantics of AnsProloy programs

In this section we define the semantics of AnsProlpgpgrams. For that we first
define the notion of answer sets for the various sub-classes and then define query
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languages appropriate for the various sub-classes and define the entailment between
programs and queries. While defining the answer sets we start with the most specific
sub-class and gradually consider the more general sub-classes.

The answer sets of an AnsProfqgogramIl, are defined in terms of the answer
sets of the ground progragroundIT). Hence, in the rest of the section we can
assume that we are only dealing with ground programs.

1.3.1 Answer sets of AnsProlod'©t and AnsProlog "0t programs

AnsProIognOt programs form the simplest class of declarative logic programs,
and its semantics can be defined in several ways. We present two of them here,
and refer to [LIo84, LIo87, LMR92] for other characterizations. In particular, we
present a model theoretic characterization and a fixpoint characterization.

Model theoretic characterization

A Herbrand interpretatiorof an AnsProlog programIl is any subset € H B
of its Herbrand base. Answer sets are defined as particular Herbrand interpretations
that satisfy certain properties with respect to the program and are ‘minimal’. We

say an interpretatioh is minimalamong the settl4, . . ., I,} if there does not exist
aj,1<j <nsuchthat; is astrict subset af. We say an interpretationis least
among the seflly, ..., Ip}ifforall j,1<j<nl CIj.

A Herbrand interpretation ®f IT is said tosatisfythe AnsProlog rule
Lo« Ly, ...,Lm, N0t Liyyyq,..., N0t L.

if(i) Lo# L:{L1,...,Ln} € Sand{Lmi1,...,Ln} N S=@impliesthat., € S.
(i) Lo=L:{Ly,...,Lm} € Sor{Lmy1,..., Ln} N S#A.

A Herbrand model Aof an AnsProlog program IT is a Herbrand interpretation
of IT such that it satisfies all rules if. We also refer to this a#\ is closed
underTl.

Definition 8 Ananswer setofan AnsProIoBoLL programll is a Herbrand model
of IT which is minimal among the Herbrand modelsof O

Example 9 Consider the following AnsProIU@Ot program:

p < a.
g <« h.

a <.
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The set{a, b, p, q} is a modet of this program as it satisfies all rules of this
program. The set&, p, q} and{a, p} are also models of this program. But the
set{a, b, p} is not a model of this program as it does not satisfy the second
rule.

Since{a, p} is a model of this program, the sdts b, p, q} and{a, p, g} which
are strict supersets ¢f, p} are not minimal models of this program. None of the
sets{a}, {p}, and{} are models of this program as each of them does not satisfy
at least one of the rules of the program. Thus since all the strict subsfgts mif
are not models of this prograrfg, p} is a minimal model and answer set of the
program. O

Example 10 The prograntl in Example 5 has an answer sgtgiven by the set
{par(a, b), par(b, ¢, par(d, €), anqa, b), anqb, c), anda, c), andd, €)}, whichis
also its unique minimal Herbrand model. It is easy to see $hattisfies all rules
of groundIT). Hence, it is a model dfl. We now have to show that it is a minimal
model. To show tha§, is a minimal model, we will show that none of the strict
subsets of5, are models ofyroundIT). Suppose we were to remove one of the
par atoms ofI1. In that case it will no longer be a model gfoundIT). Now
suppose we were to remogada, b) from S;. The resulting interpretation is not a
model ofgroundTI) as it does not satisfy one of the ground instances of the first
rule of IT. The same goes fandb, ¢) andandd, €). Hence, we cannot remove
one of those three and still have a model. Now, if we remavga, ¢), it will no
longer be a model as it will not satisfy one of the ground instances of the second
rule of I1. Hence,S, is a minimal model and answer setgrbundIT) and there-
fore of IT.

The setS; = {par(a, b), par(b, ¢), par(d, €), anda, b), andb, c), anda, c), anc
(d, e), par(d, c), andd, c)} isaHerbrand model gfround 1), as it satisfies all rules
in groundTI). S is not minimal among the models bf, asS,, a model off1, is a
strict subset 05.. Hence,S is also not an answer set Hf.

The se{par(a, b), par(b, ¢), par(d, €), anda, b), andb, ¢), anda, c), andd, e),
par(d, ¢)} is not a Herbrand model ofroundr) as it does not satisfy the
rule:

andd, c) < par(d, c).

which is one of the ground instances of the first rul@lof |

5 In the rest of this section whenever it is clear from the context we may simply say ‘model’ instead of ‘Herbrand
model.’
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The notion of model although useful, is a relic from the semantics of first-order
logic. So alternatively, answer sets can be defined without using the notion of a
model in the following way:

Definition 9 An answer sebf an AnsProIognOt’L programIT is a minimal sub-
set (with respect to subset ordering)of HB that is closed undegroundTT).
O

Proposition 1 AnsProlog "°t programs have unique answer sets. O

The above is not true in general for AnsPrcﬂES‘Qt*L programs. For example,
the program{p < ., L < p.} does not have an answer set. We will denote the
answer set of an AnsProIoBoU programIl, if it exists, by M(IT). Otherwise,
Mo(TT) is undefined. For an AnsPrologO! programIT we will denote its unique
minimal Herbrand model b M (IT).

Proposition 2 The intersection of the Herbrand models of an AnsProrﬂS’é pro-
gram is its unique minimal Herbrand model. O

Exercise 1 Consider the program consisting of the following rules.

P <P

What are the models of this program? What are its answer sets? O

Iterated fixpoint characterization

From a computational viewpoint, a more useful characterization is an iterated fix-
point characterization. To give such a characterization let us as§lteebe a
possibly infinite set of ground AnsProIo@Ot rules. Let 2'Br denote the set of

all Herbrand interpretations dfi. We define an operatdr? : 2H8n — 2HBn ag
follows:

Tg(l) ={Lo€ HBp | [Tcontainsaruldg < L4, ..., Ly suchthat
{L1,...,Lm} €| holds. (1.3.4)

The above operator is referred to as themediate consequence operatbrtu-
itively, T3(1) is the set of atoms that can be derived from a single applicatioh of
given the atoms in.

We will now argue thaT 8 is monotone, i.el, € I’ = T2(1) € T8(I"). Suppose
X is an arbitrary element of3(1). Then there must be a ruké < Ly, ..., L.
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in IT such that{fL4,..., Ly} € I.Sincel € I/, we havethafLq,...,Ln} C I'.
Hence, X must be inT2(1). Therefore T2(1) € T3(1").

Now, let us assign the empty set®§ 1 0. Let us also defing? 1 (i + 1) to be
T3(T 1 i). Clearly, T2 4 0 € T2 4 1; and by monotonicity o and transitivity
of €, we havelQ 1 i € T2 1 (i + 1). Inthe case of a finite Herbrand base it can be
easily seen that repeated applicatio §fstarting from the empty set will take us
to a fixpoint of T2. We will now argue that this fixpoint — let us refer to itas that
is reached is the least fixpoint @f. Suppose this is not the case. Then there must
be a different fixpoinb. Sinceb is the least fixpoint and is only a fixpointb C a.
Since? C b, by using the monotonicity property @ and by repeatedly applying
T2 to both sides we will obtaila C b. Thusa = b, contradicting our assumption
thatb is different froma. Hencea must be the least fixpoint af..

In the case of an infinite Herbrand base, the case is siraildrwe refer to
Appendix A. We can summarize the result from Appendix A as being that the
operatorT? satisfies a property callecontinuity, and the orderingc over the
elements in 281 is acomplete latticeboth of which guarantee that iterative appli-
cation of T starting from the empty set will take us to the least fixpoinEpfMore
formally, Ifp(T2) = T2 1 w = least upper bound of the s€T0 1 B : B < w},
wherew is the first limit ordinal.

An AnsProlog MOt programIT can now be characterized by its least fixpoint.
Recall that we assumdd to be a possibly infinite set of ground rules. When this
is not the case, anHl is non-ground, we characteriZé by the least fixpoint of
the programground). It can be shown that Ifgp°) is also the unique minimal

Herbrand model ofT.
Proposition 3 For any AnsProIognOt programil, Ifp(T2) = the unique minimal

Herbrand model of1 = the answer set dfl. O

We now give two examples showing how the answer set of AnsPTBRIg
programs can be computed by the iterated fixpoint method.

Example 11 Consider the following prograrfi from Example 9.

p < a.
q <« b.

a <.

By definition, T2 1 0 = @.

T 1 1="TH(Ty 1 0) = (a).

Th 1 2=Tgy(Tq 11) = {a p}.

TA13=TH(T912) ={a, p}=TH 12

Hence Ifp{Q) = {a, p}, and thereforg¢a, p} is the answer set dfl. O





