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Chapter 1

Declarative programming in AnsProlog∗: introduction
and preliminaries

Among other characteristics, an intelligent entity – whether an intelligent au-
tonomous agent, or an intelligent assistant – must have the ability to go beyond
just following direct instructions while in pursuit of a goal. This is necessary to be
able to behave intelligently when the assumptions surrounding the direct instruc-
tions are not valid, or there are no direct instructions at all. For example even a
seemingly direct instruction of ‘bring me coffee’ to an assistant requires the assis-
tant to figure out what to do if the coffee pot is out of water, or if the coffee machine
is broken. The assistant will definitely be referred to as lacking intelligence if he
or she were to report to the boss that there is no water in the coffee pot and ask the
boss what to do next. On the other hand, an assistant will be considered intelligent
if he or she can take a high level request of ‘make travel arrangements for my trip
to International AI conference 20XX’ and figure out the lecture times of the boss;
take into account airline, hotel and car rental preferences; take into account the
budget limitations, etc.; overcome hurdles such as the preferred flight being sold
out; and make satisfactory arrangements. This example illustratesone benchmark
of intelligence – the level of request an entity can handle. At one end of the spectrum
the request is a detailed algorithm that spells outhow to satisfy the request, which
no matter how detailed it is may not be sufficient in cases where the assumptions
inherent in the algorithm are violated. At the other end of the spectrum the request
spells outwhatneeds to be done, and the entity has the knowledge – again in the
whatform rather than thehowform – and the knowledge processing ability to figure
out the exact steps (that will satisfy the request) and execute them, and when it does
not have the necessary knowledge it either knows where to obtain the necessary
knowledge, or is able to gracefully get around its ignorance through its ability to
reason in the presence of incomplete knowledge.
The languages for spelling outhoware often referred to asproceduralwhile the

languages for spelling outwhatare referred to asdeclarative.Thus our initial thesis
that intelligent entitiesmust be able to comprehendandprocess descriptions ofwhat

1



2 1 Declarative programming in AnsProlog∗: introduction and preliminaries

leads to the necessity of inventing suitable declarative languages and developing
support structures around those languages to facilitate their use. We consider the
development of such languages to be fundamental to knowledge based intelligence,
perhaps similar to the role of the language of calculus in mathematics and physics.
This book is about such a declarative language – the language ofAnsProlog∗.We
now give a brief history behind the quest for a suitable declarative language for
knowledge representation, reasoning, and declarative problem solving.
Classical logic which has been used as a specification language for procedu-

ral programming languages was an obvious initial choice to represent declarative
knowledge. But it was quickly realized that classical logic embodies themonotonic-
ity property according to which the conclusion entailed by a body of knowledge
stubbornly remains valid nomatter what additional knowledge is added. This disal-
lowed human like reasoning where conclusions are made with the available (often
incomplete) knowledge andmay bewithdrawn in the presence of additional knowl-
edge. This led to the development of the field ofnonmonotonic logic, and several
nonmonotonic logics such as circumscription, default logic, auto-epistemic logic,
and nonmonotonic modal logics were proposed. The AI journal special issue of
1980 (volume 13, numbers 1 and 2) contained initial articles on some of these log-
ics. In the last twenty years there have been several studies on these languages on
issues such as representation of small common-sense reasoning examples, alterna-
tive semantics of these languages, and the relationship between the languages. But
the dearth of efficient implementations, use in large applications – say of more than
ten pages, and studies on building block support structures has for the time being
diminished their applicability. Perhaps the above is due to some fundamental defi-
ciency, suchas: all of these languageswhichbuild on topof the classical logic syntax
and allow nesting are quite complex, and all except default logic lack structure, thus
making it harder to use them, analyze them, and develop interpreters for them.
An alternative nonmonotonic language paradigm with a different origin whose

initial focus was to consider a subset of classical logic (rather than extending it) is
the programming language PROLOG and the class of languages clubbed together
as ‘logic programming’. PROLOG and logic programming grew out of work on
automated theorem proving and Robinson’s resolution rule. One important land-
mark in this was the realization by Kowalski and Colmerauer that logic can be used
as a programming language, and the term PROLOG was developed as an acronym
from PROgramming in LOGic. A subset of first-order logic referred to as Horn
clauses that allowed faster and simpler inferencing through resolution was chosen
as the starting point. The notion of closed world assumption (CWA) in databases
was then imported to PROLOG and logic programming and the negation as failure
operatornot was used to refer to negative information. The evolution of PROLOG
was guided by concerns that it be made a full fledged programming language with
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efficient implementations, often at the cost of sacrificing the declarativeness of
logic. Nevertheless, research also continued on logic programming languages with
declarative semantics. In the late 1980s and early 1990s the focus was on finding
the right semantics for agreed syntactic sub-classes. One of the two most popular
semantics proposed during that time is theanswer set semantics, also referred to
as thestable model semantics.
This book is about the language of logic programming with respect to the an-

swer set semantics. We refer to this language as AnsProlog∗, as a short form of
‘Programming inlogic with Answer sets’1. In the following section we give an
overview of how AnsProlog∗ is different from PROLOG and also the other non-
monotonic languages, and present the case for AnsProlog∗ to be the most suit-
able declarative language for knowledge representation, reasoning, and declarative
problem solving.

1.1 Motivation: Why AnsProlog∗?

In this section2, for the purpose of giving a quick overview without getting into a
lot of terminology, we consider an AnsProlog∗ program to be a collection of rules
of the form:

L0 or · · ·or Lk ← Lk+1, . . . , Lm,not Lm+1, . . . , not Ln.

where each of theLi s is a literal in the sense of classical logic. Intuitively, the above
rule means that ifLk+1, . . . , Lm are to be true and ifLm+1, . . . , Ln can be safely
assumed to be false then at least one ofL0, . . . , Lk must be true.
This simple language has a lot going for it to be the leading language for knowl-

edge representation, reasoning, and declarative problem solving. To start with, the
nonclassical symbols←, andnot in AnsProlog∗ give it a structure and allow us to
easily definesyntactic sub-classesandstudy their properties. It so happens that these
various sub-classes have a range of complexity and expressiveness thus allowing us
to choose the appropriate sub-classes for particular applications. Moreover, there
exists amore tractable approximate characterizationwhich can be used – at the pos-
sible cost of completeness –when time is a concern. Unlike the other nonmonotonic
logics, AnsProlog∗ now has efficient implementationswhich have been used to pro-
gram large applications. In addition, the expressiveness studies show AnsProlog∗

to be as expressive as some of these logics, while syntactically it seems less intimi-
dating as it does not allow arbitrary formulas. Finally, the most important reason to
study and use AnsProlog∗ is that there is now a large body (much larger than for any
other knowledge representation language) of support structure around AnsProlog∗

1 In the recent literature it has also been referred to as A-Prolog [BGN00, Gel01].
2 In Section 1.2 we introduce more specific terminologies and use those in the rest of the book.
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that includes the above mentioned implementations and theoretical building block
results that allowsystematic construction ofAnsProlog∗ programs, andassimilation
of new information. We now expand on these points in greater detail.

1.1.1 AnsProlog∗ vs PROLOG

Although, PROLOGgrew out of programmingwith Horn clauses – a subset of first-
order logic, several nondeclarative features were included in PROLOG to make
it programmer friendly. We propose AnsProlog∗ as a declarative alternative to
PROLOG. Besides the fact that AnsProlog∗ allows disjunction in the head of rules,
the following are the main differences between AnsProlog∗ and Prolog.

� The ordering of literals in the body of a rule matters in PROLOG as it processes them
from left to right. Similarly, the positioning of a rule in the program matters in PROLOG
as it processes them from start to end. The ordering of rules and positioning of literals in
the body of a rule do not matter in AnsProlog∗. From the perspective of AnsProlog∗, a
program is asetof AnsProlog∗ rules, and in each AnsProlog∗ rule, the body is asetof
literals and literals preceded bynot.

� Query processing in PROLOG is top-down from query to facts. In AnsProlog∗ query-
processingmethodologyisnot part of thesemantics.Most soundandcomplete interpreters
with respect to AnsProlog∗ do bottom-up query processing from facts to conclusions or
queries.

� Because of the top-down query processing, and start to end, and left to right processing
of rules and literals in the body of arule respectively, a PROLOG program may get into
an infinite loop for even simple programs without negation as failure.

� The cut operator in PROLOG is extra-logical, although there have been some recent
attempts at characterizing it. This operator is not part of AnsProlog∗.

� There are certain problems, such as floundering and getting stuck in a loop, in the way
PROLOG deals with negation as failure. In general, PROLOG has trouble with programs
that have recursions through the negation as failure operator. AnsProlog∗ does not have
these problems, and as its name indicates it uses theanswer setsemantics to characterize
negation as failure.

In this book, besides viewing AnsProlog∗ as a declarative alternative to PROLOG,
we also view PROLOG systems as top-down query answering systems that are
correct with respect to a sub-class of AnsProlog∗ under certain conditions. In
Section 8.4 we present these conditions and give examples that satisfy these
conditions.

1.1.2 AnsProlog∗ vs Logic programming

AnsProlog∗ is a particular kind of logic programming. In AnsProlog∗ we fix the
semantics toanswer set semantics, and only focus on that. On the other hand logic
programming refers to a broader agenda where different semantics are considered
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as alternatives. We now compare AnsProlog (a sub-class of AnsProlog∗ with only
one atom in the head, andwithout classical negation in the body)with the alternative
semantics of programs with AnsProlog syntax.
Since the early days of logic programming there have been several proposals for

semantics of programswithAnsProlog syntax.Wediscuss someof the popular ones
in greater detail in Chapter 9. Among them, the most popular ones are thestable
model semanticsand thewell-founded semantics. The stablemodels are same as the
answer sets of AnsProlog programs, the main focus of this book. The well-founded
semantics differs from the stable model semantics in that:

� Well-founded models are three-valued, while stable models are two valued.
� Each AnsProlog program has a unique well-founded model, while some AnsProlog
programs have multiple stable models and somedo not have any.

For example, the program{p← not p.} has no stable models while it has the unique
well-founded model wherep is assigned the truth valueunknown.

The program{b← not a.,a← not b., p← a., p← b.} has two stable models{p,a}
and{p,b} while its unique well-founded model assigns the truth valueunknownto p, a,
andb.

� Computing the well-founded model or entailment with respect to it is more tractable
than computing the entailment with respect to stable models.On the other hand the latter
increases the expressive power of the language.

As will be clear from many of the applications that will be discussed in Chapters 4
and 5, the nondeterminism that can be expressed through multiple stable models
plays an important role. In particular, they are important for enumerating choices
that are used in planning and also in formalizing aggregation. On the other hand,
the absence of stable models of certain programs, which was initially thought of
as a drawback of the stable model semantics, is useful in formulating integrity
constraints whose violation forces elimination of models.

1.1.3 AnsProlog∗ vs Default logic

The sub-class AnsProlog can be considered as a particular subclass of default logic
that leads to a more efficient implementation. Recall that a default logic is a pair
(W, D), whereW is a first-order theory andD is a collection of defaults of the type
α:β1,...,βn

γ
, whereα, β, andγ are well-founded formulas. AnsProlog can be consid-

ered as a special case of a default theory whereW = ∅, γ is an atom,α is a con-
junction of atoms, andβi s are literals. Moreover, it has been shown that AnsProlog∗

and default logic have the same expressiveness. In summary, AnsProlog∗ is syntac-
tically simpler than default logic and yet has the same expressiveness, thus making
it more usable.
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1.1.4 AnsProlog∗ vs Circumscription and classical logic

The connective ‘←’ and the negation as failure operator ‘not’ in AnsProlog∗ add
structure to an AnsProlog∗ program. The AnsProlog∗ rulea← b. is different from
the classical logic formulab ⊃ a, and the connective ‘←’ divides the rule of an
AnsProlog∗ program into two parts: the head and the body.
This structure allows us to define several syntactic and semi-syntactic notions

such as:splitting, stratification, signing, etc. Using these notions we can define
several subclasses of AnsProlog∗ programs, and study their properties such as:
consistency, coherence, complexity, expressiveness, filter-abducibility, andcompi-
lability to classical logic.
The sub-classes and their specific properties have led to several building block

results and realization theorems that help in developing large AnsProlog∗ programs
in a systematic manner. For example, suppose we have a set of rules with the
predicatesp1, . . . , pn in them. Now if we add additional rules to the program
such thatp1, . . . , pn only appear in the body of the new rules, then if the overall
program is consistent the addition of the new rules does not change the meaning
of the original predicatesp1, . . . , pn. Additional realization theorems deal with
issues such as: When can closed world assumption (CWA) about certain predicates
be explicitly stated without changing the meaning of the modified program? How
to modify an AnsProlog∗ program which assumes CWA so that it reasons appro-
priately when CWA is removed for certain predicates and we have incomplete
information about these predicates?
The non-classical operator← encodes a form of directionality that makes it eas-

ier to encode causality, which can not be expressed in classical logic in a straight-
forward way. AnsProlog∗ is more expressive than propositional and first-order
logic and can express transitive closure and aggregation that are not expressible in
them.

1.1.5 AnsProlog∗ as a knowledge representation language

There has been extensive study about the suitability of AnsProlog∗ as a knowledge
representation language. Some of the properties that have been studied are:

� When an AnsProlog∗ program exhibitsrestricted monotonicity. That is, it behavesmono-
tonically with respect to addition of literals about certain predicates. This is important
when developing an AnsProlog* program where we do not want future information to
change the meaning of a definition.

� When is an AnsProlog∗ programlanguage independent? When is itlanguage tolerant?
When is itsort-ignorable; i.e., when can sorts be ignored?

� When can new knowledge be added through filtering?
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In addition it has been shown that AnsProlog∗ providescompact representation
in certain knowledge representation problems; i.e., an equivalent representation in
a tractable language would lead to an exponential blow-up in space. Similarly, it
has been shown that certain representations in AnsProlog∗ can not bemodularly
translated into propositional logic. On the other hand problems such as constraint
satisfaction problems, dynamic constraint satisfaction problems, etc. can be modu-
larly represented in AnsProlog∗. In a similar manner to its relationship with default
logic, subclasses of other nonmonotonic formalisms such as auto-epistemic logic
have also been shown to be equivalent to AnsProlog∗.
Finally, the popular sub-class AnsProlog has a sound approximate characteri-

zation, called the well-founded semantics, which has nice properties and which is
computationally more tractable.

1.1.6 AnsProlog∗ implementations: Both a specification
and a programming language

Since AnsProlog∗ is fully declarative, representation (or programming) in
AnsProlog∗ can be considered both as a specification and a program. Thus
AnsProlog∗ representations eliminate the ubiquitous gap between specification and
programming.
There are now some efficient implementations of AnsProlog∗ sub-classes, and

manyapplications are built on top of these implementations. Although there are also
some implementations of other nonmonotonic logics such as default logic (DeReS
at the University of Kentucky) and circumscription (at the Link¨oping University),
these implementations are very slowand very fewapplications have been developed
based on them.

1.1.7 Applications of AnsProlog∗

The following is a list of applications of AnsProlog∗ to database query languages,
knowledge representation, reasoning, and planning.

� AnsProlog∗ has a greater ability than Datalog in expressing database query features. In
particular, AnsProlog∗ can be used to give a declarative characterization of the standard
aggregate operators, and recently it has been used to define new aggregate operators, and
even data mining operators. It can also be used for querying in the presence of different
kinds of incomplete information, includingnull values.

� AnsProlog∗ has been used in planning and allows easy expression of different kinds
of (procedural, temporal, and hierarchical) domain control knowledge, ramification and
qualification constraints, conditional effects, and other advanced constructs, and can be
used for approximate planning in the presence of incompleteness. Unlike propositional
logic, AnsProlog∗ can be used for conformant planning, and there are attempts to use
AnsProlog∗ for planning with sensing and diagnostic reasoning. It has also been used for
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assimilating observation of an agent and planning from the current situation by an agent
in a dynamic world.

� AnsProlog∗ has been used in product configuration, representing constraint satisfaction
problems (CSPs) and dynamic constraint satisfaction problems (DCSPs).

� AnsProlog∗ has been used for scheduling, supply chain planning, and in solving combi-
natorial auctions.

� AnsProlog∗ has been used in formalizing deadlock and reachability in Petri nets, in
characterizing monitors, and in cryptography.

� AnsProlog∗ has been used in verification of contingency plans for shuttles, and also has
been used in verifying correctness of circuits in the presence of delays.

� AnsProlog∗ has been used in benchmark knowledge representation problemssuch as
reasoning about actions, plan verification,and the frame problem therein,in reasoning
with inheritance hierarchies, and in reasoning with prioritized defaults. It has been used
to formulate normative statements, exceptions, weak exceptions, and limited reasoning
about what is known and what is not.

� AnsProlog∗ is most appropriate for reasoningwith incomplete information. It allows vari-
ous degrees of trade-offbetween computing efficiency and completeness whenreasoning
with incomplete information.

1.2 Answer set frameworks and programs

In this section we define the syntax of an AnsProlog∗ program (and its extensions
and sub-classes), and the various notations that will be used in defining the syntax
and semantics of these programs and in their analysis in the rest of the book.
An answer set framework3 consists of two alphabets (an axiom alphabet and a

query alphabet), two languages (an axiom language, and a query language) defined
over the two alphabets, a set of axioms, and an entailment relation between sets of
axioms and queries. The query alphabet will be closely associated with the axiom
alphabet and the query language will be fairly simple and will be discussed later in
Section 1.3.5. We will now focus on the axiom language.

Definition 1 The axiom alphabet (or simply thealphabet) of an answer set frame-
work consists of seven classes of symbols:

(1) variables,
(2) object constants (also referredto as constants),
(3) function symbols,
(4) predicate symbols,
(5) connectives,
(6) punctuation symbols, and
(7) the special symbol⊥;
3 In contrast logical theories usually have a single alphabet, a single language, and have inference rules to derive
theorems from a given set of axioms. The theorems and axioms are both in the same language.
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where the connectives and punctuation symbols are fixed to the set{¬, or,
←,not ,‘,’ } and { ‘(’, ‘)’, ‘.’ } respectively; while the other classes vary from
alphabet to alphabet. �

We now present an example to illustrate the role of the above classes of symbols.
Consider a world of blocks in a table. In this world, we may have object constants
such asblock1, block2, . . . corresponding to the particular blocks and the object
constanttablereferring to the table. We may have predicateson table, andon that
can be used to describe the various properties that hold in a particular instance of the
world. For example,on table(block1) means thatblock1 is on the table. Similarly,
on(block2,block3) may mean thatblock2 is on top ofblock3. An example of a
function symbol could beon top, whereon top(block3) will refer to the block (if
any) that is on top of block3.
Unlike the earlier prevalent viewof considering logic programsas a subset of first

order logic we consider answer set theories to be different from first-order theories,
particularly with some different connectives. Hence, to make a clear distinction
between the connectives in a first-order theory and the connectives in the axiom
alphabet of an answer set framework, we use different symbols than normally used
in first-order theories:or instead of∨, and ‘,’ instead of∧.
We use some informal notational conventions. In general, variables are arbitrary

strings of English letters and numbers that start with an upper-case letter, while
constants, predicate symbols and function symbols are strings that start with a
lower-case letter. Sometimes – when dealing with abstractions – we use the addi-
tional convention of using lettersp,q, . . . for predicate symbols,X,Y, Z, . . . for
variables,f, g, h, . . . for function symbols, anda,b, c, . . . for constants.

Definition 2 A term is inductively defined as follows:

(1) A variable is a term.
(2) A constant is a term.
(3) If f is an n-ary function symbolandt1, . . . , tn are terms thenf (t1, . . . , tn) is a term.

�

Definition 3 A term is said to beground, if no variable occurs in it. �

Definition 4 Herbrand Universe and Herbrand Base

� The Herbrand Universe of a languageL, denoted byHUL, is the set of all ground terms
which can be formed with the functions and constants inL.

� An atomis of the formp(t1, . . . , tn), wherep is a predicate symbol and eachti is a term.
If each of theti s is ground then the atom is said to be ground.

� The Herbrand Base of a languageL, denoted byHBL, is the set of all ground atoms that
can be formed with predicates fromL and terms fromHUL.



10 1 Declarative programming in AnsProlog∗: introduction and preliminaries

� A literal is either an atom or an atom preceded by the symbol¬. The former is referred
to as a positive literal, while the latter is referred to as a negative literal.

A literal is referred to as ground if the atom in it is ground.
� A naf-literal is either an atom or an atom preceded by the symbolnot.

The former is referred to as a positive naf-literal, while the latter is referred to as a negative
naf-literal.

� A gen-literal is either a literal or a literal preceded by the symbolnot. �

Example 1 Consider an alphabet with variablesX andY, object constantsa,b,
function symbol f of arity 1, and predicate symbolsp of arity 1. LetL1 be the
language defined by this alphabet.

Then f (X) and f ( f (Y)) are examples of terms, whilef (a) is an example of a
ground term. Bothp( f (X)) and p(Y) are examples of atoms, whilep(a) and
p( f (a)) are examples of ground atoms.

The Herbrand Universe ofL1 is the set{a,b, f (a), f (b), f ( f (a)), f ( f (b)),
f ( f ( f (a))), f ( f ( f (b))), . . .}.

The Herbrand Base ofL1 is the set{p(a), p(b), p( f (a)), p( f (b)), p( f ( f (a))),
p( f ( f (b))), p( f ( f ( f (a)))), p( f ( f ( f (b)))), . . .}. �

Definition 5 A rule is of the form:

L0 or · · ·or Lk ← Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln. (1.2.1)

whereLi s are literals or whenk = 0, L0 may be the symbol⊥, andk ≥ 0,m≥ k,
andn ≥ m.
A rule is said to be ground if all the literals of the rule are ground.

The parts on the left and on the right of ‘←’ are called thehead(or conclusion)
and thebody(or premise) of the rule, respectively.

A rule with an empty body and a single disjunct in the head (i.e.,k = 0) is called
a fact, and then ifL0 is a ground literal we refer to it as a ground fact.

A fact can be simply written without the← as:

L0. (1.2.2)
�

Whenk = 0, andL0 = ⊥, we refer to the rule as aconstraint.
The⊥s in the heads of constraints are often eliminated and simply written as

rules with empty head, as in

← L1, . . . , Lm,not Lm+1, . . . , not Ln. (1.2.3)



1.2 Answer set frameworks and programs 11

Definition 6 Let r be a rule in a languageL. The grounding ofr in L, denoted by
ground(r,L), is the set of all rules obtained fromr by all possible substitutions of
elements ofHUL for the variables inr . �

Example 2 Consider the rulep( f (X)) ← p(X). and the languageL1 from
Example 1. Thenground(r,L1) will consist of the following rules:

p( f (a)) ← p(a).
p( f (b)) ← p(b).
p( f ( f (a))) ← p( f (a)).
p( f ( f (b))) ← p( f (b)).
... �

Definition 7 Theanswer set languagegiven by an alphabet consists of the set of
all ground rules constructed from the symbols of the alphabet. �

It is easy to see that the language given by an alphabet is uniquely determined
by its constantsO, function symbolsF , and predicate symbolsP. This triple
σ = (O, F, P) is referred to as thesignatureof the answer set framework and
often we describe a language by just giving its signature.

1.2.1 AnsProlog∗ programs

An AnsProlog∗ program is a finite set of rules of the form (1.2.1), and is used to
succintly express a set of axioms of an answer set framework. ‘AnsProlog’ is a
short form forAnswer set programming in logic, and the ‘∗’ denotes that we do not
place any restrictions on the rules.
With each AnsProlog∗ program�, when its language is not otherwise specified,

we associate the languageL(�) that is defined by the predicates, functions, and
constants occurring in�. If no constant occurs in�, we add some constants to
L(�) for technical reasons. Unless stated otherwise, we use the simplified notation
HU� andHB� instead ofHUL(�) andHBL(�), respectively. When the context is
clear we may just useHU andHB, without the subscripts.

Example 3 Consider the following AnsProlog∗ program�:

p(a).
p(b).
p(c).
p( f (X)) ← p(X).
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ThenL(�) is the language defined by the predicatep, function f , and constants
a,b, andc.

HU� is the set {a,b, c, f (a), f (b), f (c), f ( f (a)), f ( f (b)), f ( f (c)),
f ( f ( f (a))), f ( f ( f (b))), f ( f ( f (c))), . . .}.

HB� is the set{p(a), p(b), p(c), p( f (a)), p( f (b)), p( f (c)), p( f ( f (a))),
p( f ( f (b))), p( f ( f (c))), p( f ( f ( f (a)))), p( f ( f ( f (b)))), p( f ( f ( f (c)))), . . .}.

�

Throughout this book we consider several distinct sub-classes of AnsProlog∗

programs. The important ones are:

� AnsProlog program: A set of rules whereLi s are atoms andk = 0. This is the most
popular sub-class, and to make it easier to write and refer, it does not have a superscript.

Such programs are syntactically4 referred to asgeneral logic programsandnormal logic
programsin the literature. The program in Example 3 is an AnsProlog program.

Example 4 Following is an example of another AnsProlog programfrom which we can
conclude thattweetyflies whileskippyis abnormal and does not fly.

fly(X) ← bird(X),not ab(X).
ab(X) ← penguin(X).
bird(X) ← penguin(X).
bird(tweety) ←.
penguin(skippy) ←. �

� AnsProlog−not program: A set of rules whereLi s are atoms,k = 0, andm= n.
Such programs are referred to asdefinite programsandHorn logic programsin the
literature.

Example 5 The following is an exampleof an AnsProlog−not program from which we
can make conclusions about theancestorrelationship between the constantsa,b, c,d,
ande, for the particular parent relationship specified in the program:

anc(X,Y) ← par(X,Y).
anc(X,Y) ← par(X, Z),anc(Z,Y).
par(a,b) ←.
par(b, c) ←.
par(d,e) ←.

The first two rules of the above program can be used to define the ancestor relationship
over an arbitrary set ofparentatoms. This is an example of ‘transitive closure’ and in
general it cannot be specified using first-order logic. �

4 AnsProlog programs also denote a particular semantics, while several different semantics may be associated
with general logic programs.
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� AnsProlog¬ program: A set of rules wherek = 0.

Such programs are syntactically referred to asextended logic programsin the literature.

Example 6 The following is an example of an AnsProlog¬ program from which we can
conclude thattweetyflies whilerockydoes not.

fly(X) ← bird(X),not ¬fly(X).
¬fly(X) ← penguin(X).
bird(tweety) ←.
bird(rocky) ←.
penguin(rocky) ←. �

� AnsPrologor program: A set of rules whereLi s are atoms.

Such programs are syntactically referred to asnormal disjunctive logic programsin the
literature. Sub-classes of them wherem= n are syntactically referred to asdisjunctive
logic programs.

Example 7 The following is an example of an AnsPrologor program from which we can
conclude thatslinky is either a bird or a reptile but not both.

bird(X) or reptile(X) ← lays egg(X).
lays egg(slinky) ←. �

� In each of the above classes if we allow constraints (i.e., rules with⊥ in the head) then
we have AnsProlog⊥ , AnsProlog−not,⊥, AnsProlog¬,⊥ , and AnsPrologor ,⊥ programs
respectively.

� AnsProlog¬, or,⊥ program: It is the same as an AnsProlog∗ program.
� AnsDatalog program: An AnsProlog program, with the restriction that the underlying
language does not have function symbols. The programs in Example 4 and Example 5
are also AnsDatalog programs, while the program in Example 3 is not an AnsDatalog
program.

� AnsDatalogX program,X ∈ { ‘−not’, ‘ ∗’, ‘¬’, ‘ or’, ‘¬,or’, ‘−not, ⊥’, ‘¬, ⊥’, ‘ or, ⊥’,
‘¬,or, ⊥’ }: An AnsPrologX program, with the restriction that the underlying language
does not have function symbols. The programs in Example5, Example 6, and Exam-
ple 7 are examples of AnsDatalog−not, AnsDatalog¬, and AnsDatalogor programs,
respectively.

� PropositionalY program, whereY is one of the above classes: A program from the
classY with the added restriction that all the predicates are of arity 0, i.e., all atoms are
propositional ones. An example of a propositional AnsProlog program is the program
{a← not b.b← not a.}.

� AnsProlog∗(n) program: An AnsProlog∗(n) program is an AnsProlog∗ program that has
at mostn literals in the body of its rules. We can make similar restrictions for other
sub-classes of AnsProlog∗.
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The following table relates our terminologies to the various terminologies used in
the literature.

AnsProlog terminology Earlier terminologies

answer sets (of AnsProlog programs) stable models
AnsProlog−not definite programs, Horn logic programs
AnsProlog general logic programs, normal logic programs

(with stable model semantics)
AnsProlog¬ extended logic programs

(with answer set semantics)
AnsPrologor normal disjunctive logic programs

(with stable model semantics)
AnsProlog−not,or disjunctive logic programs
AnsDatalog−not Datalog
AnsDatalog Datalognot (with stable model semantics)
AnsDatalogor Datalognot ,or (with stable model semantics)

1.2.2 AnsProlog∗ notations

In this section we will present an almost comprehensive list of additional notations
that will be used in the rest of this book. The reader should not become concerned
with the large range of notations, and does not need to grasp them all at the same
time. Only a small subset of them will be used together in a section or a chapter.
The reason we give them here together instead of distributing them over the various
chapters is that some of the notations are very similar and may create confusion if
presented separately. By presenting them together we can contrast them easily.

� Given a ruler of the form (1.2.1):
head(r ) = {L0, . . . , Lk},
body(r ) = {Lk+1, . . . , Lm,not Lm+1, . . . ,not Ln},
pos(r ) = body+(r ) = {Lk+1, . . . , Lm},
neg(r ) = body−(r ) = {Lm+1, . . . , Ln},
lit (r ) = head(r ) ∪ pos(r ) ∪ neg(r ), and
r is said to beactivewith respect to a pair〈X,Y〉 of sets of literals, ifpos(r ) ⊆ X, and
neg(r ) ∩ Y = ∅.

Given a set of literalsS, not Sdenotes the set of naf-literals{not l : l ∈ S}. Using this
notation we writeA ← B+,not B− to denote the ruler whereA is head(r ), B+ is
pos(r ), andB− is neg(r ).

� For any program�, Head(�) = ⋃
r∈� head(r ).

� Various notations for sets of atoms.
For a predicatep, atoms(p) will denote the subset ofHB� formed with predicatep.
For a set of predicatesA, atoms(A) will denote the subset ofHB� formed with the
predicates inA.
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For a list of predicatesp1, . . . , pn, atoms(p1, . . . , pn) denotes the set of atoms formed
with predicatesp1, . . . , pn.

For a signatureσ , atoms(σ ) denotes the set of atoms overσ .
Given a set of naf-literalsS,atoms(S) denotes the set{a : a is an atom, anda ∈ S} ∪ {a :
a is an atom, andnot a ∈ S}.

� Various notations for sets of literals.
For a program�, lit (�) = ⋃

r∈� lit (r ).
For a predicatep, Lit(p) denotes the collection of ground literals formed by the
predicatep.

For a languageL, Lit(L) denotes the set of all literals inL.
For a program�, Lit� denotes the set of all literals in its associated language;and when
the context is clear we may just useLit.

For a list of predicatesp1, . . . , pn, lit (p1, . . . , pn) denotes the set of literals formed with
predicatesp1, . . . , pn.

For a signatureσ , lit (σ ) denotes the set of literals overσ .
� For any logic program�, we define

ground(�,L) =
⋃

r∈�

ground(r,L)

and writeground(�) for ground(�,L(�)).

Example 8 Consider the program� from Example 3. The programground(�) consists
of the following rules:

p(a) ←.
p(b) ← .
p(c) ← .
p( f (a)) ← p(a).
p( f (b)) ← p(b).
p( f (c)) ← p(c).
p( f ( f (a))) ← p( f (a)).
p( f ( f (b))) ← p( f (b)).
p( f ( f (c))) ← p( f (c)).
... �

� Signatureσ1 = {O1, F1, P1} is said to be a sub-signature of signatureσ2 = {O2, F2, P2}
if O1 ⊆ O2, F1 ⊆ F2 andP1 ⊆ P2.
σ1 + σ2 denotes the signature{O1 ∪ O2, F1 ∪ F2, P1 ∪ P2}.
The sets of all ground terms over signatureσ are denoted byterms(σ ).
Consistent sets of ground literals over signatureσ are calledstatesof σ and denoted by
states(σ ).
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� For any literall , the symboll̄ denotes the literal opposite in sign tol . That is for an
atoma, if l = ¬a then l̄ = a, and if l = a then l̄ = ¬a. Moreover, we sayl and l̄ are
complementaryor contrary literals.

Similarly for a literall , not(l ) denotes the gen-literalnot l , whilenot(not l ) denotesl .

� For a set of literalsS, S̄denotes the setHB \ S.
� For a set of literalsS, ¬Sdenotes the set{l̄ : l ∈ S}.
� For a set of literalsS,Cn(S) = Lit if Shas complementary literals; otherwiseCn(S) = S.
� Two sets of literalsS1 andS2 are said to disagree ifS1 ∩ ¬S2 �= ∅. Otherwise we say that
they agree.

� Given a set of literalsL and an AnsProlog∗ program�, � ∪ L means the AnsProlog∗
program� ∪ {l ← . : l ∈ L}.

� Let�beanAnsProlog program,Abea set of naf-literals, andB bea set of atoms.B is said
to agreewith A, if {a : a is an atom, anda ∈ A} ⊆ B and{a : a is an atom, andnot a ∈
A} ∩ B = ∅.

� A setSof literals is said to becompletewith respect to a set of literalsP if for any atom
in P either the atom or its negation is inS. WhenP = Sor P is clear from the context,
we may just sayS is complete.

� A setX of literals is said to besaturatedif every literal inX has its complement inX.
� A set X of literals is said to besupported byan AnsProlog¬,⊥ program�, if for every
literal L in X there is a rule in� with L in its head andL1, . . . , Lm,not Lm+1,not Ln
as its body such that{L1 . . . , Lm} ⊆ X and{Lm+1, . . . , Ln} ∩ X = ∅.

� A rule is said to berange restricted(or allowed) if every variable occurring in a rule
of the form 1.2.1 occurs in one of the literalsLk+1, . . . , Lm. In the presence of built-in
comparative predicates such asequal, greater than, etc., the variables must occur in a
nonbuilt-in literal amongLk+1, . . . , Lm. A program� is range restricted (or allowed) if
every rule in� is range restricted.

The programs in Examples 3–7 are all range restricted. The program consisting of the
following rules is not range restricted, as its first rule has the variableX in the head which
does not appear in its body at all.

p(X) ← q.
r (a) ←.

The program consisting of the following rules is also not range restricted, asits first rule
has the variableY, which appears innot r (X,Y) in the body, but does not appear in a
positive naf-literal in the body.

p(X) ← q(X),not r (X,Y).
r (a,b) ←.
q(c) ←.

1.3 Semantics of AnsProlog∗ programs

In this section we define the semantics of AnsProlog∗ programs. For that we first
define the notion of answer sets for the various sub-classes and then define query
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languages appropriate for the various sub-classes and define the entailment between
programsand queries.While defining the answer setswe start with themost specific
sub-class and gradually consider the more general sub-classes.
The answer sets of an AnsProlog∗ program�, are defined in terms of the answer

sets of the ground programground(�). Hence, in the rest of the section we can
assume that we are only dealing with ground programs.

1.3.1 Answer sets of AnsProlog−not and AnsProlog−not,⊥ programs

AnsProlog−not programs form the simplest class of declarative logic programs,
and its semantics can be defined in several ways. We present two of them here,
and refer to [Llo84, Llo87, LMR92] for other characterizations. In particular, we
present a model theoretic characterization and a fixpoint characterization.

Model theoretic characterization

A Herbrand interpretationof an AnsProlog⊥ program� is any subsetI ⊆ HB�

of its Herbrand base. Answer sets are defined as particular Herbrand interpretations
that satisfy certain properties with respect to the program and are ‘minimal’. We
say an interpretationI isminimalamong the set{I1, . . . , In} if there does not exist
a j , 1≤ j ≤ n such thatI j is a strict subset ofI . We say an interpretationI is least
among the set{I1, . . . , In} if for all j , 1≤ j ≤ n I ⊆ I j .
A Herbrand interpretation Sof � is said tosatisfythe AnsProlog⊥ rule

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln.

if (i) L0 �= ⊥: {L1, . . . , Lm} ⊆ Sand{Lm+1, . . . , Ln} ∩ S= ∅ implies thatL0 ∈ S.
(ii) L0 = ⊥: {L1, . . . , Lm} �⊆ Sor {Lm+1, . . . , Ln} ∩ S �= ∅.
A Herbrand model Aof an AnsProlog⊥ program � is a Herbrand interpretation
of � such that it satisfies all rules in�. We also refer to this asA is closed
under�.

Definition 8 Ananswer set of anAnsProlog−not,⊥ program� is aHerbrandmodel
of � which is minimal among the Herbrand models of�. �

Example 9 Consider the following AnsProlog−not program:

p← a.
q ← b.
a← .
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The set{a,b, p,q} is a model5 of this program as it satisfies all rules of this
program. The sets{a, p,q} and {a, p} are also models of this program. But the
set {a,b, p} is not a model of this program as it does not satisfy the second
rule.
Since{a, p} is a model of this program, the sets{a,b, p,q} and{a, p,q} which

are strict supersets of{a, p} are not minimal models of this program. None of the
sets{a}, {p}, and{} are models of this program as each of them does not satisfy
at least one of the rules of the program. Thus since all the strict subsets of{a, p}
are not models of this program,{a, p} is a minimal model and answer set of the
program. �

Example 10 The program� in Example 5 has an answer setS1 given by the set
{par(a,b),par(b, c), par(d,e),anc(a,b),anc(b, c),anc(a, c),anc(d,e)}, which is
also its unique minimal Herbrand model. It is easy to see thatS1 satisfies all rules
of ground(�). Hence, it is a model of�. We now have to show that it is a minimal
model. To show thatS1 is a minimal model, we will show that none of the strict
subsets ofS1 are models ofground(�). Suppose we were to remove one of the
par atoms of�. In that case it will no longer be a model ofground(�). Now
suppose we were to removeanc(a,b) from S1. The resulting interpretation is not a
model ofground(�) as it does not satisfy one of the ground instances of the first
rule of�. The same goes foranc(b, c) andanc(d,e). Hence, we cannot remove
one of those three and still have a model. Now, if we removeanc(a, c), it will no
longer be a model as it will not satisfy one of the ground instances of the second
rule of�. Hence,S1 is a minimal model and answer set ofground(�) and there-
fore of�.
The setS2 = {par(a,b),par(b, c), par(d,e),anc(a,b),anc(b, c),anc(a, c),anc

(d,e),par(d, c),anc(d, c)} is aHerbrandmodel ofground(�), as it satisfiesall rules
in ground(�). S2 is not minimal among the models of�, asS1, a model of�, is a
strict subset ofS2. Hence,S2 is also not an answer set of�.
Theset{par(a,b),par(b, c),par(d,e),anc(a,b),anc(b, c), anc(a, c),anc(d,e),

par(d, c)} is not a Herbrand model ofground(π ) as it does not satisfy the
rule:

anc(d, c) ← par(d, c).

which is one of the ground instances of the first rule of�. �

5 In the rest of this section whenever it is clear from the context we may simply say ‘model’ instead of ‘Herbrand
model.’
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The notion of model although useful, is a relic from the semantics of first-order
logic. So alternatively, answer sets can be defined without using the notion of a
model in the following way:

Definition 9 An answer setof an AnsProlog−not,⊥ program� is a minimal sub-
set (with respect to subset ordering)S of HB that is closed underground(�).

�

Proposition 1 AnsProlog−not programs have unique answer sets. �

The above is not true in general for AnsProlog−not,⊥ programs. For example,
the program{p← ., ⊥ ← p.} does not have an answer set. We will denote the
answer set of an AnsProlog−not,⊥ program�, if it exists, byM0(�). Otherwise,
M0(�) is undefined. For an AnsProlog−not program� we will denote its unique
minimal Herbrand model byMM(�).

Proposition 2 The intersection of the Herbrand models of an AnsProlog−not pro-
gram is its unique minimal Herbrand model. �

Exercise 1Consider the program consisting of the following rules.

p← p.

What are the models of this program? What are its answer sets? �

Iterated fixpoint characterization

From a computational viewpoint, a more useful characterization is an iterated fix-
point characterization. To give such a characterization let us assume� to be a
possibly infinite set of ground AnsProlog−not rules. Let 2HB� denote the set of
all Herbrand interpretations of�. We define an operatorT0� : 2HB� → 2HB� as
follows:

T0�(I ) = {L0 ∈ HB� | � contains a ruleL0 ← L1, . . . , Lm. such that

{L1, . . . , Lm} ⊆ I holds}. (1.3.4)

The above operator is referred to as theimmediate consequence operator. Intu-
itively, T0�(I ) is the set of atoms that can be derived from a single application of�

given the atoms inI .
Wewill nowargue thatT0� ismonotone, i.e.,I ⊆ I ′ ⇒ T0�(I ) ⊆ T0�(I ′). Suppose

X is an arbitrary element ofT0�(I ). Then there must be a ruleX ← L1, . . . , Lm.
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in � such that{L1, . . . , Lm} ⊆ I . SinceI ⊆ I ′, we have that{L1, . . . , Lm} ⊆ I ′.
Hence,X must be inT0�(I

′). Therefore,T0�(I ) ⊆ T0�(I ′).
Now, let us assign the empty set toT0� ↑ 0. Let us also defineT0� ↑ (i + 1) to be

T0�(T
0
� ↑ i ). Clearly,T0� ↑ 0⊆ T0� ↑ 1; and by monotonicity ofT0� and transitivity

of⊆, we haveT0� ↑ i ⊆ T0� ↑ (i + 1). In the case of a finite Herbrand base it can be
easily seen that repeated application ofT0� starting from the empty set will take us
to a fixpoint ofT0�. We will now argue that this fixpoint – let us refer to it asa – that
is reached is the least fixpoint ofT0�. Suppose this is not the case. Then there must
be a different fixpointb. Sinceb is the least fixpoint anda is only a fixpoint,b ⊆ a.
Since∅ ⊆ b, by using the monotonicity property ofT0� and by repeatedly applying
T0� to both sides we will obtaina ⊆ b. Thusa = b, contradicting our assumption
thatb is different froma. Hence,amust be the least fixpoint ofT0�.
In the case of an infinite Herbrand base, the case is similarand we refer to

Appendix A. We can summarize the result from Appendix A as being that the
operatorT0� satisfies a property calledcontinuity, and the ordering⊆ over the
elements in 2HB� is acomplete lattice, both of which guarantee that iterative appli-
cation ofT0� starting from the empty set will take us to the least fixpoint ofT0�. More
formally, lfp(T0�) = T0� ↑ ω = least upper bound of the set{T0� ↑ β : β < ω},
whereω is the first limit ordinal.
An AnsProlog−not program� can now be characterized by its least fixpoint.

Recall that we assumed� to be a possibly infinite set of ground rules. When this
is not the case, and� is non-ground, we characterize� by the least fixpoint of
the programground(�). It can be shown that lfp(T0�) is also the unique minimal
Herbrand model of�.

Proposition 3 For any AnsProlog−not program�, lfp(T0�) = the unique minimal
Herbrand model of� = the answer set of�. �

We now give two examples showing how the answer set of AnsProlog−not

programs can be computed by the iterated fixpoint method.

Example 11 Consider the following program� from Example 9.

p← a.
q ← b.
a← .

By definition,T0� ↑ 0= ∅.
T0� ↑ 1= T0�

(
T0� ↑ 0

) = {a}.
T0� ↑ 2= T0�

(
T0� ↑ 1

) = {a, p}.
T0� ↑ 3= T0�

(
T0� ↑ 2

) = {a, p} = T0� ↑ 2.

Hence lfp(T0�) = {a, p}, and therefore{a, p} is the answer set of�. �




