
1 The point particle

“We must proceed very slowly, for we are in a great hurry.”
Statement at the beginning of the peace talks with the Palestinians

A number of the features of string theory are shared by the point particle. This is not too
surprising as the point particle can be obtained in the limit as the string collapses to a point.
Although one might think that the relativistic free point particle is a rather trivial system, it
is a system with constraints and must be quantised with corresponding care. In this chapter
we give the classical description of the point particle and then quantise it using first the
Dirac method and then Becchi–Rouet–Stora–Tutin (BRST) quantisation techniques.

These steps are then repeated for the superparticle. There are two ways to incorporate
supersymmetry into the point particle and these lead to different formulations that have,
after quantisation, different physical states.

1.1 The bosonic point particle

1.1.1 The classical point particle and its Dirac quantisation

As the point particle moves through a Minkowski space-time of dimension D with coordi-
nates xμ, μ = 0, 1, . . . ,D − 1, it sweeps out a one-dimensional curve called the world line
which we choose to parameterise by τ . We may write the world line as xμ(τ ). The motion
of the point particle is taken to be so as to be an extremum of the action

A = −m
∫

dτ
√−ẋμẋνημν, (1.1.1)

where ẋμ ≡ dxμ/dτ and ημν is the Minkowski metric, which in our conventions is given by
ημν = diag(−1,+1,+1, . . . ,+1). For a time-like particle, that is, one moving at less than
the speed of light, −ds2 = −ημνdxμdxν = dt2 −∑D−1

i=1 dxidxi > 0, since in our units the
speed of light is set to 1. For such a motion the quantity under the square root is positive.
This is the reason for the minus sign under the square root. The proper time u of the particle
is defined by du2 = −ds2 and we recognise that A = −m

∫
du. As a result, we conclude

that the point particle moves so as to extremise its proper time.
The choice of parameterisation of the world line is of no physical significance and indeed

the action of equation (1.1.1) is invariant under the reparameterisations τ → τ ′(τ ). Such an
infinitesimal transformation can be written as τ ′ = τ − f (τ ), where f is a small quantity.
The field xμ is taken to be a scalar under reparameterisations, namely xμ′(τ ′) = xμ(τ ).
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2 The point particle

The infinitesimal variation of any field φ which is defined on a space-time labelled by ξ ,
all indices being suppressed, is defined to be δφ(ξ ) = φ′(ξ )− φ(ξ ). Therefore, an infinites-
imal transformation acts on the field xμ as

δxμ = xμ′(τ )− xμ(τ ) = xμ(τ + f )− xμ(τ ) = f (τ )ẋμ. (1.1.2)

We may write the above action in an alternative, but classically equivalent way, namely

A = 1
2

∫
dτ {e−1ẋμẋνημν − m2e}, (1.1.3)

where xμ and e are independent fields. This action is also reparameterisation invariant
under the transformation τ ′ = τ − f (τ ), which acts on the above fields as the infinitesimal
transformations

δxμ = f ẋμ, δe = f ė + ḟ e. (1.1.4)

We recognise the first term in equation (1.1.3) as D scalar fields coupled to one-dimensional
gravity; e is the einbein on the one-dimensional world line and the metric is given by
gττ = −e2.

It is often useful to introduce explicitly the momentum pμ and write the action of equation
(1.1.3) in a first order form, namely

A =
∫

dτ
{

ẋμpνημν − e

2
(pμpνημν + m2)

}
. (1.1.5)

Eliminating pμ by its algebraic equation of motion in this action we recover the action
of equation (1.1.3), demonstrating that these two actions are equivalent. The equations of
motion of the action of equation (1.1.3) are

d

dτ
(e−1ẋμ) = 0, e2m2 + ẋμẋνημν = 0. (1.1.6)

Substituting e from its equation of motion into the action of equation (1.1.3), we recover
the action of equation (1.1.1), while the first equation becomes the equation of motion of
the action of equation (1.1.1).

All the above actions are Poincaré invariant, but the second two actions have the
advantage that they can be used even in the massless case, that is, m = 0. In this
case, the actions of equation (1.1.3) and (1.1.5) are also invariant under space-time
conformal transformations. Indeed, it is straightforward to verify that the action of
equation (1.1.3), with m = 0, is invariant under δxμ = wμ, δe = (2/D)e∂νwν provided
∂μwν + ∂νwμ = (2/D)ημν∂ρwρ . We recognise the latter condition as that required for a
reparameterisation to preserve the Minkowski space line element up to an arbitrary scale
factor, in other words a conformal transformation. We refer the reader to chapter 8 for
further details of conformal transformations.

To analyse the point particle, we may start from any of the above actions. Let us first take
the action of equation (1.1.1) Taking τ as our time evolution parameter, the corresponding
canonical momentum is given by

pμ = ∂L

∂ ẋμ(τ )
= mẋμ√−ẋμẋνημν

, (1.1.7)

where L is the Lagrangian and is given by L = −m
√−ẋμẋvημν .
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3 1.1 The bosonic point particle

We find by inspection that the momenta automatically satisfy the constraint

φ ≡ pμpμ + m2 = 0 (1.1.8)

and so there are fewer momenta than coordinates. This can be viewed as a consequence of
the reparameterisation invariance of the action. The Hamiltonian

H = pμẋμ − L (1.1.9)

vanishes once we substitute for pμ. As the Hamiltonian is the generator of time translations
and so the motion of the system, we might appear, at first sight, to have no dynamics.

The method of dealing with such a constrained system was given by Dirac in [1.1] and
we encourage the reader to consult this reference. However, we give a summary of the
Dirac method in appendix A that will be sufficient to completely understand the following
sections. The reader who is unfamiliar with this method may wish to read appendix A
before going further. However, in the discussion below the steps are rather natural and for
those in a hurry it can be followed without an additional reading.

We now apply the Dirac method of quantisation to the point particle. The Poisson brackets
that involve xμ and pμ are given by

{xμ, xν} = 0 = {pμ, pν}, {xμ, pν} = ημν. (1.1.10)

We take the Hamiltonian, which by usual methods vanishes, to be proportional to the
constraint φ multiplied by v(τ ), which is an arbitrary function of τ . It is given by

H = v(τ )(pμpμ + m2). (1.1.11)

Continuing the Dirac procedure we must demand that the constraint is preserved in time.
However, in this case, we find that (d/dτ )φ = {φ, H} = 0 and so there is no new constraint.
Hence we have a system which has only one constraint which obviously obeys {φ , φ} = 0,
and so it is a first class constraint in the language of Dirac.

The Hamiltonian H generates time translations and so the equations of motion are

dxμ

dτ
= {xμ,H} = 2v(τ )pμ,

d pμ

dτ
= {pμ,H} = 0. (1.1.12)

We note that reparameterisations change the dependence of the coordinates xμ on time while
time evolution shifts the time dependence. As such, reparameterisations and time evolution
have much in common and in particular τ → τ + constant is a reparameterisation which
can also be viewed as a time evolution. This is why the right-hand side of the above
equations of motion resembles a reparameterisation when multiplied by an appropriate
parameter.

To quantise the theory we make the usual transition, according to the Dirac rule, from
Poisson brackets to commutators, with an appropriate factor of i h. The commutators for the
coordinates and momenta are then given by [xμ, xν] = 0 = [pμ, pν] and [xμ, pν] = i hημν .
These commutators are represented by the replacements

xμ → xμ; pμ → −i h
∂

∂xμ
. (1.1.13)

Setting h = 1, the constraint becomes

φ̂ = (−∂2 + m2). (1.1.14)
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4 The point particle

This is no longer an algebraic condition, but a differential operator. To proceed further, we
consider the particle to be described by a wavefunction, or field, ψ(xμ, τ ) and we impose
the constraint

φ̂ψ = (−∂2 + m2)ψ = 0. (1.1.15)

We also impose the Schrödinger equation

i h
∂ψ

∂τ
= H · ψ. (1.1.16)

However, the right-hand side of this equation vanishes once the constraint φ is imposed
and we find that ψ is independent of τ . We recognise the usual formulation of a second-
quantised spin-0 particle namely, the τ dependence has disappeared and we are left with
the Klein–Gordon equation.

Let us now briefly consider starting from the alternative action of equation (1.1.3). The
momentum conjugate to xμ is pμ = e−1ẋμ, but the momentum pe conjugate to e vanishes.
We take this latter condition as a constraint: r ≡ pe = 0. The Hamiltonian is found to be
H = (e/2)(pμpμ + m2)+ s(τ )pe, where s is an arbitrary function of τ . The non-vanishing
fundamental Poisson brackets are {xμ, pν} = ημν, {e, pe} = 1. Insisting that the time devel-
opment of the constraint r = 0 should vanish implies that ṙ = {r, H} = 1

2 (p
μpμ + m2) = 0.

Hence, we recover the constraint of equation (1.1.7) and the Hamiltonian vanishes
as it is proportional to the constraints. It is easy to verify that there are no further
constraints.

To quantise the system we proceed much as before. We turn the Poisson brackets into
commutators with an i h factor and adopt a Schrödinger representation. The constraints
are then imposed on the wavefunction, which depends on the coordinates xμ and e. The
constraint pμpμ + m2 = 0 becomes the Klein–Gordon equation, while the other constraint
states that the wavefunction does not depend on e. The Schrödinger equation simply
states that the wavefunction does not depend on τ . Hence, we arrive at the same quantum
system.

Although we may not implement a gauge choice naively in the action, we may use it on
the equations of motion of any system. We note that the equations of motion of the action
of equation (1.1.3) given in equation (1.1.6) can be simplified by a suitable gauge choice.
Indeed, we may use the reparameterisation invariance of equation (1.1.4) to choose e = 1,
whereupon they become

ẍμ = 0, ẋμẋνημν + m2 = 0. (1.1.17)

We note that the second equation, when expressed in terms of momenta, is just the constraint
found above. The constraint ẋμẋνημν + m2 = 0 is none other than the condition that the
energy-momentum tensor of the one-dimensional system in the absence of gravity should
vanish. We may read off the energy-momentum tensor by substituting e = 1 + h into
the action of equation (1.1.3) expanding in terms of h and taking the coefficient of the
term linear in h. Another possible gauge choice is to take ẋ0 = 1. This is called the
static gauge and an analogue of it will be used extensively when we come to discuss
branes.
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5 1.1 The bosonic point particle

1.1.2 The BRST quantization of the point particle

We now wish to apply the BRST approach to the point particle. The BRST transformations
were found in [1.2], they were further developed in [1.3] and the relation between the
BRST charge and the physical states were found in [1.4]. This approach will be particularly
important for the string. The reader may wish to first read appendix A, where the BRST
formulation of Yang–Mills theory is given and the general procedure is explained. We
begin with the action of equation (1.1.3), which is world-line reparameterisation invariant
under the transformations of equation (1.1.2). Corresponding to the one local invariance
with parameter f (τ ), we introduce the ghost c(τ ) and anti-ghost b(τ ), which are both
Grassmann odd.

The BRST transformations of the original fields are found by the substitution f (τ )→
�c(τ ), where� is a Grassmann odd BRST parameter, into the original local transformations
of equation (1.1.4). The result is

δxμ = (�c)ẋμ, δe = d

dτ
((�c)e). (1.1.18)

We choose c to be Hermitian, but � is taken to be anti-Hermitian in order that �c be real.
The standard rule for taking the complex conjugate of two Grassmann odd variables is to
reverse their order and then take their individual complex conjugates; thus

(�c)∗ = c∗�∗ = −�∗c∗ = �c. (1.1.19)

The transformation law of the ghost is given by

δc = (�c)ċ. (1.1.20)

Under an infinitesimal reparameterisation xμ transforms as δxμ = f ẋμ; carrying out the
commutation of two infinitesimal reparameterisations f1 and f2 yields a third reparameter-
isation with parameter

f12 = (− f1 ḟ2 + f2 ḟ1). (1.1.21)

Following the prescription in appendix A, we find that f̃12 = 2�cċ and so equation (1.1.20).
To the fields xμ, e, c, b we add the Lagrange multiplier λ (called B in appendix A). The

anti-ghost b transforms into the multiplier λ, namely,

δλ = 0, δb = �λ. (1.1.22)

Although the above may seem like a cookery book recipe, we have arrived at one of the
desired results, namely a set of nilpotent transformations. For example, two transformations
on c are given by

δ�1δ�2 c = δ�1 {(�2c)ċ}

= �2 ((�1c)ċ) ċ +�2c
d

dτ
{(�1c)ċ} = 0. (1.1.23)

We now choose the gauge fixing function to be

G = ln e. (1.1.24)
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6 The point particle

Setting G = 0 sets e = 1. Consequently, we should add to the original action of equation
(1.1.3) the gauge fixing term

Agf =
∫

dτλ ln e. (1.1.25)

A BRST invariant action is given by

ABRST = Aorig + Agf + Agh

= 1
2

∫
dτ {e−1ẋμẋνημν − m2e} +

∫
dτλ ln e −

∫
dτbDτ c, (1.1.26)

where Aorig is the action of equation (1.1.3) and Agf is that of equation (1.1.25). Due to its
original reparameterisation invariance Aorig is automatically BRST invariant. We find by
cancelling the variations of Agf that

Agh = −
∫

dτbDτ c, (1.1.27)

where Dτ c = ċ + (d ln e/dτ )c. An alternative way of arriving at the above result is to note
that under a BRST transformation

δ�{b(ln e)} = �(λ(ln e)− bDτ c), (1.1.28)

and use the nilpotency of δ� to establish the BRST invariance of Agf + Agh.
The quantum theory is then given by the functional integral∫

DeDxμDcDbDλ exp(iABRST ).

In this functional integral, we can carry out the λ integration which sets e = 1, whereupon
the BRST action becomes

A final =
∫

dτ
(

1
2 ẋμẋνημν − 1

2 m2 − bċ
)
. (1.1.29)

This result is still BRST invariant; however, for δb we must substitute the value of λ given
by the e equation of motion with e = 1, that is,

δb = �

(
ẋμẋμ

2
+ m2

2
− d

dτ
(bc)

)
, (1.1.30)

the other variations being unchanged.
As the action of equation (1.1.29) is BRST invariant, we can in the standard way deduce

the associated Noether current Q which, in this one-dimensional case, is also the BRST
charge. We find that it is given by

Q = c(pμpμ + m2), (1.1.31)

where pμ = ẋμ is the momentum conjugate to xμ. We take the definition of momenta for
Grassmann odd variables to be left differentiation of the action by the coordinate. Hence,
the momentum for the coordinate c is given by

�∂

∂ ċ
A = b. (1.1.32)

We could also take b as our coordinate and then c would be the corresponding momentum.
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7 1.1 The bosonic point particle

We now give a Poisson bracket suitable for a general system which contains Grassmann
even and odd variables. Given a system with coordinates qA and corresponding momenta
pA, some of which may be Grassmann odd, we define the Poisson bracket of two functions
f and g of qA and pA as

{ f , g}PB =
∑

A

{
f

←
∂

∂qA

→
∂

∂ pA
g− (−1) f gg

←
∂

∂qA

→
∂

∂ pA
f

}
, (1.1.33)

where

(−1) f g =
{−1 if f and g are Grassmann odd,

1 otherwise.

It satisfies the relations

{ f , g}PB = −(−1) f g{g, f }PB, { f , gk}PB = (−1) f gg{ f , k}PB + { f , g}PBk,
(1.1.34){ f1 + f2, g}PB = { f1, g}PB + { f2, g}PB

as well as a generalised Jacobi identity.
Returning to the point particle and the action of equation (1.1.29). We find that the

resulting non-zero Poisson brackets for the coordinates and momenta are

{xμ, pν}PB = ημv, {c, b}PB = 1. (1.1.35)

The Hamiltonian associated to the action of equation (1.1.29) is given by

H = pμpμ + m2. (1.1.36)

The BRST charge is the generator of transformations in the usual sense that

δ• = {•,�Q}PB, (1.1.37)

where • is any field. The reader may verify that, on-shell, these transformations agree with
those previously given and are an invariance of the Hamiltonian equations of motion. We
note that the Q satisfies the equation {Q,Q}PB = 0.

To quantise the system we apply the Dirac rule

{,}PB →

⎧⎪⎪⎨⎪⎪⎩
1

i h
{,} for two odd quantities,

1

i h
[,] otherwise

(1.1.38)

to the Poisson brackets. In the above, {A,B} ≡ AB + BA and [A,B] ≡ AB − BA. The use
of the symbol {,} in the quantum theory should not be confused with the classical Poisson
bracket used in the other sections in this book where it is not generally given the subscript
PB. Consequently, we must demand

[xμ, pν] = i hημν, {c, b} = i h. (1.1.39)

We may use the generalisation of the Schrödinger representation:

xμ → xμ, c → c pμ → −i h
∂

∂xμ
b → i h

∂

∂c
. (1.1.40)

In checking the appearance of is, it is important to remember that b is anti-Hermitian.
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8 The point particle

The BRST charge now becomes the operator

Q = c(−∂2 + m2) (1.1.41)

and it is obviously nilpotent, that is, Q2 = 0 as c2 = 0.
We now consider wavefunctions of the coordinates, that is, 
(xμ, c). Taylor expanding

in c, the wavefunction has the form


(xμ, c) = ψ(xμ)+ cφ(xμ) (1.1.42)

as c is Grassmann odd. In the BRST formalism, physical states are taken to satisfy the
condition

Q
 = 0. (1.1.43)

This condition is equivalent to

(−∂2 + m2)ψ = 0, (1.1.44)

which is the usual Klein–Gordon result. Two physical states are equivalent if they differ by
a term of the form Q�. We may take�(xμ, c) to be of the form�(xμ, c) = a(xμ)+ cb(xμ)
and so Q�(xμ, c) = c(−∂2 + m2)a(x). Thus two fields φ are equivalent if they differ by a
term of the form (−∂2 + m2)a(x) for any a and so any φ is equivalent to the trivial field 0.
Thus the physical states are described by only the field ψ subject to equation (1.1.44), in
other words the well-known result.

We observe that the results of the usual quantisation carried out in section (1.1.1) can be
rewritten in terms of the BRST formalism. For example, equation (1.1.15) can be written
as Q
 = 0 if the field 
 is subject to b
 = 0. The latter condition sets φ to zero. We also
note that the equation Q
 = 0 has a local invariance under δ
 = Q�, where now � is a
arbitrary function of space-time. At first sight, these observations could be regarded as a
cumbersome way of describing the point particle. However, with hindsight, and after the
discovery of an analogous equation for the string, it was realised that what had looked like
an artificial manipulation of the BRST formalism had a deeper significance. The meaning
of the above statements will become clearer when we study gauge covariant string theory
in chapter 12.

The method of BRST quantization originated [1.2] in the context of Yang–Mills theory,
which is still the prototype example of how to proceed. The systematic use of the BRST
charge, for general systems with first class constraints, was carried out in [1.3]. For some
reviews of this procedure, see [1.4]. It must be stated, however, that the BRST method,
as with any quantisation method, is more like an art than a science. Its justification is that
the final result, namely a nilpotent set of transformations and an invariant action, usually
defines a quantum theory which is unitary and whose physical observables are independent
of how the gauge was fixed.

1.2 The super point particle

The key to finding systems whose quantisation leads to particles with spin is the introduction
of Grassmann odd degrees of freedom [1.5, 1.6]. There are, however, two different ways
to proceed: we may extend the ordinary point particle by encoding either a world-line
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9 1.2 The super point particle

supersymmetry or a space-time supersymmetry. These two formulations, called the spinning
particle [1.7, 1.8] and the Brink–Schwarz particle [1.9], respectively, look very different
and indeed lead to different physics. While the former may be quantised straightforwardly,
the covariant quantisation of the latter presents formidable problems. In what follows
we explain both formulations beginning with the spinning particle. We also explain how
twistors can be used to give alternative formulations of the super point particle that avoid
the quantisation problems found in one of the formulations. It is interesting to compare the
discovery of the supersymmetric formulation of the spinning particle with the corresponding
development, as discussed in chapter 6, of the superstring with world-sheet supersymmetry
whose supersymmetric action was found very shortly afterwards.

1.2.1 The spinning particle

The massless bosonic particle is described by D fields xμ, μ = 0, 1, . . . ,D − 1 coupled to
one-dimensional gravity with einbein e. To extend this to a formulation with world-line
supersymmetry we begin with a theory of D fields xμ and their superpartners χμ which is
invariant under rigid supersymmetry. We will then couple this system to one-dimensional,
or world-line, supergravity which is described by the graviton and its superpartner, the
gravitino ψ .

Let us therefore consider the action

AF = 1
2

∫
dτ (ẋμẋν − iχμχ̇ν )ημν. (1.2.1)

We take xμ and χμ to be Grassmann even and odd, respectively. We recall that in the
classical theory, Grassmann even objects commute with Grassmann even and Grassmann
odd objects, but that Grassmann odd objects anti-commute with Grassmann odd objects, that
is, χμχν = −χνχμ. The action of equation (1.2.1) is invariant under rigid time translations

δxμ = aẋμ, δχμ = aχ̇μ (1.2.2)

and rigid supersymmetry, whose transformations are given by

δxμ = iεχμ, δχμ = ẋμε, (1.2.3)

where ε is Grassmann odd. We choose ε and χμ to be real, that is, ε∗ = ε, χμ∗ = χμ. The
commutator of two such transformations is found to be

[δ1, δ2]• = 2iε2ε1
d

dτ
• (1.2.4)

acting on either xμ or χμ, which are denoted by • in the above equation. We recognise the
result as a time translation of magnitude 2iε2ε1.

The supersymmetry current j is given by

j = ẋμχνημν. (1.2.5)

One standard method of finding the current corresponding to any rigid symmetry is to let the
parameter of the symmetry become local, that is, space-time dependent, and then compute
the variation of the action. Since the action is invariant when the parameter is constant,
the variation of the action must contain the space-time derivative of the parameter times a
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10 The point particle

quantity that is just the current. This identification follows from the fact that any variation
of the action is given by the equation of motion multiplied by the field variation and so
it must vanish when the equations of motion are enforced. As a result, in the case of the
above variation we conclude that the object identified as the current is indeed conserved if
the equations of motion hold. In the case under consideration here we let ε → ε(τ ) and
write the variation of the action as δA = i

∫
dτ ((d/dτ )ε) j. Carrying out this calculation

we find the supersymmetry current of equation (1.2.5).
The coupling of the action of equation (1.2.1) to world-line supergravity (e, ψ) is given

by

A = 1
2

∫
dτ
(
e−1ẋμẋν − iχμχ̇ν − κe−1iψχμẋν

)
ημν (1.2.6)

and the local supersymmetry transformations which leave it invariant are

δxμ = iεχμ, δχμ =
(

ẋμ − κ

2
iψχμ

)
εe−1,

(1.2.7)
δe = iκεψ, δψ = 2

κ
ε̇,

where the supersymmetry parameter ε is an arbitrary function of τ . It is also invariant
under reparameterisation symmetry δxμ = kẋμ, δχμ = kχ̇μ, δe = d(ke)/dτ and δψ =
d(kψ)/dτ , where k is an arbitrary function of τ .

We now explain how this result is found using the Noether method since it provides
a simple example which illustrates most of the points required to construct supergravity
theories using this method. An explanation of the Noether technique is given in chapter 13.
The Noether technique is not required again for the super point particle and the reader who
is not interested in this derivation may skip the following discussion and resume at equation
(1.2.24).

We start with the action of equation (1.2.1) with the rigid, that is, constant, supersymmetry
transformations of equation (1.2.3) and the linearized supergravity fields h and ψ which
have the rigid supersymmetry transformations

δh = iεψ, δψ = 0. (1.2.8)

The supergravity fields have the Abelian local transformations

δh = ġ, δψ = η̇, (1.2.9)

where g and η are arbitrary functions of τ , which are Grassmann even and odd, respectively.
Despite the unusual appearance of the transformations of equations (1.2.8) it is trivial to
verify that they close provided one allows for the occurrence of the transformations of
equations (1.2.9). Of course, h andψ can be gauged away using these latter transformations
corresponding to the fact there is no gravity, or supergravity, in one dimension. In what
follows we will suppress the μ, ν indices until we have found the local result.

We now let the previously constant supersymmetry parameter ε become τ -dependent.
The action AF is no longer invariant, but

A1 = AF − i
∫

dτ
κ

2
ψ j (1.2.10)
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