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Chapter 1
Introduction

It is assumed throughout this book that the reader is familiar with operator
theory and the basic properties of C∗-algebras (see for example [76] and
[8, Chapter 1]). We concentrate primarily on giving a self-contained exposition
of the theory of completely positive and completely bounded maps between
C∗-algebras and the applications of these maps to the study of operator alge-
bras, similarity questions, and dilation theory. In particular, we assume that the
reader is familiar with the material necessary for the Gelfand–Naimark–Segal
theorem, which states that every C∗-algebra has a one-to-one, ∗-preserving,
norm-preserving representation as a norm-closed, ∗-closed algebra of opera-
tors on a Hilbert space.

In this chapter we introduce some of the key concepts that will be studied in
this book.

As well as having a norm, a C∗-algebra also has an order structure, induced
by the cone of positive elements. Recall that an element of a C∗-algebra is
positive if and only if it is self-adjoint and its spectrum is contained in the
nonnegative reals, or equivalently, if it is of the form a∗a for some element a.
Since the property of being positive is preserved by ∗-isomorphism, if a C∗-
algebra is represented as an algebra of operators on a Hilbert space, then the
positive elements of the C∗-algebra coincide with the positive operators that are
contained in the representation of the algebra. An equivalent characterization
of positivity for an operator on a Hilbert space is that A is a positive operator
provided that the inner product 〈Ax, x〉 is nonnegative for every vector x in the
space. We shall write a ≥ 0 to denote that a is positive.

The positive elements in a C∗-algebra A are a norm-closed, convex cone in
the C∗-algebra, denoted by A+. If h is a self-adjoint element, then it is easy to
see, via the functional calculus, that h is the difference of two positive elements.

1
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2 Chapter 1. Introduction

Indeed, if we let

f +(x) =
{

x, x ≥ 0,

0, x < 0,
f −(x) =

{
0, x ≥ 0,

−x, x < 0,

then using the functional calculus we have that h = f +(h) − f −(h), with f +(h)
and f −(h) both positive. In particular, we see that the real linear span of the
positive elements is the set of self-adjoint elements, which is also norm-closed.

Using the Cartesian decomposition of an arbitrary element a of A, namely,
a = h + ik with h = h∗, k = k∗, we see that

a = (p1 − p2) + i(p3 − p4),

with pi positive, i = 1, 2, 3, 4. Thus, the complex linear span of A+ is A.
In addition to having its own norm and order structure, a C∗-algebra is also

equipped with a whole sequence of norms and order structures on a set of
C∗-algebras naturally associated with the original algebra, and this additional
structure will play a central role in this book.

To see how to obtain this additional structure, let A be our C∗-algebra, let
Mn denote the n × n complex matrices, and let Mn(A) denote the set of n × n
matrices with entries fromA. We’ll denote a typical element of Mn(A) by (ai, j ).

There is a natural way to make Mn(A) into a ∗-algebra. Namely, for (ai, j )
and (bi, j ) in Mn(A), set

(ai, j ) · (bi, j ) =
(

n∑
k=1

ai,kbk, j

)

and

(ai, j )
∗ = (a∗

j,i ).

What is not so obvious is that there is a unique way to introduce a norm such
that Mn(A) becomes a C∗-algebra.

To see how this is done, we begin with the most basic of all C∗-algebras,
B(H), the bounded linear operators on a Hilbert space H.

If we let H(n) denote the direct sum of n copies of H, then there is a natural
norm and inner product on H(n) that makes it into a Hilbert space. Namely,

∥∥∥∥∥∥∥



h1
...

hn




∥∥∥∥∥∥∥
2

= ‖h1‖2 + · · · + ‖hn‖2
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Chapter 1. Introduction 3

and 〈


h1
...

hn


,




k1,
...

kn




〉
H(n)

= 〈h1, k1〉H + · · · + 〈hn, kn〉H,

where 


h1
...

hn


 and




k1
...

kn




are in H(n). This Hilbert space is also often denoted �2
n(H). We prefer to regard

elements of H(n) as column vectors, for reasons that will become apparent
shortly.

There is a natural way to regard an element of Mn(B(H)) as a linear map on
H(n), by using the ordinary rules for matrix products. That is, we set

(Ti j )




h1
...

hn


 =




n∑
j=1

T1 j h j

...
n∑

j=1
Tnj h j


 ,

for (Ti j ) in Mn(B(H)) and

(
h1...
hn

)
in H(n). It is easily checked (Exercise 1.1)

that every element of Mn(B(H)) defines a bounded linear operator on H(n) and
that this correspondence yields a one-to-one ∗-isomorphism of Mn(B(H)) onto
B(H(n)) (Exercise 1.2). Thus, the identification Mn(B(H)) = B(H(n)) gives us
a norm that makes Mn(B(H)) a C∗-algebra.

Now, given any C∗-algebra A, one way that Mn(A) can be viewed as a C∗-
algebra is to first choose a one-to-one ∗-representation of A on some Hilbert
space H so that A can be identified as a C∗-subalgebra of B(H). This allows
us to identify Mn(A) as a ∗-subalgebra of Mn(B(H)). It is straightforward to
verify that the image of Mn(A) under this representation is closed and hence a
C∗-algebra.

Thus, by using a one-to-one *-representation of A, we have a way to turn
Mn(A) into a C∗-algebra. But since the norm is unique on a C∗-algebra, we see
that the norm on Mn(A) defined in this fashion is independent of the particular
representation of A that we chose. Since positive elements remain positive
under ∗-isomorphisms, we see that the positive elements of Mn(A) are also
uniquely determined.
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4 Chapter 1. Introduction

So we see that in addition to having a norm and an order, every C∗-algebra
A carries along this extra “baggage” of canonically defined norms and orders
on each Mn(A). Remarkably, keeping track of how this extra structure behaves
yields far more information than one might expect. The study of these matrix
norms and matrix orders will be a central topic of this book.

For some examples of this structure, we first consider Mk . We can regard
this as a C∗-algebra by identifying Mk with the linear transformations on k-
dimensional (complex) Hilbert space, C

k . There is a natural way to identify
Mn(Mk) with Mnk , namely, forget the additional parentheses. It is easy to see
that, with this identification, the multiplication and ∗-operation on Mn(Mk) be-
come the usual multiplication and ∗-operation on Mnk , that is, the identification
defines a ∗-isomorphism. Hence, the unique norm on Mn(Mk) is just the norm
obtained by this identification with Mnk . An element of Mn(Mk) will be positive
if and only if the corresponding matrix in Mnk is positive.

For a second example, let X be a compact Hausdorff space, and let C(X )
denote the continuous complex-valued functions on X . Setting f ∗(x) = f (x),
we have

‖ f ‖ = sup{| f (x)|: x ∈ X},
and defining the algebra operations pointwise makes C(X ) into a C∗-algebra.
An element F = ( fi, j ) of Mn(C(X )) can be thought of as a continuous Mn-
valued function. Note that addition, multiplication, and the ∗-operation in
Mn(C(X )) are just the pointwise addition, pointwise multiplication, and point-
wise conjugate-transpose operations of these matrix-valued functions. If we
set

‖F‖ = sup{‖F(x)‖: x ∈ X},
where by ‖F(x)‖ we mean the norm in Mn , then it is easily seen that this defines
a C∗-norm on Mn(C(X )), and thus is the unique norm in which Mn(C(X )) is a
C∗-algebra. Note that the positive elements of Mn(C(X )) are those F for which
F(x) is a positive matrix for all x .

Now, given two C∗-algebras A and B and a map φ: A → B, we also obtain
maps φn: Mn(A) → Mn(B) via the formula

φn((ai, j )) = (φ(ai, j )).

In general the adverb completely means that all of the maps {φn} enjoy some
property.

For example, the map φ is called positive if it maps positive elements of A
to positive elements of B, and φ is called completely positive if every φn is a
positive map.
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In a similar fashion, if φ is a bounded map, then each φn will be bounded,
and when ‖φ‖cb = supn‖φn‖ is finite, we call φ a completely bounded map.

One’s initial hope is perhaps that C∗-algebras are sufficiently nice that every
positive map is completely positive and every bounded map is completely
bounded. Indeed, one might expect that ‖φ‖ = ‖φn‖ for all n. For these reasons,
we begin with an example of a fairly nice map where those norms are different.

Let {Ei, j }2
i, j=1 denote the system of matrix units for M2 [that is, Ei, j is 1 in

the (i, j)th entry and 0 elsewhere], and let φ: M2 → M2 be the transpose map,
so that φ(Ei, j ) = E j,i . It is easy to verify (Exercise 1.9) that the transpose of
a positive matrix is positive and that the norm of the transpose of a matrix is
the same as the norm of the matrix, so φ is positive and ‖φ‖ = 1. Now let’s
consider φ2: M2(M2) → M2(M2).

Note that the matrix of matrix units,

[
E11 E12

E21 E22

]
=




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


,

is positive, but that

φ2

[[
E11 E12

E21 E22

]]
=

[
φ(E11) φ(E12)

φ(E21) φ(E22)

]
=




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




is not positive. Thus, φ is a positive map but not completely positive. In a similar
fashion, we have that ∥∥∥∥∥

[
E11 E21

E12 E22

]∥∥∥∥∥ = 1,

while the norm of its image under φ2 has norm 2. Thus, ‖φ2‖ ≥ 2, so ‖φ2‖ �=
‖φ‖. It turns out that φ is completely bounded, in fact, supn‖φn‖ = 2, as we
shall see later in this book.

To obtain an example of a map that’s not completely bounded, we need to
repeat the above example but on an infinite-dimensional space. So let H be
a separable, infinite-dimensional Hilbert space with a countable, orthonormal
basis, {en}∞n=1. Every bounded, linear operator T on H can be thought of as
an infinite matrix whose (i, j)th entry is the inner product 〈T e j , ei 〉. One then
defines a map φ from the C∗-algebra of bounded linear operators onH, B(H), to
B(H) by the transpose. Again φ will be positive and an isometry (Exercise 1.9),
but ‖φn‖ ≥ n. To see this last claim, let {Ei, j }∞i, j=1 be matrix units on H, and
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6 Chapter 1. Introduction

for fixed n, let A = (E j,i ), that is, A is the element of Mn(B(H)) whose (i, j)th
entry is E j,i . We leave it to the reader to verify that ‖A‖ = 1 (in fact, A is a
partial isometry), but ‖φn(A)‖ = n (Exercise 1.8).

There is an alternative approach to the above constructions, via tensor prod-
ucts. A reader familiar with tensor products has perhaps realized that the algebra
Mn(A) that we’ve defined is readily identified with the tensor product algebra
Mn ⊗ A. Recall that one makes the tensor product of two algebras into an al-
gebra by defining (a1 ⊗ b1) · (a2 ⊗ b2) = (a1a2) ⊗ (b1b2) and then extending
linearly. If {Ei, j }n

i, j=1 denotes the canonical basis for Mn , then an element (ai, j )
in Mn(A) can be identified with

∑n
i, j=1 ai, j ⊗ Ei, j in Mn ⊗ A. We leave it

to the reader to verify (Exercise 1.10) that with this identification of Mn(A)
and Mn ⊗ A, the multiplication defined on Mn(A) becomes the tensor product
multiplication on Mn ⊗ A. Thus, this identification is an isomorphism of these
algebras.

We shall on occasion return to this tensor product notation to simplify
concepts.

Now that the reader has been introduced to the concepts of completely posi-
tive and completely bounded maps, we turn to the topic of dilations.

In general, the key idea behind a dilation is to realize an operator or a mapping
into a space of operators as “part” of something simpler on a larger space.

The simplest case is the unitary dilation of an isometry. Let V be an isometry
on H, and let P = IH − V V ∗ be the projection onto the orthocomplement of
the range of V . If we define U on H ⊕ H = K via

U =
(

V P

0 V ∗

)
,

then it is easily checked that U ∗U = UU ∗ = IK, so that U is a unitary on K.
Moreover, if we identify H with H ⊕ 0, then

V n = PHU n|H for all n ≥ 0.

Thus, any isometry V can be realized as the restriction of some unitary to one
of its subspaces in a manner that also respects the powers of both operators.

In a similar fashion, one can construct an isometric dilation of a contraction.
Let T be an operator on H, ‖T ‖ ≤ 1, and let DT = (I − T ∗T )1/2. Note that
‖T h‖2 + ‖DT h‖2 = 〈T ∗T h, h〉 + 〈D2

T h, h〉 = ‖h‖2.
We set

�2(H) =
{

(h1, h2, . . . ): hn ∈ H for all n,

∞∑
n=1

‖hn‖2 < +∞
}

.
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Chapter 1. Introduction 7

This is a Hilbert space with ‖(h1, h2, . . . )‖2 = ∑∞
n=1‖hn‖2, and inner product

〈(h1, h2, . . . ), (k1, k2, . . . )〉 = ∑∞
n=1〈hn, kn〉.

We define V : �2(H) → �2(H) via V ((h1, h2, . . . )) = (T h1, DT h1, h2, . . . ).
Since ‖V ((h1, h2, . . . ))‖2 = ‖T h1‖2 + ‖DT h1‖2 + ‖h2‖2 + · · · = ‖(h1, h2,

. . . )‖2, V is an isometry on �2(H). If we identify H with H ⊕ 0 ⊕ · · · , then it
is clear that T n = PHV n|H for all n ≥ 0.

Combining these two constructions yields the unitary dilation of a contrac-
tion.

Theorem 1.1 (Sz.-Nagy’s dilation theorem). Let T be a contraction operator
on a Hilbert space H. Then there is a Hilbert space K containing H as a
subspace and a unitary operator U on K such that

T n = PHU n|H.

Proof. Let K = �2(H) ⊕ �2(H), and identify H with (H ⊕ 0 ⊕ · · · ) ⊕ 0. Let
V be the isometric dilation of T on �2(H), and let U be the unitary dilation of V
on �2(H) ⊕ �2(H). Since H ⊆ �2(H) ⊕ 0, we have that PHU n|H = PHV n|H =
T n for all n ≥ 0. �

Whenever Y is an operator on a Hilbert space K,H is a subspace of K, and
X = PHY |H, then we call X a compression of Y .

There is a certain sense in which a “minimal” unitary dilation can be chosen,
and this dilation is in some sense unique. We shall not need these facts now, but
shall return to them in Chapter 4.

To see the power of this simple geometric construction, we now give
Sz.-Nagy’s proof of an inequality due to von Neumann.

Corollary 1.2 (von Neumann’s inequality). Let T be a contraction on a
Hilbert space. Then for any polynomial p,

‖p(T )‖ ≤ sup{|p(z)|: |z| ≤ 1}.

Proof. Let U be a unitary dilation of T . Since T n = PHU n|H for all n ≥ 0,
it follows, by taking linear combinations, that p(T ) = PH p(U )|H, and
hence ‖p(T )‖ ≤ ‖p(U )‖. Since unitaries are normal operators, we have that
‖p(U )‖ = sup{|p(λ)|: λ ∈ σ (U )}, where σ (U ) denotes the spectrum of U .
Finally, since U is unitary, σ (U ) is contained in the unit circle and the result
follows. �
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8 Chapter 1. Introduction

In Chapter 2, we will give another proof of von Neumann’s inequality, using
some facts about positive maps, and then in Chapter 4 we will obtain Sz.-Nagy’s
dilation theorem as a consequence of von Neumann’s inequality.

Exercises

1.1 Let (Ti j ) be in Mn(B(H)). Verify that the linear transformation it defines
on H(n) is bounded and that, in fact, ‖(Ti j )‖ ≤ (

∑n
i, j=1 ‖Ti j‖2)1/2.

1.2 Let π : Mn(B(H)) → B(H(n)) be the identification given in the text.
(i) Verify that π is a one-to-one ∗-homomorphism.

(ii) Let E j : H → H(n) be the map defined by setting E j (h) equal to the
vector that has h for its j th component and is 0 elsewhere. Show
that E∗

j : H(n) → H is the map that sends a vector in H(n) to its j th
component.

(iii) Given T ∈ B(H(n)), set Ti j = E∗
i T E j . Show that π ((Ti j )) = T and

that consequently π is onto.
1.3 Let (Ti j ) be in Mn(B(H)). Prove that (Ti j ) is a contraction if and only if

for every choice of 2n unit vectors x1, . . . , xn, y1, . . . , yn in H, the scalar
matrix (〈Ti j x j , yi 〉) is a contraction.

1.4 Let (Ti j ) be in Mn(B(H)). Prove that (Ti j ) is positive if and only if for
every choice of n vectors x1, . . . , xn in H the scalar matrix (〈Ti j x j , xi 〉)
is positive.

1.5 LetA andB be unital C∗-algebras, and let π :A → B be a ∗-homomorph-
ism with π (1) = 1. Show that π is completely positive and completely
bounded and that ‖π‖ = ‖πn‖ = ‖π‖cb = 1.

1.6 Let A,B, and C be C∗-algebras, and let φ: A → B and ψ : B → C be
(completely) positive maps. Show that ψ ◦ φ is (completely) positive.

1.7 Let {Ei, j }n
i, j=1 be matrix units for Mn , let A = (E j,i )n

i, j=1, and let B =
(Ei, j )n

i, j=1 be in Mn(Mn). Show that A is unitary and that 1
n B is a rank one

projection.
1.8 Let {Ei, j }∞i, j=1 be a system of matrix units for B(H), let A = (E j,i )n

i, j=1,
and let B = (Ei, j )n

i, j=1 be in Mn(B(H)). Show that A is a partial isometry,

and that 1
n B is a projection. Show that φn(A) = B and ‖φn(A)‖ = n.

1.9 Let A be in Mn , and let At denote the transpose of A. Prove that A is
positive if and only if At is positive, and that ‖A‖ = ‖At‖. Prove that
these same results hold for operators on a separable, infinite-dimensional
Hilbert space, when we fix an orthonormal basis, regard operators as
infinite matrices, and use this to define a transpose map.

1.10 Prove that the map π : Mn(A) → Mn ⊗ A defined by π ((ai, j )) =∑n
i, j=1 ai, j ⊗ Ei, j is an algebra isomorphism.


