Magnetism and Magnetic Materials

Covering basic physical concepts, experimental methods, and applications, this book is an indispensable text on the fascinating science of magnetism, and an invaluable source of practical reference data.

Accessible, authoritative, and assuming undergraduate familiarity with vectors, electromagnetism and quantum mechanics, this textbook is well suited to graduate courses. Emphasis is placed on practical calculations and numerical magnitudes – from nanoscale to astronomical scale – focussing on modern applications, including permanent magnet structures and spin electronic devices.

Each self-contained chapter begins with a summary, and ends with exercises and further reading. The book is thoroughly illustrated with over 600 figures to help convey concepts and clearly explain ideas. Easily digestible tables and data sheets provide a wealth of useful information on magnetic properties. The 38 principal magnetic materials, and many more related compounds, are treated in detail.

J. M. D. Coey leads the Magnetism and Spin Electronics group at Trinity College, Dublin, where he is Erasmus Smith's Professor of Natural and Experimental Philosophy. An authority on magnetism and its applications, he has been awarded the Gold Medal of the Royal Irish Academy and the Charles Chree Medal of the Institute of Physics for his work on magnetic materials.

Magnetism and Magnetic Materials

J. M. D. COEY Trinity College, Dublin

CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-81614-4 — Magnetism and Magnetic Materials J. M. D. Coey Frontmatter More Information

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521816144

© J. M. D. Coey 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2010 7th printing 2017 First paperback edition 2018

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-81614-4 Hardback ISBN 978-1-108-71751-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

CAMBRIDGE

Cambridge University Press & Assessment 978-0-521-81614-4 — Magnetism and Magnetic Materials J. M. D. Coey Frontmatter <u>More Information</u>

Contents

List of tables of numerical data	ix xi
Preface	
Acknowledgements	xiii
1 Introduction	1
1.1 A brief history of magnetism	1
1.2 Magnetism and hysteresis	7
1.3 Magnet applications	13
1.4 Magnetism, the felicitous science	19
2 Magnetostatics	24
2.1 The magnetic dipole moment	24
2.2 Magnetic fields	28
2.3 Maxwell's equations	41
2.4 Magnetic field calculations	43
2.5 Magnetostatic energy and forces	50
3 Magnetism of electrons	62
3.1 Orbital and spin moments	63
3.2 Magnetic field effects	74
3.3 Theory of electronic magnetism	87
3.4 Magnetism of electrons in solids	92
4 Magnetism of localized electrons on the atom	97
4.1 The hydrogenic atom and angular momentum	97
4.2 The many-electron atom	100
4.3 Paramagnetism	106
4.4 Ions in solids; crystal-field interactions	114
5 Ferromagnetism and exchange	128
5.1 Mean field theory	129
5.2 Exchange interactions	135
5.3 Band magnetism	144
5.4 Collective excitations	161

vi	Contents	
	5.5 Anisotropy	168
	5.6 Ferromagnetic phenomena	100
	5.6 Terromagnette phenomena	1/7
	6 Antiferromagnetism and other magnetic order	195
	6.1 Molecular field theory of antiferromagnetism	n 196
	6.2 Ferrimagnets	200
	6.3 Frustration	203
	6.4 Amorphous magnets	209
	6.5 Spin glasses	218
	6.6 Magnetic models	221
	7 Micromagnetism, domains and hysteresis	231
	7.1 Micromagnetic energy	234
	7.2 Domain theory	239
	7.3 Reversal, pinning and nucleation	244
	8 Nanoscale magnetism	264
	8.1 Characteristic length scales	265
	8.2 Thin films	267
	8.3 Thin-film heterostructures	274
	8.4 Wires and needles	293
	8.5 Small particles	295
	8.6 Bulk nanostructures	299
	9 Magnetic resonance	305
	9.1 Electron paramagnetic resonance	307
	9.2 Ferromagnetic resonance	313
	9.3 Nuclear magnetic resonance	318
	9.4 Other methods	329
	10 Experimental methods	333
	10.1 Materials growth	333
	10.2 Magnetic fields	340
	10.3 Atomic-scale magnetism	343
	10.4 Domain-scale measurements	353
	10.5 Bulk magnetization measurements	360
	10.6 Excitations	368
	10.7 Numerical methods	370
	11 Magnetic materials	374
	11.1 Introduction	374
	11.2 Iron group metals and alloys	384
	112 from Broup mount and anoys	504

vii	Contents	Contents		
	11.3 Rare-earth metals and intermetallic compounds	398		
	11.4 Interstitial compounds	407		
	11.5 Oxides with ferromagnetic interactions	410		
	11.6 Oxides with antiferromagnetic interactions	417		
	11.7 Miscellaneous materials	432		
	12 Applications of soft magnets	439		
	12.1 Losses	441		
	12.2 Soft magnetic materials	448		
	12.3 Static applications	453		
	12.4 Low-frequency applications	454		
	12.5 High-frequency applications	457		
	13 Applications of hard magnets	464		
	13.1 Magnetic circuits	466		
	13.2 Permanent magnet materials	469		
	13.3 Static applications	473		
	13.4 Dynamic applications with mechanical recoil	481		
	13.5 Dynamic applications with active recoil	485		
	13.6 Magnetic microsystems	491		
	14 Spin electronics and magnetic recording	494		
	14.1 Spin-polarized currents	497		
	14.2 Materials for spin electronics	515		
	14.3 Magnetic sensors	516		
	14.4 Magnetic memory	522		
	14.5 Other topics	525		
	14.6 Magnetic recording	530		
	15 Special topics	542		
	15.1 Magnetic liquids	543		
	15.2 Magnetoelectrochemistry	547		
	15.3 Magnetic levitation	549		
	15.4 Magnetism in biology and medicine	555		
	15.5 Planetary and cosmic magnetism	565		
	Appendices	580		
	Appendix A Notation	580		
	Appendix B Units and dimensions	590		
	Appendix C Vector and trigonometric relations	595		
	Appendix D Demagnetizing factors for ellipsoids of revolution	596		

viii	Contents	
	Appendix E Field, magnetization and susceptibility	597
	Appendix F Quantum mechanical operators	598
	Appendix G Reduced magnetization of ferromagnets	598
	Appendix H Crystal field and anisotropy	599
	Appendix I Magnetic point groups	600
	Formula index	601
	Index	604

List of tables of numerical data

Unit conversions	rear endpaper
Physical constants	rear endpaper
The magnetic periodic table	front endpaper
Demagnetizing factors	596
Diamagnetic susceptibilities of ion cores	76
Properties of the free-electron gas	79
Susceptibilities of diamagnetic and paramagnetic materials	87
Spin-orbit coupling constants	105
Properties of 4f ions	114,125
Properties of 3d ions	115
Susceptibility of metals	134
Kondo temperatures	146
Intrinsic magnetic properties of Fe, Co, Ni	150
Energy contributions in a ferromagnet	179
Faraday and Kerr rotation	190,191
Reduced magnetization; Brillouin theory	598
Model critical exponents	224
Domain wall parameters for ferromagnets	242
Micromagnetic length scales for ferromagnets	266
Antiferromagnets for exchange bias	278
g-factors for ferromagnets	314
Magnetism of elementary particles	319
Nuclei for NMR	320
Nuclei for Mössbauer effect	330
Nuclear and magnetic scattering lengths for neutrons	347
Properties of selected magnetic materials	375
Magnetic parameters of useful magnetic materials	377
Metallic radii of elements	379
Ionic radii of ions	380
Soft materials for low-frequency applications	450
Soft materials for high-frequency applications	452
Properties of permanent magnets	471,473
Mean free paths and spin diffusion lengths	499
Properties of materials used for spin electronics	516
Properties of commercial ferrofluids and microbeads	547

Preface

This book offers a broad introduction to magnetism and its applications, designed for graduate students and advanced undergraduates as well as practising scientists and engineers. The approach is descriptive and quantitative, treating concepts, phenomena, materials and devices in a way that emphasises numerical magnitudes, and provides a wealth of useful data.

Magnetism is a venerable subject, which underwent four revolutionary changes in the course of the twentieth century – understanding of the physics, extension to high frequencies, the avalanche of consumer applications and, most recently, the emergence of spin electronics. The reader probably owns one or two hundred magnets, or some billions if you have a computer where each bit on the hard disc counts as an individually addressable magnet. Sixty years ago, the number would have been at best two or three. Magnetics, in partnership with semiconductors, has created the information revolution, which in turn has given birth to new ways to research the subject – numerical simulation of physical theory, automatic data acquisition and web-based literature searches.

The text is structured in five parts. First, there is a short overview of the field. Then come eight chapters devoted to concepts and principles. Two parts follow which treat experimental methods and materials, respectively. Finally there are four chapters on applications. An elementary knowledge of electromagnetism and quantum mechanics is needed for the second part. Each chapter ends with a short bibliography of secondary literature, and some exercises. SI units are used throughout, to avoid confusion and promote magnetic numeracy. A detailed conversion table for cgs units, which are still in widespread use, is provided inside the back cover. There is some attempt to place the study of magnetism in a global context; our activity is not only intellectual and practical, it is also social and economic.

The text has grown out of courses given to undergraduates, postgraduates and engineers over the past 15 years in Dublin, San Diego, Tallahassee, Strasbourg and Seagate, as well as from the activities of our own research group at Trinity College, Dublin. I am very grateful to many students, past and present, who contributed to the venture, as well as to numerous colleagues who took the trouble to read a chapter and let me have their criticism and advice, and correct at least some of the mistakes. I should mention particularly Sara McMurry, Plamen Stamenov and Munuswamy Venkatesan, as well as Grainne Costigan, Graham Green, Ma Qinli and Chen Junyang, who all

xii

Preface

worked on the figures, and Emer Brady who helped me get the whole text into shape.

Outlines of the solutions to the odd-numbered exercises are available at the Cambridge website www.cambridge.org/9780521816144. Comments, corrections and suggestions for improvements of the text are very welcome; please post them at www.tcd.ie/physics/magnetism/coeybook.php.

Finally, I am grateful to Wong May, thinking of everything we missed doing together when I was too busy with this.

J. M. D. Coey Dublin, November 2009

Acknowledgements

The following figures are reproduced with permission from the publishers:

American Association for the Advancement of Science: 14.18, p.525 (margin), p.537 (margin),14.27; American Institute of Physics: 5.25, 5.31, 6.18, 8.5, 8.33, 10.12, 11.8; American Physical Society: 4.9, 5.35, 5.40, 6.27a, 6.27b, 8.3, 8.8, 8.9, 8.15, 8.17, 8.18, 8.21, 8.22, 8.26, 8.29, 9.5, p.360 (margin), 11.15, 14.16; American Geophysical Union p.572 (margin); United States Geological Survey Geomagnetism Program: 15.18, p.572 (margin); American Society for Metals: 5.35; Cambridge University Press: 4.15, 4.17, 7.8, 7.18, 9.12, 10.16, p.573 (margin); Elsevier: 6.23, 8.2, 8.4, 11.22, 14.22, 14.23, 14.26, 15.22; Institute of Electrical and Electronics Engineers: 5.32, 8.31, 8.34, 8.35, 9.6, 11.6, 11.7; MacMillan Publishers: 14.17, 15.4c; Oxford University Press: 5.26; National Academy of Sciences:15.1; Springer Verlag: 4.18, 14.13, 14.21, 15.8, 15.21; Taylor and Francis: 1.6, 2.8b, 10.2; Institution of Engineering and Technology: 11.20; University of Chicago Press: 1.1a; John Wiley: 5.21, 6.4, 6.15, 8.11a,b, 9.9, 12.10

Fermi surfaces are reproduced with kind permission of the University of Florida, Department of Physics, http://www.phys.ufl.edu/fermisurface.

Thanks are due to Wiebke Drenckhan and Orphee Cugat for permission to reproduce the cartoons on pages 161 and 531.

Figure 15.3 is reproduced by courtesy of Johannes Kluehspiess. Figure 15.5 is reproduced by courtesy of L. Nelemans, High Field Magnet Laboratory, Nijmegen. Figure 15.5 is reproduced by permission of Y. I.Wang, Figure 15.17 is repoduced by courtesy of N. Sadato; Figure 15.23 is reproduced by courtesy of P. Rochette.