
1 Introduction to rock physics

Make your theory as simple as possible, but no simpler. Albert Einstein

1.1 Introduction

The sensitivity of seismic velocities to critical reservoir parameters, such as porosity,
lithofacies, pore fluid type, saturation, and pore pressure, has been recognized for many
years. However, the practical need to quantify seismic-to-rock-property transforms and
their uncertainties has become most critical over the past decade, with the enormous
improvement in seismic acquisition and processing and the need to interpret ampli-
tudes for hydrocarbon detection, reservoir characterization, and reservoir monitoring.
Discovering and understanding the seismic-to-reservoir relations has been the focus of
rock physics research.
One of our favorite examples of the need for rock physics is shown in Plate 1.1. It

is a seismic P–P reflectivity map over a submarine fan, or turbidite system. We can
begin to interpret the image without using much rock physics, because of the striking
and recognizable shape of the feature. A sedimentologist would tell us that the main
feeder channel (indicated by the high amplitude) on the left third of the image is likely
to be massive, clean, well-sorted sand – good reservoir rock. It is likely to be cutting
through shale, shown by the low amplitudes. So we might propose that high amplitudes
correspond to good sands, while the low amplitudes are shales.
Downflow in the lobe environment, however, the story changes. Well control tells

us that on the right side of the image, the low amplitudes correspond to both shale and
clean sand – the sands are transparent. In this part of the image the bright spots are the
poor, shale-rich sands. So, what is going on?
We now understand many of these results in terms of the interplay of sedimentologic

and diagenetic influences. The clean sands on the left (Plate 1.1) are very slightly
cemented, causing them to have higher acoustic impedance than the shales. The clean
sands on the right are uncemented, and therefore have virtually the same impedance as
the shales. However, on the right, there are more facies associated with lower energy
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2 Introduction to rock physics

deposition, and these tend to be more poorly sorted and clay-rich. We know from
laboratory work and theory that poor sorting can also influence impedance. In the
turbidite system in Plate 1.1 both the clean, slightly cemented sand and the clean
uncemented sand are oil-saturated. These sands have essentially the same porosity and
composition, yet they have very different seismic signatures.

This example illustrates the need to incorporate rock physics principles into seismic
interpretation, and reservoir geophysics in general. Despite the excellent seismic
quality and well control, the correct interpretation required quantifying the connec-
tion between geology and seismic data. A purely correlational approach, for instance
using neural networks or geostatistics, would not have been so successful.

Our goal in this first chapter is to review some of the basic rock physics concepts
that are critical for reservoir geophysics. Although the discussion is not exhaustive, we
assess the strengths, weaknesses, and common pitfalls of some currently used methods,
and we make specific recommendations for seismic-to-rock-property transforms for
mapping of lithology, porosity, and fluids. Several of these rock physics methods are
further discussed and applied in Chapters 2, 3, and 5.

1.2 Velocity–porosity relations for mapping porosity and facies

Rock physics models that relate velocity and impedance to porosity and mineralogy
(e.g. shale content) form a critical part of seismic analysis for porosity and lithofacies.
In this section we illustrate how to recognize the appropriate velocity–porosity relation
when approaching a new reservoir geophysics problem.

Pitfall

One of the most serious and common mistakes that we have observed in industry
practice is the use of inappropriate velocity–porosity relations for seismic mapping
of porosity and lithofacies. The most common error is to use overly stiff velocity–
porosity relations, such as the classical empirical trends of Wyllie et al. (1956),
Raymer,Hunt, andGardner (Raymer et al., 1980),Han (1986), orRaiga-Clemenceau
et al. (1988), the critical porosity model (Nur, 1992), or penny-shaped crack models.
“Sonic porosity,” derived from sonic logs using the Wyllie time average, is perhaps
the worst example. Implicit in these relations is that porosity is controlled by vari-
ations in diagenesis, which is not always the case. Hence, critical sedimentologic
variations are ignored.
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3 1.2 Velocity–porosity relations for mapping porosity and facies

Solution

Rock physics diagnostic analysis of well logs and cores, coupled to the geologic
model, usually leads to more rational velocity–porosity relations. Certain aspects
are highlighted in this section.

The importance of velocity–porosity relations applies to other rock physics problems,
as well. Even seismic pore fluid analysis, which we discuss in the next section, depends
on the velocity–porosity relation. We can start to see this by looking at the Gassmann
(1951) relation, which can be represented in the form (Zimmerman, 1991; Mavko and
Mukerji, 1995; Mavko et al., 1998):

1

Krock
= 1

Kmineral
+ φ

K̃φ

where Krock, Kmineral, and K̃φ are the bulk moduli of the saturated rock, the mineral, and
the saturated pore space, respectively, and φ is the porosity. The pore space modulus is
approximately the sumof the dry poremodulus and the fluidmodulus: K̃φ ≈Kφ +Kfluid.
(We will define these more carefully later.) Hence, we can see that the sensitivity of
rock modulus (and velocity) to pore fluid changes depends directly on the ratio of pore
space stiffness to porosity, Kφ/φ. Rocks that are relatively stiff have a small seismic
sensitivity to pore fluids, and rocks that are soft have a large sensitivity to pore fluids.

We encounter the link between fluid substitution and velocity–porosity relations in
several common ways:
� When first analyzing well logs to derive a velocity–porosity relation, it is essential
first to map the data to a common fluid. Otherwise, the effects of the rock frame
and pore fluid become mixed.

� When interpreting 3D seismic data for hydrocarbon detection, the Gassmann ana-
lysis requires a good estimate of porosity, which also must be mapped from the
seismic data.

� When populating reservoir models with acoustic properties (VP and VS) for 4D
feasibility studies, we often need to map from porosity to velocity. Beginning the
exercise with the incorrect mapping quickly makes the fluid substitution analysis
wrong.

1.2.1 Background on elastic bounds

We begin with a discussion of upper and lower bounds on the elastic moduli of rocks.
The bounds provide a useful and elegant framework for velocity–porosity relations.
Many “effective-medium” models have been published, attempting to describe

theoretically the effective elastic moduli of rocks and sediments. (For a review, see
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4 Introduction to rock physics
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Figure 1.2 Conceptual illustration of bounds for the effective elastic bulk modulus of a mixture of
two materials.

Mavko et al., 1998.) Some models approximate the rock as an elastic block of min-
eral perturbed by holes. These are often referred to as “inclusion models.” Others try
to describe the behavior of the separate elastic grains in contact. These are sometimes
called “granular-mediummodels” or “contact models.” Regardless of the approach, the
models generally need to specify three types of information: (1) the volume fractions
of the various constituents, (2) the elastic moduli of the various phases, and (3) the
geometric details of how the phases are arranged relative to each other.
In practice, the geometric details of the rock and sediment have never been adequately

incorporated into a theoretical model. Attempts always lead to approximations and
simplifications, some better than others.
When we specify only the volume fractions of the constituents and their elastic

moduli, without geometric details of their arrangement, then we can predict only the
upper and lower bounds on the moduli and velocities of the composite rock. How-
ever, the elastic bounds are extremely reliable and robust, and they suffer little from
the approximations that haunt most of the geometry-specific effective-mediummodels.
Furthermore, since well logs yield information on constituents and their volume frac-
tions, but relatively little about grain and pore microstructure, the bounds turn out to
be extremely valuable rock physics tools.
Figure 1.2 illustrates the concept for a simple mixture of two constituents. These

might be two different minerals or a mineral plus fluid (water, oil, or gas). At any given
volume fraction of constituents the effective modulus of the mixture will fall between
the bounds (somewhere along the vertical dashed line in the figure), but its precise value
depends on the geometric details. We use, for example, terms like “stiff pore shapes”
and “soft pore shapes” to describe the geometric variations. Stiffer grain or pore
shapes cause the value to be higher within the allowable range; softer grain or pore
shapes cause the value to be lower.
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5 1.2 Velocity–porosity relations for mapping porosity and facies

The Voigt and Reuss bounds
The simplest, but not necessarily the best, bounds are the Voigt (1910) and Reuss (1929)
bounds. The Voigt upper bound on the effective elastic modulus, MV, of a mixture of
N material phases is

MV =
N∑

i= 1

fi Mi (1.1)

with

fi the volume fraction of the ith constituent
Mi the elastic modulus of the ith constituent

There is no way that nature can put together a mixture of constituents (i.e., a rock) that
is elastically stiffer than the simple arithmetic average of the constituent moduli given
by the Voigt bound. The Voigt bound is sometimes called the isostrain average, because
it gives the ratio of average stress to average strain when all constituents are assumed
to have the same strain.
The Reuss lower bound of the effective elastic modulus, MR, is

1

MR
=

N∑
i= 1

fi
Mi

(1.2)

There is no way that nature can put together a mixture of constituents that is elas-
tically softer than this harmonic average of moduli given by the Reuss bound. The
Reuss bound is sometimes called the isostress average, because it gives the ratio of
average stress to average strain when all constituents are assumed to have the same
stress.
Mathematically the M in the Voigt and Reuss formulas can represent any modulus:

the bulk modulus K, the shear modulus µ, Young’s modulus E, etc. However, it makes
most sense to compute the Voigt and Reuss averages of only the shear modulus,M= µ,
and the bulk modulus, M = K, and then compute the other moduli from these, using
the rules of isotropic linear elasticity.
Figure 1.3 shows schematically the bounds for elastic bulk and shear moduli, when

one of the constituents is a liquid or gas. In this case, the lower bound corresponds
to a suspension of the particles in the fluid, which is an excellent model for very soft
sediments at low effective stress. Note that the lower bound on shear modulus is zero,
as long as the volume fraction of fluid is nonzero.

The Reuss average describes exactly the effective moduli of a suspension of solid
grains in a fluid. This will turn out to be the basis for describing certain types of
clastic sediments. It also describes the moduli of “shattered” materials where solid
fragments are completely surrounded by the pore fluid.
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Figure 1.3 Conceptual illustration of upper and lower bounds to bulk and shear moduli for a
mixture of two materials, one of which is a fluid.

When all constituents are gases or liquids with zero shear modulus, then the Reuss
average gives the effective moduli of the mixture, exactly.
In contrast to theReuss averagewhich describes a number of real physical systems,

real isotropic mixtures can never be as stiff as the Voigt bound (except for the single-
phase end members).

Hashin–Shtrikman bounds
The best bounds for an isotropic elastic mixture, defined as giving the narrowest pos-
sible range of elastic moduli without specifying anything about the geometries of the
constituents, are the Hashin–Shtrikman bounds (Hashin and Shtrikman, 1963). For a
mixture of two constituents, the Hashin–Shtrikman bounds are given by

KHS± = K1 + f2
(K2 − K1)−1 + f1(K1 + 4µ1/3)−1

µHS± = µ1 + f2
(µ2 − µ1)−1 + 2 f1(K1 + 2µ1)/[5µ1(K1 + 4µ1/3)]

(1.3)

with

K1, K2 bulk moduli of individual phases
µ1, µ2 shear moduli of individual phases
f1, f2 volume fractions of individual phases

Upper and lower bounds are computed by interchangingwhichmaterial is subscripted
1 and which is subscripted 2. Generally, the expressions give the upper bound when the
stiffest material is subscripted 1 in the expressions above, and the lower bound when
the softest material is subscripted 1.
The physical interpretation of a material whose bulk modulus would fall on one

of the Hashin–Shtrikman bounds is shown schematically in Figure 1.4. The space is
filled by an assembly of spheres of material 2, each surrounded by a spherical shell
of material 1. Each sphere and its shell have precisely the volume fractions f1 and f2.
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7 1.2 Velocity–porosity relations for mapping porosity and facies

Figure 1.4 Physical interpretation of the Hashin–Shtrikman bounds for bulk modulus of a
two-phase material.

The upper bound is realized when the stiffer material forms the shell; the lower bound,
when it is in the core.
Amore general form of the Hashin–Shtrikman bounds, which can be applied to more

than two phases (Berryman, 1995), can be written as

KHS+ = �(µmax),KHS− = �(µmin)

µHS+ = �(ζ(Kmax, µmax)), µHS− = �(ζ(Kmin, µmin))
(1.4)

where

�(z) =
〈

1

K(r) + 4z/3

〉−1

− 4

3
z

�(z) =
〈

1

µ(r) + z

〉−1

− z

ζ(K, µ) = µ

6

(
9K + 8µ

K + 2µ

)

The brackets 〈·〉 indicate an average over the medium, which is the same as an average
over the constituents, weighted by their volume fractions.
The separation between the upper and lower bounds (Voigt–Reuss or Hashin–

Shtrikman) depends on how elastically different the constituents are. As shown in
Figure 1.5, the bounds are often fairly similar when mixing solids, since the elastic
moduli of common minerals are usually within a factor of two of each other. Since
many effective-mediummodels (e.g., Biot, 1956; Gassmann, 1951; Kuster and Toksöz,
1974) assume a homogeneous mineral modulus, it is often useful (and adequate) to
represent a mixed mineralogy with an “average mineral” modulus, equal either to one
of the bounds computed for the mix of minerals or to their average (MHS+ + MHS−)/2.
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8 Introduction to rock physics
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Figure 1.5 On the left, a mixture of two minerals. The upper and lower bounds are close when the
constituents are elastically similar. On the right, a mixture of mineral and water. The upper and
lower bounds are far apart when the constituents are elastically different.

On the other hand, when the constituents are quite different – such as minerals and pore
fluids – then the bounds become quite separated, and we lose some of the predictive
value.

Note that when µmin = 0, then KHS− is the same as the Reuss bound. In this case,
the Reuss or Hashin–Shtrikman lower bounds describe exactly the moduli of a
suspension of grains in a pore fluid. These also describe the moduli of a mixture of
fluids and/or gases.

1.2.2 Generalized velocity–porosity models for clastics

Brief “life story” of a clastic sediment
Thebounds provide a framework for understanding the acoustic properties of sediments.
Figure 1.6 shows P-wave velocity versus porosity for a variety of water-saturated sedi-
ments, ranging from ocean-bottom suspensions to consolidated sandstones. The Voigt
and Reuss bounds, computed for mixtures of quartz and water, are shown for compar-
ison. (Strictly speaking, the bounds describe the allowable range for elastic moduli.
When the corresponding P- and S-wave velocities are derived from these moduli, it is
common to refer to them as the “upper and lower bounds on velocity.”)
Before deposition, sediments exist as particles suspended in water (or air). As such,

their acoustic properties must fall on the Reuss average of mineral and fluid. When the
sediments are first deposited on thewater bottom,we expect their properties still to lie on
(or near) the Reuss average, as long as they are weak and unconsolidated. Their porosity
position along the Reuss average is determined by the geometry of the particle packing.
Clean,well-sorted sandswill be depositedwith porosities near 40%. Poorly sorted sands
will be deposited along theReuss average at lower porosities. Chalkswill be deposited at
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9 1.2 Velocity–porosity relations for mapping porosity and facies
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Figure 1.6 P-wave velocity versus porosity for a variety of water-saturated sediments, compared
with the Voigt–Reuss bounds. Data are from Yin (1992), Han (1986) and Hamilton (1956).

high initial porosities, 55–65%.We sometimes call this porosity of the newly deposited
sediment the critical porosity (Nur, 1992). Upon burial, the various processes that give
the sediment strength – effective stress, compaction, and cementing – must move the
sediments off the Reuss bound. We observe that with increasing diagenesis, the rock
properties fall along steep trajectories that extend upward from the Reuss bound at
critical porosity, toward the mineral end point at zero porosity. We will see below that
these diagenetic trends can be described once again using the bounds.

Han’s empirical relations
Figure 1.7 shows typical plots of seismic VP and VS vs. porosity for a large set of labo-
ratory ultrasonic data for water-saturated sandstones (Han, 1986). All of the data points
shown are at 40 MPa effective pressure. In both plots, we see the usual general trend of
decreasing velocity with increasing porosity. There is a great deal of scatter around the
trend, which we know from Han’s work is well correlated with the clay content. Han
described this velocity–porosity–clay behavior with the empirical relations:

VP = 5.59 − 6.93φ − 2.13C
VS = 3.52 − 4.91φ − 1.89C

(1.5)
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10 Introduction to rock physics
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Figure 1.7 Velocity versus porosity for water-saturated sandstones at 40MPa. Data are ultrasonic
measurements from Han (1986).

where the velocities are in km/s, φ is the porosity, and C is the clay volume fraction.
These relations can be rewritten slightly in the form

VP = (5.59 − 2.13C) − 6.93φ
VS = (3.52 − 1.89C) − 4.91φ

(1.6)

which can be thought of as a series of parallel velocity–porosity trends, whose zero-
porosity intercepts depend on the clay content. These contours of constant clay content
are illustrated in Figure 1.8, and are essentially the steep diagenetic trends mentioned
in Figure 1.6. Han’s clean (clay-free) line mimics the diagenetic trend for clean sands,
while Han’s more clay-rich contours mimic the diagenetic trends for dirtier sands.
Vernik andNur (1992) andVernik (1997) found similar velocity–porosity relations, and
were able to interpret the Han-type contours in terms of petrophysical classifications
of siliciclastics. Klimentos (1991) also obtained similar empirical relations between
velocity, porosity, clay content and permeability for sandstones.

As with any empirical relations, equations (1.5) and (1.6) are most meaningful for
the data from which they were derived. It is dangerous to extrapolate them to other
situations, although the concepts that porosity and clay have large impacts on P- and
S-wave velocities are quite general for clastic rocks.
When using relations like these, it is very important to consider the coupled effects

of porosity and clay. If two rocks have the same porosity, but different amounts of
clay, then chances are good that the high clay rock has lower velocity. But if porosity
decreases as clay volume increases, then the high clay rock might have a higher
velocity. (See also Section 2.2.3.)
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