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Introduction

1.1 Motivation

Interactions in many-body systems bring about collective phenomena such as
superconductivity and magnetism. In many cases, simple mean-field theory
provides a basic understanding of these phenomena. In fermion systems
in one dimension, however, neither the mean-field theory nor perturbation
theory works if it starts from the non-interacting fermions. This is because
the interaction effects in one dimension are much stronger than those in
higher dimensions. Intuitively speaking, two particles cannot avoid collision
in a single-way track in contrast with two and three dimensions. Thus the
interaction effects appear in a drastic way in one dimension.

Another aspect in one dimension, which overcompensates the difficulty
of perturbation and mean-field theories, is that a complete account of
interaction effects is possible under certain conditions. The class of systems
satisfying such conditions is referred to as exactly solvable. Soon after the
establishment of quantum mechanics, Bethe solved exactly the Heisenberg
spin model in one dimension [28]. The basic idea of the solution is now
called the Bethe ansatz. Since then, theoretical physics in one dimension has
developed into a magnificent edifice, including sophisticated mathematical
techniques. In many cases, the eigenfunctions derived by the Bethe ansatz
consist of plane waves that are defined stepwise for each spatial configuration
of particles. Since the coefficients of plane waves depend on the configura-
tion, the property of the wave function cannot be made explicit without
detailed knowledge of these coefficients. We mention some of the recent
monographs on the Bethe ansatz and its extensions [54, 118, 179]. A com-
prehensive account on exactly solvable models has recently been given by
Sutherland [178].
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2 Introduction

The models solved by the Bethe ansatz are characterized by short-range
interactions such as on-site repulsion or the next-nearest-neighbor exchange
interaction. On the other hand, it was found by Calogero that another class
of models also permits exact solution [34, 35]. The models have repulsive
interactions decaying as the inverse square of the interparticle distance r.
In order to prevent the blow-up of particles toward infinite distance, an
attractive harmonic potential can be added to the system. Alternatively,
one takes the periodic boundary condition with the system length L, and
employs superposition of the 1/r2 potential as

∞∑
n=−∞

1
(r + nL)2

=
(

π/L

sin πr/L

)2

. (1.1)

Then by construction the system does not blow up, while keeping the trans-
lational invariance. This model was proposed by Sutherland [172, 174], and
hence is called the Sutherland model. If one refers to both models simulta-
neously, it seems appropriate to call them the Calogero–Sutherland models.
Some years later, Moser analyzed the classic mechanical version of these
models mathematically [135], and his name is sometimes added in referring
to the models.

The 1/r2 models have much simpler mathematical (algebraic) structure,
compared to the conventional integrable models solved by the Bethe ansatz.
This simplicity enables us to derive explicitly the exact expressions of
dynamical correlation functions such as the Green function, the density–
density correlation function, and the spin–spin correlation function. The
resultant expressions are remarkably simple, but still keep nontrivial fea-
tures inherent to interacting particle systems. Further, the mathematical
tools used in the derivation are far from complicated. Thus, the 1/r2 models
provide comprehensible examples for studying dynamics of interacting
particles.

In contrast with the Fermi liquid in three dimensions, the one-dimensional
fermions behave as the Tomonaga–Luttinger liquid in the limit of long time
and long distance. Here the conformal field theory (CFT) describes nicely
the asymptotics of correlation functions. According to the CFT, characteri-
zation of the interaction parameters can be done through analysis of the
finite-size correction of the ground state energy. Since the 1/r2 models
allow for calculation of the finite-size correction much more easily than
the Bethe-solvable models, the 1/r2 models serve as an instructive exam-
ple to visualize how the CFT works in the Tomonaga–Luttinger liquid.
The importance of the 1/r2 models does not, however, lie only in the mathe-
matical structure. Through the study of the 1/r2 models, one can also learn
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1.2 One-dimensional interaction as a disguise 3

about the dynamics of the correlated electrons in real systems. For example,
the neutron scattering intensity of S = 1/2 antiferromagnetic spin chain
reveals a similarity to the spectral function of the spin correlation function
of the 1/r2 exchange interaction model, which is called the Haldane–Shastry
model [77, 161]. A related model with charge degrees of freedom is still
exactly solvable provided a supersymmetry is imposed [119]. The spin–
charge separation of one-dimensional electrons can then be explicitly seen in
the spectral weight of the Green function of the supersymmetric t–J model.

1.2 One-dimensional interaction as a disguise

As we shall explain in detail, the wave function in the ground state of the
1/r2 models can be derived explicitly as the product of two-body wave func-
tions. This feature is quite in contrast with cases solved by the Bethe ansatz.
The special feature of the 1/r2 interaction already appears in most elemen-
tary quantum mechanics. Let us consider a free particle with mass m = 1/2
in the three-dimensional space. The Hamiltonian is given by

H = − ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
= − 1

r2

∂

∂r
r2 ∂

∂r
+

l2

r2
, (1.2)

where r2 = x2 + y2 + z2, and l is the angular momentum operator. We
take the units � = 1 throughout the book. In the polar coordinates, there
appears a fictitious potential leading to the centrifugal force. Namely, the
free motion in higher dimensions generates a fictitious potential if the radial
motion alone is extracted [146]. Conversely, the potential l(l + 1)/r2 in the
radial coordinate is a disguise of free motion in higher dimensions. The form
of the radial kinetic energy in (1.2) is interpreted as coming from the metric
of the one-dimensional space. Pursuing this idea in many-body systems,
one gains a perspective that interactions in exactly solvable models are a
disguise of some kind of free motion in another space [146]. Alternatively,
a matrix model has been constructed where the coordinates of N particles
are regarded as eigenvalues of an N ×N matrix. The transformation matrix
for diagonalization appears as the 1/r2 potential [151].

In the early stage of the Tomonaga–Luttinger theory, all low-energy ex-
citations are regarded as bosons. Actually, the statistics of excitations need
not be restricted to bosons. In some cases, the interaction among bosons
is absorbed into a new statistics describing exclusion of available one-body
states. This idea applies to many interacting systems approximately, and
to the 1/r2 models exactly. The exclusion includes fermions and bosons
as special cases. Generally, however, the statistics is fractional. In order to
account for the resultant quasi-particles obeying fractional exclusion
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4 Introduction

statistics, concepts such as the Yangian symmetry and the supersymmetry
turn out to be useful. These new concepts make it much easier to understand
exact dynamics (and also thermodynamics) intuitively. Our key strategy in
this respect is to rely on the picture of quasi-particles obeying fractional
exclusion statistics. In terms of these exotic quasi-particles, the dynamics of
one-dimensional systems can be understood intuitively.

In the last decades, intensive study of the 1/r2 models has brought
about deep intuition into the structure of the excitation spectrum in
one-dimensional systems in general. The most remarkable observation is
that elementary excitations behave as free particles subject to certain sta-
tistical constraints. As a result, these particles obey the statistics of neither
fermions nor bosons. In other words, the exchange of two excitations leads
to a scattering phase shift which is independent of their momenta, but which
is neither π (antisymmetric) nor 0 (symmetric).

The situation may become clearer if we make an analogy to the Fermi
liquid theory. The excitations in the Bethe-soluble models have a phase
shift that does depend on their momenta. Therefore, certain parameters
are necessary to characterize the momentum dependence. These parame-
ters are analogous to Landau parameters that describe interactions between
the quasi-particles in the Fermi liquid. In this analogy, the excitations in
the 1/r2 models do not need the analogue of the Landau parameters, and
are comparable to free fermions except for the statistics. Just as the under-
standing of metals in general has been much facilitated by the free-electron
model, the dynamics in one dimension should be much better understood
by reference to “free” models, i.e., the 1/r2 models.

1.3 Two-body problem with 1/r2 interaction

We demonstrate the peculiar features of the 1/r2 model by taking the
simplest example. Let us consider the two-body problem with Hamiltonian

H2 = − ∂2

∂x2
1

− ∂2

∂x2
2

+ g

[
π/L

sin π(x1 − x2)/L

]2

. (1.3)

For the moment we assume that the two particles are distinguishable, and do
not care about the symmetry of the wave function. If the distance |x1 − x2|
is much smaller than L, the interaction reduces to g/(x1 − x2)2. The center
of gravity X = (x1 + x2)/2 has free motion with wave number Q. In terms
of X and the relative coordinate x = x1−x2, the wave function is factorized
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1.3 Two-body problem with 1/r2 interaction 5

into the form ψg(x1, x2) = φg(x) exp(iQX), where φg(x) is an eigenfunction
of a one-body Hamiltonian H1 given by

H1(x) = H2 − 1
2

Q2 = −2
∂2

∂x2
+ g

(
π/L

sin πx/L

)2

. (1.4)

Instead of solving (1.4) in the standard way, we discuss alternative ideas
which are useful in generalizing to the many-body problem. Let us first
examine the wave function φg(x) for |x| � L where the potential in H1

tends to g/x2. Then H1(x) has the scaling property

H1(ax) = a−2H1(x).

An eigenfunction should also have the scaling property for x ∼ 0

φg(ax) = aλφg(x), (1.5)

with certain number λ. The only solution with property (1.5) is the
power-law function φg(x) = xλ. Upon differentiation twice, we obtain
λ(λ − 1)φg(x)/x2. By taking λ(λ − 1) = g/2, the kinetic term cancels the
potential term. Then φg(x) turns out to be the eigenfunction of H1. Since we
have λ = (1 ±√

1 + 2g)/2, only the case of g ≥ −1/2 is meaningful. Other-
wise, the attractive potential causes the system to collapse as in the classical
system, and the ground state cannot be defined. This situation has already
been discussed by Landau and Lifshitz [122] and by Sutherland [172]. In the
following we only consider the case g > 0, and take the positive λ as the
relevant solution. We can extend the range of x so as to be consistent with
the periodic boundary condition, simply by replacing xα by | sin πx/L|α.

It is possible to derive all the eigenvalues and eigenfunctions by using
the factorization method [89], which has been refined under the name of
“supersymmetric quantum mechanics” [192]. We introduce a variable η ≡
πx/L and rewrite (1.4) as

H1 = 2
(

L

π

)2 [
p2

η + Wλ(η)2 + W ′
λ(η) + λ2

] ≡ 2
(

L

π

)2

Hλ, (1.6)

where pη = −i∂/∂η and Wλ(η) = λ cot η. Then Hλ takes a factorized form

Hλ = (pη − iWλ)(pη + iWλ) + λ2 ≡ A†
λAλ + λ2. (1.7)

An eigenfunction of Hλ is given by

φλ(η) = sinλ η = exp[Uλ(η)], (1.8)

where we have introduced Uλ(η) = λ ln sin η. This gives U ′
λ(η) = Wλ(η), and

it is evident that Aλφλ(η) = 0. Since A†
λAλ is a non-negative operator, there
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6 Introduction

are no states with lower energy. Hence, φλ gives the ground state of Hλ with
energy λ2.

We note the property

AλA†
λ = p2

η + Wλ(η)2 − W ′
λ(η) = p2

η +
λ(λ + 1)

sin2 η
− λ2

= A†
λ+1Aλ+1 − λ2, (1.9)

which corresponds to the shift λ → λ + 1 in Hλ together with subtracting
the constant term λ2. Combination of (1.7) and (1.9) makes it possible to
derive all the excited states. Let us take the ground state φλ+1 of Hλ+1 with
the eigenvalue (λ + 1)2. Namely, we have

AλA†
λφλ+1 = [(λ + 1)2 − λ2]φλ+1. (1.10)

Applying A†
λ from the left, we obtain

A†
λAλA†

λφλ+1 = [(λ + 1)2 − λ2]A†
λφλ+1. (1.11)

Thus the state A†
λφλ+1 proves to be an excited state of A†

λAλ.
We now explain briefly the idea of the supersymmetric quantum mechan-

ics. We may treat the pair AλA†
λ and A†

λAλ as components of a 2×2 matrix:

Hpair =

(
A†

λAλ 0
0 AλA†

λ

)
= QQ† + Q†Q ≡ {Q, Q†}, (1.12)

where

Q =
(

0 0
Aλ 0

)
, Q† =

(
0 A†

λ

0 0

)
. (1.13)

The space of the 2 × 2 matrix can be regarded as a pseudo-spin spanned
by the Pauli matrices. Here Q and Q† have an analogy with spin-flips s± =
sx ± isy. Alternatively, we may include the pseudo-fermion operators f, f †

by the identification
1
2

(1 − σz) = f †f. (1.14)

Then the operators Q, Q† in (1.12) are written as

Q = f †Aλ, Q† = A†
λf. (1.15)

It is obvious that Q2 = (Q†)2 = 0 and

[Hpair, Q] = [Hpair, Q
†] = 0. (1.16)
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1.3 Two-body problem with 1/r2 interaction 7

The last equality means that Hpair is invariant against the pseudo-spin
rotation, and the conserved quantity Q is called the supercharge. In this
framework, the degeneracy demonstrated by (1.11) is interpreted as a con-
sequence of the supersymmetry. The use of Q, Q† motivates us to refer to
the factorization method as “supersymmetric quantum mechanics”.

The operators Aλ and A†
λ have the commutation rule

[Aλ, A†
λ] = −2Wλ. (1.17)

In a special case of Wλ = −x/2, the commutation rule reduces to that
of bosonic creation and annihilation operators. Hence, Aλ and A†

λ can be
regarded as a generalization of bosonic operators.

Now we iterate the procedure of increasing λ by unity to obtain all excited
states. Let us use the fact A†

λAλ = Aλ−1A†
λ−1 + (λ − 1)2 − λ2 as derived

from (1.9). After this substitution in (1.11), we multiply A†
λ−1 from the left

to obtain

A†
λ−1Aλ−1A†

λ−1A†
λφλ+1 = [(λ + 1)2 − (λ − 1)2]A†

λ−1A†
λφλ+1, (1.18)

which shows that A†
λ−1A†

λφλ+1 is an excited state of A†
λ−1Aλ−1. This process

can be iterated. The wave function φn+1;λ+1 ≡ A†
λ−n · · ·A†

λ−1A†
λφλ+1 with

n ≥ 0 satisfies the equation

A†
λ−nAλ−nφn+1;λ+1 = [(λ + 1)2 − (λ − n)2]φn+1;λ+1. (1.19)

Equivalently we obtain for m ≥ 1

Hλφm;λ = (λ + m)2φm;λ. (1.20)

We identify φ0;λ as φλ to include the case of m = 0 in the above. In this way
we can derive all the excited states of Hλ starting from the ground state
of Hλ′ with appropriate λ′ > λ. Figure 1.1 shows the situation where the
ordinate κ gives the energy as κ2.

Conversely, starting from a free state φm;0 = sin mη at λ = 0, we can con-
struct the eigenfunctions of Hλ as φm;λ = Aλ−1 · · ·A1A0φm+λ;0. Figure 1.1
also shows this inverse direction of construction. Note that the spectrum of
Hλ above the ground-state energy λ2 is the same as that of the free system.
To derive φn;λ+n explicitly, we use the relation A†

λ = exp(−Uλ)pη exp(Uλ)
and obtain

φn;λ+n = exp(−Uλ+1)pη exp(Uλ+1 − Uλ+2) · · · pη exp(Uλ+n)φλ+n

= exp(−Uλ)[exp(−U1)pη]n exp(Uλ+n)φλ+n

= φλ × (1 − y2)−λ

(
−i

d
dy

)n

(1 − y2)λ+n, (1.21)
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8 Introduction

λ

κ

0 2 4 6

A†
4A†

2 A†
3

A0 A1

κ = λ

Fig. 1.1. The spectrum of the one-body Sutherland model Hλ. The creation oper-
ator A†

λ generates an excited state for Hλ−1 from an eigenstate of Hλ. These two
states are degenerate, and their energy is given by κ2. The annihilation operator
Aλ generates an eigenstate of Hλ+1 from that of Hλ.

.

where y = cos η. The last expression includes, apart from the normaliza-
tion factor, the Rodrigues formula for the nth-order Gegenbauer polynomial
C

λ+1/2
n (y). Namely, we obtain

φn;λ+n(η) = Cλ+1/2
n (cos η)φλ(η). (1.22)

The generating function of Gegenbauer polynomials is given by

(1 − 2yt + t2)−λ−1/2 =
∞∑

n=0

Cλ+1/2
n (y)tn. (1.23)

In the special case λ = 0, it is reduced to the Legendre polynomial C
1/2
n (y) =

Pn(y). Because of the similarity to the Legendre polynomial, C
λ+1/2
n (y) is

also called the ultraspherical polynomial.
Let us come back to the two-body system. For each particle j, we introduce

the complex coordinate zj = exp(2πixj/L) which specifies a point on the
unit circle. The wave function of two particles is written as

ψn;λ+n(z1, z2) = exp(iQX)φn;λ+n(η), (1.24)

where η = π(x1 − x2)/L. We assert that ψn;λ+n(z1, z2) is a homogeneous
polynomial of z1 and z2 times an integer (or half-integer) power of z1z2.
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1.3 Two-body problem with 1/r2 interaction 9

The sum q of powers of z1 and z2 in ψn;λ+n(z1, z2) is related to the total
momentum Q as q = LQ/(2π). To prove the assertion, we note the relations

2 cos η = (z1/z2)1/2 + (z2/z1)1/2 = (z1z2)−1/2(z1 + z2), (1.25)

2i sin η = (z1/z2)1/2 − (z2/z1)1/2 = (z1z2)−1/2(z1 − z2), (1.26)

exp(iQX) = (z1z2)q/2. (1.27)

Since φn;λ+n(η) is a polynomial of cos η and sin η, it is a polynomial of z1

and z2, times an integer or half-integer power of z1z2. Thus the assertion is
proved. The homogeneous polynomial of z1 and z2, which originates from a
Gegenbauer polynomial of cos η, corresponds to a special case of the Jack
polynomial. The latter is defined for arbitrary number n of complex variables
z1, z2, . . . , zn, as will be discussed in detail later.

We now proceed to the case of two identical (indistinguishable) particles. If
the particles are bosons, we should take symmetric (even) wave functions. If
the particles are spinless fermions, on the other hand, we take antisymmetric
(odd) wave functions. For example,

φλ(x) = | sin η|λ−1 sin η (1.28)

describes the ground state of two fermions for H2. If fermions have spin 1/2,
the spatial part of the wave functions is either symmetric (spin singlet) or
antisymmetric (spin triplet). In the case of bosons, the even–odd property
becomes the opposite to that of fermions; exchange of spatial and spin
coordinates at the same time gives the same wave function as that before
the exchange. In order to discuss the case with internal degrees of freedom,
we consider a generalized model as given by

H2;K = − ∂2

∂x2
1

− ∂2

∂x2
2

+
(π

L

)2 2λ(λ − K12)
sin2 π(x1 − x2)/L

, (1.29)

where we have introduced the coordinate exchange operator K12. As a
complementary factor, we also introduce the spin permutation operator
P12 = 2S1 · S2 + 1/2. They act on a two-body wave function with spin
coordinates σ1, σ2 as

K12ψ(x1, x2; σ1, σ2) = ψ(x2, x1; σ1, σ2), (1.30)

P12ψ(x1, x2; σ1, σ2) = ψ(x1, x2; σ2, σ1), (1.31)

P12K12ψ(x1, x2; σ1, σ2) = ψ(x2, x1; σ2, σ1) = ±ψ(x1, x2; σ1, σ2). (1.32)

Namely, we have K12P12 =±1 depending on whether the particles are bosons
or fermions.
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10 Introduction

For symmetric spatial wave functions with K12 = 1, we know from (1.4)
and (1.20) that the spectrum is given by

En =
1
2

Q2 + 2
(π

L

)2
(n + λ)2 = k2

+ + k2
−, (1.33)

where k± = [Q/2 ± π(n + λ)/L]2 with n ≥ 0. Note that En can be written
as if it consists of the kinetic energy of free particles with momenta k±.
The interaction effect appears only in the restriction k+ − k− ≥ 2πλ/L,
which becomes the same as the Pauli exclusion principle in the case of
λ = 1. For the antisymmetric (odd) wave function with K12 = −1, we
have λ(λ + 1) in (1.29), and accordingly replace λ → λ + 1 in (1.33).
This is alternatively interpreted as taking the excitation level n one step
higher. The odd-function ground state in particular is given by E1, where
n = 1 is the smallest degree of antisymmetric polynomials of z1 and z2

with zj = exp(2iπxj/L). If there are spin degrees of freedom for a pair of
fermions, the ground state energy becomes E0 for the spin singlet, and E1

for the triplet.
We have thus found that different symmetries of the wave functions appear

only as a shift of energy levels. In particular, the difference between the
singlet and triplet states in each ground state is given by

Eg(S = 1) − Eg(S = 0) = ± (2π/L)2 (λ + 1/2), (1.34)

where the plus sign is for fermions and the minus sign for bosons. The signs
mean the antiferromagnetic interaction for fermions and the ferromagnetic
interaction for bosons. With use of K12P12 = ±1 for identical particles, we
obtain the Hamiltonian equivalent to H2;K as

H2;P = − ∂2

∂x2
1

− ∂2

∂x2
2

+
(

L

π

)2 2λ(λ ± P12)
sin2 π(x1 − x2)/L

, (1.35)

where the plus sign is for fermions and the minus sign for bosons. By con-
struction, this model has both the charge and the spin degrees of freedom.
One can extract only the spin degrees of freedom by taking a limiting pro-
cedure as explained next.

1.4 Freezing spatial motion

Let us consider the limiting case λ 	 1 in H2;K . Accordingly φλ(x) tends
to a delta function peaked at x = L/2. This limit for a large number of
particles is relevant to the spin chain and the supersymmetric (SUSY) t–J
model since the particles should crystallize to avoid the repulsion, leaving
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