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Chapter 1
The Emergence of Rigorous Calculus

1.1 What Is Mathematical Analysis?

Mathematical analysis8 is the critical and careful study of calculus with an em-
phasis on understanding of its basic principles. As opposed todiscrete mathe-
matics orfinite mathematics, mathematical analysis can be thought of as being a
form of infinite mathematics. As such, it must rank as one of the greatest, most
powerful, and most profound creations of the human mind.

The infinite! No other question has ever moved so profoundly the spirit of man — David Hilbert

(1921).

Now, as you may expect, great, profound, and powerful thoughts do not
often appear overnight. In fact, it took the best part of 2500 years from the
time the first calculus-like problems tormented Pythagoras, until the first really
solid foundations of mathematical analysis were laid in the nineteenth century.
During the seventeenth and eighteenth centuries calculus blossomed, becoming
an important branch of mathematics and, at the same time, a powerful tool, able
to describe such physical phenomena as the motion of the planets, the stability
of a spinning top, the behavior of a wave, and the laws of electrodynamics. This
period saw the emergence of almost all of the concepts that one might expect to
see in an elementary calculus course today.

But if the blossoms of calculus were formed during the seventeenth and
eighteenth centuries, then its roots were formed during the nineteenth. Calculus
underwent a revolution during the nineteenth century, a revolution in which its
fundamental ideas were revealed and in which its underlying theory was properly
understood for the first time. In this revolution, calculus was rewritten from its
foundations by a small band of pioneers, among whom were Bernhard Bolzano,
Augustin Cauchy, Karl Weierstrass, Richard Dedekind, and Georg Cantor. You
will see their names repeatedly in this book, for it was largely as a result of their
efforts that the subject that we know today asmathematical analysis was born.
Their work enabled us to appreciate the nature of our number system and gave us
our first solid understanding of the concepts of limit, continuity, derivative, and

8 Note to instructors: This chapter is not designed for in-class teaching. It is intended to be a
reading assignment, possibly in conjunction with other material that the student can find in the
library.
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6 Chapter 1 The Emergence of Rigorous Calculus

integral. This is the great and profound theory to which you, the reader of this
book, are heir.

In this chapter we shall focus on threeearth-shaking events that have taken
place during the past 2500 years and which helped to pave the way for the emer-
gence of rigorous mathematics as we know it today. These events are sometimes
known as thePythagorean crisis, theZeno crisis, and theset theory crisis.

1.2 The Pythagorean Crisis
In about 500B.C.E. an individual in the Pythagorean school noticed that, accord-
ing to the Greek concepts of number and length, it is impossible to compare the
length of a side of a square with the length of its diagonal. The Greek concept
of length required that, in order to compare two line segmentsAB andCD, we
need to be able to find a measuring rod that fits exactly a whole number of times
into each of them. If, for example, the measuring rod fits6 times intoAB and10
times intoCD, as shown in Figure 1.1, then we have

AB

CD
=

6

10
.

More generally, if the measuring rod fits exactlym times intoAB and exactlyn

A B
C D

Figure 1.1

times intoCD, then we have

AB

CD
=

m

n
.

Note that this kind of comparison requires that the ratio of any two lengths must
be a rational number.

The crisis came when the young Pythagorean drew a square with a side of
one unit as shown in Figure 1.2 and applied the theorem of Pythagoras to find
the length of the diagonal. As we know, the length of this diagonal is

√
2 units.

From the fact that the number
√
2 is irrational he concluded that the equation

√
2

1
=

m

n

is impossible ifm andn are integers and that, consequently, it is impossible to
compare the side of this square with its diagonal.
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1 unit

Figure 1.2

From our standpoint today, we can see that this discovery reveals the inade-
quacy of the rational number system and of the Greek concept of length; but to
them, the discovery was a real shocker. Just how much of a shock it was can be
gauged from the writings of the Greek philosopher Proclus, who tells us that the
Pythagorean who made this terrible discovery suffered death by shipwreck as a
punishment for it.

1.3 The Zeno Crisis

1.3.1 The Paradoxes of Zeno
In the fifth centuryB.C.E., Zeno of Elea came up with four innocent-sounding
statements that plagued the philosophers all the way up to the time of Bolzano
and Cauchy early in the nineteenth century. These four statements are known as
theparadoxes of Zeno, and the first three of these appear in Bell [4] as follows:

1. Motion is impossible, because whatever moves must reach the middle of its
course before it reaches the end; but before it has reached the middle, it must
have reached the quarter mark, and so on, indefinitely. Hence the motion can
never start.

2. Achilles running to overtake a crawling tortoise ahead of him can never
overtake it, because he must first reach the place from which the tortoise
started; when Achilles reaches that place, the tortoise has departed and so
is still ahead. Repeating the argument, we easily see that the tortoise will
always be ahead.

3. A moving arrow at any instant is either at rest or not at rest, that is, moving.
If the instant is indivisible, the arrow cannot move, for if it did, the instant
would immediately be divided. But time is made up of instants. As the arrow
cannot move in any one instant, it cannot move in any time. Hence it always
remains at rest.
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Much has been said about these paradoxes, and, quite obviously, we are not
going to do them justice here. But let’s talk about the third paradox for a moment.
At any one instant of time, the arrow does not move. Does that really mean that
the arrow will not find its target? Would Zeno have been prepared to stand in
front of the arrow? We think not. Then what was Zeno trying to tell us? Zeno’s
statement warns us that velocity can be meaningful in any physical sense only as
anaverage velocity over a period of time. If an arrow covers a distance of 60 feet
during the course of a second, we can say that the arrow has an average velocity
of 60 feet per second. But Zeno’s statement warns us that our senses can make
nothing out of a notion ofvelocity of the arrow at any one instant.

1.3.2 Stating Zeno’s Third Paradox in Terms of Slope
To state Zeno’s third paradox in terms of slope, we shall suppose thatA is the
point (x1, f(x1)) on the graph of a functionf , and thatB is some other point
(x1 +∆x, f(x1 +∆x)), as shown in Figure 1.3. As usual, the slope of the line

A

B

∆y

x∆
y = f(x)

Figure 1.3

segmentAB is defined to be to be the ratio∆y/∆x, where

∆y = f(x1 +∆x)− f(x1).

This ratio∆y/∆x is the average slope of the graph off between the points
A andB. However, Zeno’s third paradox serves as a warning that there is no
obvious physical meaning to the notion ofslope of the graph at the point A.

“But” you may ask, “isn’t this what calculus is all about? Are the paradoxes
of Zeno trying to tell us to abandon the idea of a derivative?” They are not.
But what we should learn from these paradoxes is that if we want todefine the
derivative of the functionf at the pointA to be

lim
h→0

f(x+ h)− f(x)

h
,

then that’s just fine with Zeno. Only we can’t blame Zeno if this derivative that
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we havedefined doesn’t measure how the functionf increases atA, because, as
Zeno quite rightly tells us, the functionf can’t change its value at any one point.
We may therefore think of Zeno’s paradoxes as telling us that (referring to Figure
1.3) even though we may speak of the slope∆y

∆x
of the line segmentAB, and even

though we maydefine the derivative off atA and call it dy
dx

and have

∆y

∆x
→ dy

dx
as ∆x → 0,

we may not think ofdy
dx

as the ratio of two quantitiesdy anddx, the amounts by
which y andx increase at the pointA, because, as Zeno quite rightly tells us,
there areno increases iny andx at the pointA.

1.3.3 The Rigorous Reformulation
Mathematics prior to the dawn of the nineteenth century was much less pre-
cise than mathematics as we know it today. The core of pre-nineteenth century
mathematics was the calculus that had been developed by Newton, Leibniz, and
others during the seventeenth century. That calculus represented a magnificent
contribution. It gave us the notation for derivatives and integrals that we still use
today and provided a mathematical basis for the understanding of such physical
phenomena as the motion of the planets, the motion of a spinning top and the
vibration of a violin string. But the calculus of Newton and Leibniz did not rest
on a solid foundation.

The problem with Newtonian calculus is that it was not based on an adequate
theory of limits. In fact, prior to the nineteenth century, there was not much
understanding that calculus needs to be based on a theory of limits at all. Nor
was there much understanding of the nature of the number systemR and the role
of what we call today thecompleteness of the number systemR. In a sense,
the calculus of Newton and Leibniz didnot pay sufficient heed to the paradoxes
of Zeno. Although Newton and Leibniz themselves may have had some ap-
preciation of the fundamental ideas uponwhich the concepts of derivative and
integral depend, many of those who followed them did not. Until the end of the
eighteenth century the majority of mathematicians based their work upon an im-
possible mythology. During this time, proofs of theorems in calculus commonly
depended on a notion of “infinitely small” numbers, numbers that were zero for
some purposes yet not for others. These were known asevanescent numbers,
differentials, or infinitesimals, and, undeniably, their use provided a beautiful,
revealing, and elegant way of looking at many of the important theorems of
calculus. Even today we like to use the notion of an infinitesimal to motivate
some of the theorems in calculus, and scientists use them even more frequently
than mathematicians. But it is one thing to use the idea of an infinitesimal to
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motivate a theory, and it is quite another matter to base virtually the entire theory
upon them. Today, the concept of an infinitesimal can actually be made precise in
a modern mathematical theory that is known asnonstandard analysis, but there
was no precision in the way infinitesimals were used in the eighteenth century.

During the eighteenth century, the voices of critics began to be heard. In
1733, Voltaire [32] described calculus as

The art of numbering and measuring exactly a thing whose existence can-
not be conceived.

Then, in 1734, Bishop George Berkeley, the philosopher, wrote an essay,
Berkeley [5], in which he rebuked the mathematicians for the weak foundations
upon which their calculus had been based, and he no doubt took great pleasure
in asking

Whether the object, principles, and inferences of the modern analysis are
more distinctly conceived, or more evidently deduced than religious mys-
teries and points of faith.

Some mathematicians composed weak answers to Berkeley’s criticism, and
others tried vainly to make sense of the idea of infinitely small numbers, but
it was not until the early nineteenth century that any real progress was made.
The turning point came with the work of Bernhard Bolzano, who gave us the
first coherent definition of limits and continuity and the first understanding of the
need for a complete number system. Then came the work of Cauchy, Weierstrass,
Dedekind, and Cantor that placed calculus on a rigorous foundation and settled
many important questions about the nature of the number systemR. The work of
these pioneers has made possible the understanding that we have promised you.

1.4 The Set Theory Crisis

Following the work of the nineteenth-century pioneers, the mathematical com-
munity began to believe that true understanding was at last within its grasp. All
of the fundamental concepts seemed tobe rooted solidly in Cantor’s theory of
sets. But the collective sigh of relief had hardly died away when a new kind of
paradox burst upon the scene. In 1897, the Italian mathematician Burali-Forti
discovered what is known today as theBurali-Forti paradox, which shows that
there are seriousflaws in Cantor’s theory of sets, upon which our understanding
of the real number system had been based. Then, a few years later, Bertrand
Russell discovered his famous paradox. Like Burali-Forti’s paradox, Russell’s
paradox demonstrates the presence offlaws in Cantor’s set theory.
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To see just how much these paradoxes stunned the mathematical community,
one might want to look at Frege [9],Grundgesetze der Arithmetik (The Fun-
damental Laws of Arithmetic), which was written by the German philosopher
Gottlob Frege and published in two volumes, the first in 1893 and the second
in 1903. This book was Frege’s life work, and it was his pride and joy. He
had bestowed upon the mathematical community the first sound analysis of the
meaning of number and the laws of arithmetic and, although the book is quite
technical in places, it is worth skimming through, if only to see the sarcastic way
in which Frege speaks of the “stupidity” of those who had come before him.
An example of this sarcasm is Frege’s description of his attempt to induce other
mathematicians to tell him what the numberone means. “One object,” would
be the reply. “Very well,” answered Frege, “I choose themoon! Now I ask you
please to tell me:Is one plus one still equal to two?” As things turned out, the
second volume of Frege’s book came out just after Russell had sent Frege his
famous paradox. There was just enough space at the end of Frege’s book for the
following acknowledgment:

A scientist can hardly encounter anything more undesirable than to have
the foundation collapse just as the work is finished. I was put in this po-
sition by a letter from Mr. Bertrand Russell when the work was almost
through the press.

As Frege said, the foundation collapsed. It would not be stretching the truth
too much to say that all of mathematics perished in the fire storm that was ignited
by the paradoxes of Russell and Burali-Forti. The mathematics that we know
today is what emerged from that storm like a phoenix from the ashes, and it
depends upon a new theory of sets that is known asZermelo-Fraenkel set theory
which was developed in the first few decades of the twentieth century. Within
the framework of Zermelo-Fraenkel set theory, we can once again make use of
Frege’s important work.

One question that remains is whether we are now safe from new paradoxes
that might ignite a new fire storm, and the answer is that we don’t know. A theo-
rem of Gödel guarantees that, unless someone actually discovers a new paradox
that destroys Zermelo-Fraenkel set theory, we shall never know whether such a
paradox exists. Thus it is entirely possible that you, the reader of this book, may
stumble upon a snag that shows that mathematics as we know it does not work.
But don’t hold your breath. The chances of your encountering a new paradox are
very remote.




