The Oceans and Climate, Second Edition

The oceans are an integral and important part of the climate system. *The Oceans and Climate* introduces the multi-disciplinary controls on air–sea interaction – physical, chemical and biological – and shows how these interact. It demonstrates how the ocean contributes to, and is affected by, climate processes on timescales from seasonal to millennial and longer. Past, present and future relationships between the ocean and climate are discussed.

The new edition of this successful textbook has been completely updated throughout, with extensive new material on thermohaline processes in the ocean and their link to both abrupt climate change and longer term climate change.

This comprehensive textbook on the ocean-climate system will prove an ideal course and reference book for undergraduate and graduate students studying earth and environmental sciences, oceanography, meteorology and climatology. The book will also be useful for students and teachers of geography, physics, chemistry and biology.

Grant R. Bigg is Professor of Earth System Science at the Department of Geography, University of Sheffield. He was Editor of the Royal Meteorological Society's magazine *Weather* from 1998 to 2003, and has served on the Council of the Society. He has published over seventy peer-reviewed papers and contributed to popular science magazines such as *The Geographical Magazine*.

The Oceans and Climate Second Edition

GRANT R. BIGG

> PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Grant R. Bigg 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1996 Reprinted 1998, 1999, 2001 Second edition 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10/12 pt. System IAT_FX 2_ε [тв]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Bigg, Grant R.
The oceans and climate / by Grant R. Bigg. – 2nd edn.
p cm.
Includes bibliographical references and index.
ISBN 0 521 81570 3 – ISBN 0 521 01634 7 (pbk.)
1. Climate changes. 2. Ocean–atmosphere interaction. I. Title.
QC981.8.C5B54 2003 551.5'246–dc21 2003043956

ISBN 0 521 81570 3 hardback ISBN 0 521 01634 7 paperback

Contents

Preface to the first edition

1	The climate system	1		
	1.1 Solar radiation			
	1.1.1 The effective temperature of the Earth	4		
	1.2 The atmosphere	4		
	1.2.1 The greenhouse effect	7		
	1.2.2 Reflected radiation	12		
	1.3 The oceans	12		
	1.3.1 Chemical composition of the oceans	13		
	1.3.2 Ocean circulation	16		
	1.4 The cryosphere	19		
	1.5 The biosphere	21		
	1.6 The geosphere	22		
	1.7 Timescales and feedbacks	24		
	1.8 Variation of the climate system over time	26		
	1.9 Numerical modelling of the ocean and climate system	31		
	Further reading	34		
2	Physical interaction between the ocean and atmosphere	35		
	2.1 Radiation	36		
	2.1.1 Solar radiation	36		
	2.1.2 Long-wave radiation	39		
	2.2 Heat exchange through latent and sensible heat	41		
	2.2.1 Latent heat	41		
	2.2.2 Sensible heat	43		
	2.3 The oceanic heat balance	45		
	2.4 Oceanic forcing by air-sea exchange of moisture and heat	48		
	2.4.1 Moisture exchange	48		
	2.4.2 Heat exchange	48		
	2.5 Temperature, salinity and density	51		
	2.6 Basic forces within the atmosphere and ocean	53		
	2.6.1 Hydrostatic balance	54		
	2.6.2 The Coriolis force	54		
	2.6.3 Geostrophy	57		
	2.7 Tidal forces and their influence	58		
	2.8 Momentum transfer and drag	60		

vi

Contents

	2.9	Waves, the production of aerosols and condensation nuclei	62					
		2.9.1 Wave formation and characteristics	63					
		2.9.2 Breaking waves and marine aerosols	65					
	a 10	2.9.3 Condensation nuclei	66					
	2.10	The Ekman spiral and Langmuir circulation	67					
		2.10.1 The Ekman spiral	67					
	0.11	2.10.2 Langmuir circulation	69					
	2.11	Wind-driven circulation of the ocean	/1					
		2.11.1 The ocean gyres	/1					
		2.11.2 Coastal upwelling	74					
		2.11.5 The tropical surface circulation	15					
		2.11.4 The Indian Ocean monsoonal circulation	/8					
		2.11.5 The polar regions	8U 01					
	2 12	2.11.0 Oceanic eaales	82					
	2.12	Oceanic impact on the marine atmospheric circulation	02 85					
	2.13	2 13 1 Hurriggnes	0J 86					
		2.13.1 Hurricanes	80					
	Furth	2.15.2 Mesocyclones	09					
	ruru	ici reading	90					
3	Chemical interaction of the atmosphere and ocean 9							
-	3.1	Solubility of gases	91					
	3.2	Gas exchange across the air-sea interface	94					
	3.3	The carbon cycle	97					
		3.3.1 The carbon cycle	97					
		3.3.2 Oceanic control of carbon dioxide – principal processes	98					
		3.3.3 Oceanic control of carbon dioxide – geographical						
		variations	101					
	3.4	Oxygen in the ocean	103					
	3.5	The transfer of particles	106					
		3.5.1 Aerosols, plankton, and climate	106					
		3.5.2 Sea spray, clouds, and climate	108					
		3.5.3 Mechanisms for precipitation formation	114					
	3.6	Photochemical reactions in sea water	116					
	3.7	Chemical tracers	117					
	Furth	ner reading	120					
1	Riogeochemical interaction of the atmosphere and assan 1							
•	4.1	Phytoplankton	122					
		4.1.1 Phytoplankton growth	122					
		4.1.2 Geographical variation	125					
		4.1.3 Vertical variation and ocean colour	128					
		4.1.4 Iron from aerosols	129					
	4.2	Climatically active products of marine biological processes	130					
	. —	4.2.1 Carbon compounds other than CO ₂	130					
		4.2.2 Nitrogeneous compounds	131					
		4.2.3 Sulphureous compounds	132					
		4.2.4 Iodic compounds	133					
		•						

Contents			vii
	4.3	Bio-geochemical cycles	134
		4.3.1 The carbon cycle	134
		4.3.2 The nitrogen cycle	135
		4.3.3 The phosphorus cycle	136
		4.3.4 The oxygen cycle	136
		4.3.5 The sulphur cycle	136
	4.4	DMS and climate	136
	Furt	her reading	140
5	Larg	ge-scale air–sea interaction	141
	5.1	Tropospheric pressure systems and the ocean	141
		5.1.1 The physics of large-scale extra-tropical interaction	143
		5.1.2 Maritime climates	146
		5.1.3 Interannual variability in the atmosphere and ocean	150
		5.1.4 Oceanic influence on extra-tropical cyclogenesis	157
	5.2	ENSO: Ocean-atmosphere interaction in the tropics	159
		5.2.1 Characteristics of ENSO	161
		5.2.2 ENSO and air-sea coupling	167
		5.2.3 The ENSO cycle	170
		5.2.4 The impact of ENSO in the tropics beyond the	
		Pacific basin	174
		5.2.5 The impact of ENSO in the extra-tropics	176
		5.2.6 ENSO and the Indian Monsoon	177
		5.2.7 Seasonal forecasting of El Niño	179
		5.2.8 Other tropical air-sea interactions	179
		5.2.9 The extra-tropics	181
	5.3	Abrupt change in the thermohaline circulation	182
		5.3.1 Freshwater moderators of North Atlantic overturning	182
		5.3.2 Thermohaline catastrophes	183
		5.3.3 The potential impact of the Mediterranean Outflow	
		on climate	184
	Furt	her reading	186
6	The	ocean and natural climatic variability	187
	6.1	The oceanic role in the geological evolution of climate	187
		6.1.1 The Palaeozoic and early Mesozoic	187
		6.1.2 The Cretaceous: a case study	190
		6.1.3 Tertiary climates	191
	6.2	The ocean and Quaternary glaciation	194
		6.2.1 Interglacial termination	197
		6.2.2 Glacial termination	199
	6.3	The ocean and Holocene climate	205
		6.3.1 The Climatic Optimum	205
		6.3.2 The last 5000 years	207
	6.4	Marine climate change during the twentieth century	209
		6.4.1 The instrumental record	212
		6.4.2 Global trends in marine climate	214
		6.4.3 Marine climate change over the Pacific Ocean	216
		~ v	

viii

Contents

		6.4.4 Marine climate change over the Indian Ocean	216		
		645 Marine climate change over the Atlantic Ocean	217		
	Furt	her reading	219		
	1 011	her reading	21)		
7	The ocean and climatic change				
	7.1	Natural variability	221		
		7.1.1 Solar variability	221		
		7.1.2 Orbital changes	223		
		7.1.3 Volcanic impact on climate	223		
		7.1.4 Cometary impact	224		
		7.1.5 Internal climatic instability	226		
	7.2	Anthropogenic forcing of climate	226		
		7.2.1 Trace gases	227		
		7.2.2 Aerosols	231		
		7.2.3 Land surface albedo changes	234		
		7.2.4 Climatic feedbacks	234		
	7.3	The climate of the future	240		
		7.3.1 Climate evolution over the twenty-first century	241		
		7.3.2 Detection of climatic change	244		
	Furt	her reading	246		
4 m	nond	inen	247		
Ap	penu Usofi	ics	247		
A D	Dorio	die Table and electron orbital configuration	247		
D. C	Ctob.	lity, notantial temperature and density	249		
	D a sal	inty, potential temperature and density	234		
D	KOSS	by waves in the atmosphere and ocean	256		
Gla	ossar	v	257		
Bik	Bibliography				
Index					

Preface to the first edition

In 1827 Jean-Baptiste Fourier, otherwise known for his contributions to mathematics, speculated that human activities had the capacity to affect the Earth's climate. In 1990 the International Panel on Climate Change produced a report detailing our current understanding of these activities, and speculated on what impact they might have on climate. In 160 years of great human endeavour much has been learnt but definitive evidence for climatic change driven by mankind remains elusive.

The oceans play a significant role in this tardiness of the climate system's response to our species. They store immense amounts of energy for months, decades or even centuries, depending on the region, depth and the nature of the interaction between the atmosphere and ocean. This storage capacity acts as a giant flywheel to the climate system, moderating change but prolonging it once change commences. The ocean also stores vast amounts of carbon dioxide.

In 1897 Svante Arrhenius discovered that the amount of carbon dioxide in the atmosphere affected the global temperature through the greenhouse effect. In 1938 G. S. Callendar showed that atmospheric carbon dioxide was increasing due to human activities. However, it has only been since the late 1960s that a rough estimate of the magnitude of the potential climatic effect has been possible. Even today the likely impact of a doubling of atmospheric carbon dioxide on raising global temperature is not known to within 3°C; the global temperature at the height of the last Ice Age was only 4°C less than today.

A significant element in this uncertainty is the ocean. How is carbon dioxide and heat stored in the ocean? Are these mechanisms sensitive to climatic change? Could they interact with climatic change itself to accentuate, or lessen, such change? The exploration of these, among other, questions underlies this book.

The oceanic links to climate are complex and multi-faceted. The sciences of physics, chemistry and biology are interwoven in this tapestry. Therefore, after an introductory chapter on the climate system I devote chapters to the oceanic roles of each of these sciences, before examining some detailed ocean-atmosphere interactions affecting climate, and the role of the ocean in the past, and its potential role in the future climate.

My own introduction to this fascinating subject came through its physics, but I have aimed to make each science, and its links to the general problem of climate and air–sea interaction, understandable to readers coming from one of the other fields. English 'A' level standard physics, chemistry or mathematics would assist a reader but such a standard in only one of these subjects should not be a handicap. The book does not, therefore, contain many references – the Х

Cambridge University Press 0521815703 - The Oceans and Climate, Second Edition Grant R. Bigg Frontmatter <u>More information</u>

Preface

climate literature is, in any case, vast and growing at an exponential rate – but does have a commented bibliography of the books and research papers that I have found most useful during its writing. This should provide the inquisitive reader with the tools to begin a more in-depth exploration of the subject. There is also a glossary of terms that are used repeatedly. The first use of each term is *italicized* in the main text.

The writing of such a book as this necessarily involves help from many sources. I would like to collectively thank the various publishers and authors who gave permission for diagrams to be used (individual identification is found in the appropriate figure legend). The Internet has been an invaluable tool for tracking down data sets, and even for producing diagrams; the climate data site at Lamont-Doherty Geological Observatory merits particular thanks. I would also like to thank Fred Vine and Peter Liss for encouraging me to persevere with the book during its darkest days, and my editor, Conrad Guettler, for his keeping the literary ship on course. Phil Judge drew many of the diagrams and Sheila Davies photographed them. Most of all, my wife, Jane, put up with three years of writing angst and made the extremely valuable contribution of an arts graduate's criticism of the clarity of the science!

It is appropriate to end this preface with the following extracts from Shelley's *Ode to the West Wind* that encapsulate the tumultuous interaction between air and sea that this book explores:

O wild West Wind, thou breath of Autumn's being, Thou, from whose unseen presence the leaves dead Are driven, like ghosts from an enchanter fleeing.

Preface to the second edition

In the six years since the first edition of this book was published the interaction between the ocean and climate has remained at the centre of climate investigation. New emphasis on abrupt climate change triggered by freshwater changes to the ocean's surface, and the interaction between the ocean's thermohaline circulation and climate on millennial timescales has arisen. Hence this edition, as well as updating the science generally, has added significant new sections in Chapters 2 and 5 to reflect this enhanced importance of thermohaline processes. Modelling is becoming increasingly important, and hence treatment of this tool has been moved forward to Chapter 1. Nevertheless, the basic science on which the first edition was built has been supplemented rather than overturned during

Preface

xi

these last active years. Thus readers will find the basic structure of the book similar to before, but brought up-to-date where necessary.

In the last edition I was unfortunate in the timing of publication relative to the IPCC series of reports, completing the writing of the book prior to the issue of the 1995 report. This time I benefit from the recent publication of the 2001 reports, enabling me to give timely revisions of the international community's views on climate change and the ocean's role in this. I therefore thank my editor, Matt Lloyd for prompting the second edition at the right time. Once again, I also have to thank Phil Judge for drawing many new diagrams or revising old ones, and Sheila Davies for supplying the photographic versions. The continuing rise of the web as a medium for science communication and education leads me to provide a web-page for the book with relevant links to many valuable sites concerned with the science, and provision of data, for climate study. I hope readers find this edition even more stimulating than the last!