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Classical Regular Polytopes

Our purpose in this introductory chapter is to set the scene for the rest of the book. We
shall do this by briefly tracing the historical development of the subject. There are two
main reasons for this. First, we wish to recall the historical traditions which lie behind
current research. It is all too easy to lose track of the past, and it is as true in mathematics
as in anything else that those who forget history may be compelled to repeat it. But
perhaps more important is the need to base what we do firmly in the historical tradition.
A tendency in mathematics to greater and greater abstractness should not lead us to
abandon our roots. In studying abstract regular polytopes, we shall always bear in mind
the geometric origins of the subject. We hope that this introductory survey will help
the reader to find a firm basis from which to view the modern subject.

The chapter has four sections. In the first, we provide an historical sketch, leading
up to the point at which the formal material of Chapter 2 begins. The second is devoted
to an outline of the theory of regular convex polytopes, which provide so much of
the motivation for the abstract definitions which we subsequently adopt. In the third,
we treat various generalizations of regular polytopes, mainly in ordinary euclidean
space, including the classical regular star-polytopes. In the fourth, we introduce regular
maps, which are the first examples of abstract regular polytopes, although the examples
considered here occur before the general theory was formulated.

1A The Historical Background

Regular polytopes emerge only gradually out of the mists of history. Apart from certain
planar figures, such as squares and triangles, the cube, in the form of a die, was probably
the earliest known to man. Gamblers would have used dice from the earliest days, and
a labelled example helped linguists to work out the Etruscan words for “one” up to
“six”. The Etruscans also had dodecahedral dice; examples date from before 500,
and may even be much earlier. The other three “platonic” solids appear not to have
been employed in gambling; two out of the three do not roll well in any case.

However, it is only somewhat later that the regular solids were studied for their own
sakes, and the leap from them to the regular star-polyhedra, analogous to that from
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2 1 Classical Regular Polytopes

pentagon to pentagram, had to await the later middle ages. The nineteenth century first
saw regular polytopes of higher dimension, but the real flowering of what is, in origin,
one of the oldest branches of mathematics occurred only in the twentieth century.

In this section, we shall give a brief outline of the historical background to the theory
of regular polytopes. This is not intended to be totally comprehensive, although we have
attempted to give the salient features of more than two millenia of investigations in the
subject.

The Classical Period

Before the Greeks

As we have already said, the cube was probably the first known regular polyhedron;
certainly it was well known before the ideas of geometry and symmetry had themselves
been formulated. Curiously, though, stone balls incised in ways that illustrate all the
symmetry groups of the regular polyhedrawere discovered in Scotland in the nineteenth
century; they appear to date from the first half of the third millenium  (see [137,
Chapter 7]).

The Egyptians were also aware of the regular tetrahedron and octahedron. As an
aside, we pose the following question. Many attempts have been made to explain why
the pyramids are the shape they are, or, more specifically, why the ratio of height to base
of a square pyramid is always roughly the same particular number. In particular, such
explanations oftenmanage to involveπ in some practical way, such asmeasurements by
rolling barrels – the Egyptians’ theoretical value 256

81 ≈ 3.16 for π was fairly accurate.
Is it possible, though, that a pyramid was intended to be half an octahedron? The
actual angles of slopes of the four proper pyramids at Giza vary between 50◦47′ and
54◦14′; the last is only a little short of half the dihedral angle of the octahedron, namely,
arccos(1/

√
3) ≈ 54◦44′.

The Early Greeks

Despite various recent claims to the contrary, it seems clear that the Greeks were the
first to conceive of mathematics as we now understand it. (The mere listing of, for
example, Pythagorean triples does not constitute mathematics; a proof of Pythagoras’s
theorem obviously does.) According to Proclus (412–485), the discovery of the five
regular solids was attributed by Eudemus to Pythagoras (c582–c500) himself; the
fact that a point of the plane is exactly surrounded by six equilateral triangles, four
squares or three regular hexagons (these giving rise to the three regular tilings of the
plane) was also known to his followers. They knew as well of the regular pentagram,
apparently regarding it as a symbol of health; it has been suggested that this also gave
them their first example of incommensurability. (For a fuller account of the origin of
the regular solids, consult [438].)

The regular solids in ordinary space were named after Plato (Aristocles son of
Ariston, 427–347) by Heron; this seems to be one of the earliest mathematical
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1A The Historical Background 3

misattributions. Indeed, their first rigorous mathematical treatment was by Theaetetus
(c415–369, when he was killed in battle). In his Timaeus, Plato does discuss the
regular solids, but while his enthusiasm for and appreciation of the figures are obvious,
it is also evident that his discussion falls short of a full mathematical investigation.
However, one very perceptive idea does appear there. An equilateral triangle is re-
garded by him as formed from the six right-angled subtriangles into which it is split
by its altitudes. The three solids with triangular faces (tetrahedron, octahedron, and
icosahedron) are then built up from these subdivided triangles. This anticipates the
construction of the Coxeter kaleidoscope of their reflexion planes by more than two
millennia. But the general principle was not fully recognized by Plato; this is exhibited
by his splitting of the square faces of the cube into four isosceles (instead of eight)
triangles. Moreover, the dodecahedron is not seen in this way at all. In the Timaeus, one
has the impression that the existence of the dodecahedron (identified with the universe)
almost embarrasses Plato. The other four regular solids are identified with the four
basic elements – tetrahedron = fire, octahedron = air, cube = earth, and icosahedron
= water – in a preassumed scheme which is not at all scientific. (In the Phaido, amus-
ingly, Plato also describes dodecahedra; they appear as stuffed leather balls made out
of twelve multicoloured pentagonal pieces, an interesting near anticipation of some
modern association footballs.)

To Plato’s pupil Aristotle (384–322) is attributed the mistaken assertion that
the regular tetrahedron tiles ordinary space. Unfortunately, such was the high regard
in which Aristotle was held in later times that his opinion was not challenged until
comparatively recently, although its falsity could have been established at the time it
was made.

Euclid

Euclid’s Elements (Στoιχεια) is undoubtedly the earliest surviving true mathematics
book, in the sense that it fully recognizes the characteristic mathematical paradigm
of axiom–definition–theorem–proof. Until early in the twentieth century, parts of it,
notably the first six Books (Σχoλια), provided, essentially unchanged, a fine intro-
duction to basic geometry. It is unclear to what extent Euclid discovered his material
or merely compiled it; our ignorance of Euclid himself extends to our being uncertain
of more than that, as we are told by Proclus, he lived and worked in Alexandria at the
time of Ptolemy I Soter (reigned 323–283).

Of course, it is to Euclid that we look for the first rigorous account of the five regular
solids; Proclus even claimed that Elements is designed to lead up to the discussion of
them.Whether or not that contention can be justified, BookXIII is devoted to the regular
solids. (Incidentally, this book and Book X are less than thoroughly integrated into the
rest of the text, suggesting that they were incorporated from an already existing work,
which may well have been written by Theaetetus himself.) The scholium (theorem)
of that book demonstrates that there are indeed only five regular solids. The proof
is straightforward, and (in essence) remains that still used: the angle at a vertex of a
regular p-gon is (1 − 2

p )π , and so for q of them to fit around a vertex of a regular solid,
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4 1 Classical Regular Polytopes

one requires that q(1 − 2
p )π < 2π , or, in other words,

1

p
+ 1

q
>

1

2
.1A1

Euclid did not phrase the result in quite this way, but this is what the proof amounts to.
Further results about the regular solids occur in Books XIV and XV (which were

written around 300, and so were not by Euclid), such as their metrical properties,
and in particular some anticipation of duality. The details, and modern explanations of
the results, are described in [120].

Archimedes

We should also briefly mention here a contribution of Archimedes (c287–212).
The Archimedean polyhedra themselves are beyond the scope of this book. However,
Archimedes did use regular polygons – actually, the 96-gon – to find his famous bounds
310

71 < π < 31
7 . The remainder of the many mathematical results of Archimedes are

not relevant to the topic of this book, but their significance cannot be allowed to pass
altogether unnoticed.

The Romans

The Romans were fine architects and engineers, but contributed less to mathemat-
ics. However, among the various works attributed to the great pagan philosopher
Anicius Manlius Severinus Boetius (c480–524) (his name is usually miswritten as
“Boethius”) is a translation of most of the first three books of Euclid. Since he certainly
translated Plato and Aristotle (with a view to reconciling them), this is a possibility
which cannot lightly be dismissed.

The Mediaeval Period

The Early Middle Ages

The Christian Roman Empire got off to a poor start in its treatment of learning; under a
decree of Emperor Theodosius I (“the Great”) concerning pagan monuments, in around
389–391 Bishop Theophilus ordered that the great library of Alexandria (or, at least,
that part in the Serapeum) be pillaged. (It is uncertain how much of the original library
had survived to this time; it is said – though the event is disputed – that the larger part,
the Brucheum, was burnt around 47 when Caesar set fire to the Egyptian fleet during
the Roman civil wars. The later story of the Muslim destruction under ’Amr is of much
more dubious provenance.) A little later, the last of the Alexandrine philosophers, the
talented and beautiful Hypatia (c375–415), was flayed with oyster shells by a Christian
mob at the instigation of Bishop Cyril (who was later canonized).

The attitude of theByzantine (EasternRoman) Empire tomathematics (and the other
sciences) was distinctly ambiguous, alternating between encouragement and suppres-
sion. Justinian I (reigned 527–565) initially seemed supportive, but soon closed the
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1A The Historical Background 5

Academy at Athens in 529, although there was probably little resulting loss to math-
ematics. It is due to a few people in the ninth (particularly Leo “the mathematician”)
and tenth centuries that we have the Greek manuscripts of Euclid which survive; the
earliest dates from 888. Similarly, a tenth-century manuscript of Archimedes was re-
used in the twelfth century (a palimpsest) for religious texts; fortunately, the original
mathematics can be recovered by modern techniques. It must be concluded that the
Byzantines preserved rather than added to the corpus of knowledge.

The mathematical torch was also carried on by the Arabs, but they too seem to have
added little to geometry, although their translation of Euclid helped to preserve it. (The
contributions of the Islamic world to algebra are a quite different matter.) They had
a good empirical knowledge of symmetry; in the Alhambra there are patterns which
exemplify many of the seventeen possible planar symmetry groups (and the rest can be
produced by slight modifications of some of the others).

The Later Middle Ages

From about the twelfth century, mathematical knowledge began seeping back
into western Europe. Around the 1120s, Aethelard (Adelard) of Bath, known as
“Philosophus Anglorum”, produced a translation of Euclid; while he knew Greek, this
is more likely to have been from Arabic. (It was first printed in Venice in 1482 under
the name of Campanus of Novara, with an unhelpful commentary, but the attribution
to Aethelard is universally accepted.)

Rather later, Thomas Bradwardine “the Profound Doctor” (c1290–1349), Arch-
bishop of Canterbury for just forty days after his consecration (he died of plague),
systematically investigated star-polygons, obtaining { n

d } by stellating { n
d−1 }. (The no-

tation will be explained later in the chapter.)
Although Kepler and Poinsot (see the following subsection) are credited with dis-

covering the regular star-polyhedra in three dimensions, the polyhedron { 5
2 , 5} was

depicted in 1420 by Paolo Uccello (1397–1475), while {5, 5
2 } occurs in an engraving of

1568 by Wenzel Jamnitzer (1508–85); however, it is unlikely that they fully appreciated
the differences between these figures and others that they drew.

The Modern Period

Before Schläfli

Johannes Kepler (1571–1630) began the modern investigation of regular polytopes by
his discovery of the two star-polyhedra { 5

2 , 5} (strictly, perhaps, a rediscovery) and { 5
2 , 3}

(see [248, p. 122]). He also investigated various regular star-polygons, particularly the
heptagons; for the latter, he showed that the side lengths of the three heptagons {7}, { 7

2 }
and { 7

3 } inscribed in the unit circle are the roots of the equation

λ6 − 7λ4 + 14λ2 − 7 = 0.1A2

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521814960 - Abstract Regular Polytopes
Peter McMullen and Egon Schulte
Excerpt
More information

http:\\www.cambridge.org\0521814960
http:\\www.cambridge.org
http:\\www.cambridge.org


6 1 Classical Regular Polytopes

In a sense, Kepler stands on a cusp. The lingering effect of mediaeval (or perhaps even
classical) thought on him shows in his attempt to relate the relative sizes of the orbits
of the planets to the ratios of in- and circumradii of the regular polyhedra; later in his
life he demonstrated that these orbits were ellipses.

The Greeks had proved that certain regular polygons, notably the pentagon, were
constructible using ruler and compass alone. In 1796, the young Carl Friedrich Gauss
(1777–1855) showed that, if a regular n-gon {n} can be so constructed, then n is a
power of 2 times a product of distinct Fermat primes, of the form

p = 22k + 11A3

for some k; in fact, the condition is sufficient as well as necessary. The only known
Fermat primes are those for k = 0, 1, 2, 3, 4; if there are no others, then an odd such
n is a divisor of 232 − 1. In 1809, Louis Poinsot (1777–1859) rediscovered the first
two regular star-polyhedra, and found their duals {5, 5

2 } (again, perhaps really a redis-
covery) and {3, 5

2 } (see [342]); very soon afterwards, in 1811, Augustin Louis Cauchy
(1789–1857) proved that the list of such regular star-polyhedra was now complete
(see [76]).

Schläfli

At a time when very few mathematicians had any concept of working in higher di-
mensional spaces, Ludwig Schläfli (1814–95) discovered regular polytopes and hon-
eycombs in four and more dimensions around 1850 (see [355, §17, 18]). In fact, he
found all the groups of the regular polytopes whose symmetry groups are generated
by reflexions in hyperplanes in euclidean spaces. But against all his evidence he re-
fused to recognize the dual pair { 5

2 , 5} and {5, 5
2 } as “genuine” polyhedra (because they

have non-zero genus), and so would not accept either the regular 4-polytopes which
have these as facets or vertex-figures, even though calculating the spherical volumes
of corresponding tetrahedra on the 3-sphere was a central part of his treatment.

From 1880 onwards, the regular polytopes in higher dimensions were rediscovered
many times, beginning with Stringham [405]. We refer to [120, p. 144] for the relevant
details. Edmund Hess [215] found the remaining regular star-polytopes, and S. L.
van Oss [337] proved that the enumeration was complete. (For an argument avoiding
consideration of each separate case, see [280] and Section 7D in this work.)

Coxeter

The subject of regular polytopes had gone into somewhat of a decline when it was taken
up by H. S. M. (Donald) Coxeter (born 1907). His investigations and consolidation of
the theory culminated in his famous book Regular Polytopes [120], whose first edition
was published in 1948. His contributions are too numerous to list here individually,
but we should at least mention Coxeter diagrams and the complete classification of the
discrete euclidean reflexion groups among all Coxeter groups. We shall mention this
latter material in Section 1B.
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1B Regular Convex Polytopes 7

But Coxeter also pointed towards later developments of the theory. In particular,
when J. F. Petrie (1907–72) (the inventor of the skew polygon which bears his name)
found the two regular skew apeirohedra {4, 6 |4} and {6, 4 |4}, he immediately found
the third {6, 6 |3}, and set the whole theory in a general context (see [105]). He also
looked at regular maps and their automorphism groups, regarding the star-polyhedra
as particular examples; he first observed that the Petrie polygons of a regular map
themselves (usually) form another regular map (see [131, p. 112]). We shall provide an
introduction to this area in Section 1D.

In 1975, Grünbaum (see [198]) gave the theory a further impetus. He generalized
the regular skew polyhedra, by allowing skew polygons as faces as well as vertex-
figures.He found eightmore individual examples and twelve infinite families (with non-
congruent realizations of isomorphic apeirohedra), and Dress [148, 150] completed
the classification by finding the final case and establishing the completeness of the list.
Again, we shall consider this work later, in the appropriate place (see Section 7E).

Finally, regular polytopes also formed the cradle of Tits’s work on buildings (see
[415–417]). Buildings of spherical type are the natural geometric counterparts of simple
Lie groups of Chevally type. Regular polytopes, or, more generally, Coxeter complexes
(see Sections 2C and 3A), occur here as fundamental structural components, namely,
as the “apartments” of buildings. In a further generalization, Buekenhout [55, 58]
introduced the notion of a diagram geometry to find a geometric interpretation for
the twenty-six sporadic groups (see [14, 143, 244]). Although we shall not discuss
buildings and diagram geometries in detail, the present book has nevertheless been
considerably influenced by these developments.

History teaches us that the subject of regular polyhedra has shown an enormous
potential for revival. One natural explanation is that the beauty of the geometric figures
appeals to the artistic senses [20, 384].

1B Regular Convex Polytopes

We begin this section with a short discussion of convexity, which we shall need again
in Chapter 5. For fuller details, we refer the reader to any one of a number of standard
texts, for example [197, 357].

A subset K of n-dimensional euclidean space E
n is convex if, with each two of its

points x and y, it contains the line segment

[xy] := {(1 − λ)x + λy | 0 � λ � 1}.
The intersection of convex sets is again convex, and so the convex hull conv S of a
set S ⊆ E

n is well defined as the smallest convex set which contains S. The convex
hull of a finite set of points is a convex polytope; in this section, we shall frequently
drop the qualifying term “convex” and talk simply about a polytope. A polytope P
is k-dimensional, or a k-polytope, if its affine hull is k-dimensional. Here, an affine
subspace of E

n is a subset A which contains each line

xy := {(1 − λ)x + λy | λ ∈ R}
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8 1 Classical Regular Polytopes

between two points x, y ∈ A; the affine hull aff S of a subset S is similarly the smallest
affine subspace of E

n which contains S.
Bear in mind that a non-empty affine subspace A is a translate of a unique linear

subspace

L := A − A = A − x

for any x ∈ A; by definition dim A := dim L . The empty set ∅ is the affine subspace
of dimension −1; it is also a polytope. We further refer to 2-polytopes as polygons and
to 3-polytopes as polyhedra.

The simplest example of an n-polytope is an n-simplex, which is the convex hull
of an affinely independent set of n + 1 points. Here, a set {a0, a1, . . . , an} is affinely
independent if, whenever λ0, λ1, . . . , λn ∈ R are such that

n∑

i=0

λi ai = o,
n∑

i=0

λi = 0,

then λ0 = λ1 = · · · = λn = 0; this is the natural extension of the notion of linear inde-
pendence. (We use “o” to denote the zero vector.)

A hyperplane

H (u, α) := {x ∈ E
n | 〈x, u〉 = α}

supports a convex set K , with outer normal u, if

α = sup{〈x, u〉 | x ∈ K }.
The intersection H (u, α) ∩ K is then an (exposed) face of K . An n-polytope P has
faces of each dimension 0, . . . , n − 1, which are themselves polytopes. Often, ∅ and P
itself are counted as faces of P , called the improper faces; the other faces are proper.
We write P(P) = P for the family of all faces of P . The faces of dimensions 0, 1,
n − 2 andn − 1 are also referred to as its vertices, edges, ridges and facets, respectively;
more generally, a face of dimension j is called a j -face.

The notation vert P is usual for the set of vertices of a polytope P; then P =
conv(vert P). If v ∈ vert P , and if H is a hyperplane which strictly separates v from
vert P \ {v}, then H ∩ P is called a vertex-figure of P at v. In the caseswe shall consider
in the following, we may usually choose the vertices of the vertex-figure at v in some
special way; traditionally, they are the midpoints of the edges through v, although we
shall frequently violate the strict terms of the definition, and take the other vertices of
the edges through v instead.

Before we proceed further, we list various properties of a convex n-polytope P ,
which will motivate many of the definitions we adopt in Chapter 2.

� P is a lattice, under the partial ordering F � G if and only if F ⊆ G. The meet of
two faces F and G is then F ∧ G := F ∩ G, and the join F ∨ G is the (unique)
smallest face of P which contains F and G.

� If F < G are two faces of P with dimG − dim F = 2, then there are exactly two
faces J of P such that F < J < G.
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1B Regular Convex Polytopes 9

� For every two faces F , G of P with F � G, the section

G/F := {J ∈ P | F � J � G}
of P is isomorphic to the face-lattice of a polytope of dimension dimG − dim
F − 1. (For F = ∅, we have G/F = G by a minor abuse of notation; when dim
F � 0, proceed by induction, namely, by successive construction of vertex-figures.)

Two faces F and G of P are called incident if F � G or G � F .

� If dim P � 2, then P is connected, in the sense that any two proper faces F and G
of P can be joined by a chain F =: F0, F1, . . . , Fk := G of proper faces of P , such
that Fi−1 and Fi are incident for i = 1, . . . , k. Hence, P is strongly connected, in
that the same is true for every section G/F of P such that dimG � dim F + 3.

� The boundary bd P of P is homeomorphic to an (n − 1)-sphere; in particular, if
n � 3, then bd P is simply connected.

We call two polytopes P and Q (combinatorially) isomorphic if their face-lattices
P(P) and P(Q) are isomorphic, so that there is a one-to-one inclusion preserving
correspondence between the faces of P and those of Q. Similarly, P and Q are dual
if P(P) and P(Q) are anti-isomorphic, giving a one-to-one inclusion reversing corre-
spondence between the faces of P and those of Q. The notation P∗ for a dual of P will
occur quite often.

A flag of an n-polytope P is a maximal subset of pairwise incident faces of P; thus,
it is of the form {F−1, F0, . . . , Fn−1, Fn}, with

F−1 ⊂ F0 ⊂ · · · ⊂ Fn−1 ⊂ Fn.

Here we introduce the conventions F−1 := ∅ and Fn := P for an n-polytope P; the
inclusions are strict, so that dim Fj = j for each j = 0, . . . , n − 1. The improper faces
∅ and P are often omitted from the specification of a flag, since they belong to all of
them.The family offlagsof P is denotedF(P). Flags thus have the followingproperties.

� For each j = 0, . . . , n − 1, there is a unique flag Φ j ∈ F(P) which differs from a
given flag Φ in its j-face alone. Two such flags Φ and Φ j are called adjacent, or,
more exactly, j -adjacent.

� P is strongly flag-connected, in that for each two flags Φ and Ψ of P , there exists
a chain Φ =: Φ0, Φ1, . . . , Φk := Ψ , such that Φi−1 and Φi are adjacent for each
i = 1, . . . , k, and Φ ∩ Ψ ⊆ Φi for each i = 1, . . . , k − 1.

The symmetry group G(P) of P consists of the isometries g of E
n such that Pg = P .†

Then P is called regular if G(P) is transitive on the family F(P) of flags of P; this
form of the definition seems to have been given first by Du Val in [156, p. 63].

Alternative definitions of regularity of an n-polytope are common in the literature.
We list some of them here; a comprehensive discussion of this topic occurs in [279].

† In such algebraic contexts, we write maps after their arguments throughout the book. Compositions of
maps thus occur in their natural order; that is, they are read from left to right. Note that these conventions
are a change from those in some of our earlier publications.
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10 1 Classical Regular Polytopes

� A polygon is regular if its edges have the same length, and the angles at its vertices
are equal (or, its vertices lie on a circle).

� For n � 3, an n-polytope is regular if its facets are regular and congruent (or isomor-
phic), and its vertex-figures are isomorphic. (This formulation depends on Cauchy’s
rigidity theorem; see [242, p. 335].)

� For every n, an n-polytope P is regular if, for each j = 0, . . . , n − 1, its symmetry
group G(P) is transitive on the j-faces of P .

A reflexion R in E
n is an involutory isometry; it has a mirror

{x ∈ E
n | x R = x}

of fixed points with which it is identified, so that the same notation R is employed for
it. A hyperplane reflexion has a hyperplane as its mirror.

A Coxeter group is one of the form G := 〈R0, . . . , Rn−1〉, the group generated by
R0, . . . , Rn−1, which satisfies relations solely of the form

(Ri R j )
pi j = E,

the identity, where the pi j = p ji are positive integers (or infinity) satisfying p j j = 1
for each j = 0, . . . , n − 1. In addition, we call G a string (Coxeter) group if pi j = 2
whenever 0 � i < j − 1 � n − 2; this group is then denoted [p1, . . . , pn−1]. We shall
discuss Coxeter groups in full generality in Chapter 3.

1B1 Theorem The symmetry group G(P) of a regular convex n-polytope P is a finite
string Coxeter group, with generators R j for j = 0, . . . , n − 1 which are hyperplane
reflexions, and p j := p j−1, j � 3 for j = 1, . . . , n − 1 (in the previous notation). Con-
versely, any finite string Coxeter group for which p j � 3 for j = 1, . . . , n − 1 is the
symmetry group of a regular convex polytope.

Proof. Let us explain how this result arises. Fix a flag Φ = {F−1, F0, . . . , Fn−1, Fn} of
a regular n-polytope P , with the conventions introduced previously. Denote by q j the
centroid of Fj for j = 0, . . . , n (by this, we mean the centroid of its vertices), and, for
each j = 0, . . . , n − 1, let

Hj := aff{qi | i �= j}.1B2

It is not hard to see that {q0, . . . , qn} is affinely independent, so that each Hj is a
hyperplane. If R j is the (hyperplane) reflexion whose mirror is Hj , then G(P) =
〈R0, . . . , Rn−1〉.

We see this as follows. In any n-polytope P , and for any flag Φ of P , for each
j = 0, . . . , n − 1, let Φ j (as before) be the unique flag of P which is j-adjacent to
Φ. Then R j is the unique symmetry of P which interchanges Φ and Φ j . The simple-
connectedness of the boundary of P (for n � 3 – the case n = 2 is trivial) then leads
directly to the first assertion of the theorem. Many of the details of the proof are exactly
as in that of Theorem 1B3, and so we shall postpone them until then.

We shall leave the converse of Theorem 1B1 until we have discussed Coxeter groups
in more detail. However, the essence of the argument lies in the fact that a finite
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