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Basic Theory of the Period Map
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Introductory Examples

The basic idea of Hodge theory is that the cohomology of an algebraic variety
has more structure than one sees when viewing the same object as a “bare”
topological space. This extra structure helps us understand the geometry of
the underlying variety, and it is also an interesting object of study in its own
right. Because of the technical complexity of the subject, in this chapter, we
look at some motivating examples which illuminate and guide our study of
the complete theory. We shall be able to understand, in terms of specific and
historically important examples, the notions of Hodge structure, period map,
and period domain. We begin with elliptic curves, which are the simplest in-
teresting Riemann surfaces.

1.1 Elliptic Curves

The simplest algebraic variety is the Riemann sphere, the complex projective
space P1. The next simplest examples are the branched double covers of the
Riemann sphere, given in affine coordinates by the equation

y2 = p(x),

where p(x) is a polynomial of degree d. If the roots of p are distinct, which
we assume they are for now, the double cover C is a one-dimensional complex
manifold, or a Riemann surface. As a differentiable manifold it is character-
ized by its genus. To compute the genus, consider two cases. If d is even, all
the branch points are in the complex plane, and if d is odd, there is one branch
point at infinity. Thus the genus g of such a branched cover C is d/2 when
d is even and (d − 1)/2 when d is odd. These facts follow from Hurwitz’s
formula, which in turn follows from a computation of Euler characteristics
(see Problem 1.1.2). Riemann surfaces of genus 0, 1, and 2 are illustrated in
Fig. 1. Note that if d = 1 or d = 2, then C is topologically a sphere. It is not
hard to prove that it is also isomorphic to the Riemann sphere as a complex
manifold.
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4 Introductory Examples

g = 0 g = 1 g = 2

…

Figure 1. Riemann surfaces.

Now consider the case d = 3, so that the genus of C is 1. By a suitable
change of variables, we may assume the three roots of p(x) to be 0, 1, and λ,
where λ �= 0, 1:

y2 = x(x − 1)(x − λ). (1.1.1)

We shall denote the Riemann surface defined by this equation (1.1.1) by Eλ,
and we call the resulting family the Legendre family. As topological spaces,
and even as differentiable manifolds, the various Eλ, are all isomorphic, as
long as λ �= 0, 1, a condition which we assume to be now in force. However,
we shall prove the following:

Theorem 1.1.2 Suppose that λ �= 0, 1. Then there is an ε > 0 such that
for all λ′ within distance ε from λ, the Riemann surfaces Eλ and Eλ′ are not
isomorphic as complex manifolds.

Our proof of this result, which guarantees an infinite supply of essentially
distinct elliptic curves, will lead us directly to the notions of period map and
period domain and to the main ideas of Hodge theory.

The first order of business is to recall some basic notions of Riemann
surface theory so as to have a detailed understanding of the topology of Eλ,
which for now we write simply as E . Consider the multiple-valued holomor-
phic function

y =
√

x(x − 1)(x − λ).

On any simply connected open set which does not contain the branch points
x = 0, 1, λ, ∞, it has two single-valued determinations. Therefore, we cut
the Riemann sphere from 0 to 1 and from λ to infinity, as in Fig. 2. Then
analytic continuation of y in the complement of the cuts defines a single-
valued function. We call its graph a “sheet” of the Riemann surface. Note that
analytic continuation of y around δ returns y to its original determination, so
δ lies in a single sheet of E . We can view it as lying in the Riemann sphere
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1.1 Elliptic Curves 5

0

1

δ

γ

λ

∞

Figure 2. Cuts in the Riemann sphere.

itself. But when we analytically continue along γ , we pass from one sheet to
the other as we pass the branch cut. That path is therefore made of two pieces,
one in one sheet and one in the other sheet.

Thus the Riemann surface of y consists of two copies of the Riemann
sphere minus the cuts, which are then “cross-pasted”: we glue one copy to the
other along the cuts but with opposite orientations. This assembly process is
illustrated in Fig. 3. The two cuts are opened up into two ovals, the opened-
up Riemann sphere is stretched to look like the lower object in the middle,

γ

δ

Figure 3. Assembling a Riemann surface.
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6 Introductory Examples

γ
δ

Figure 4. Torus.

a second copy is set above it to represent the other sheet, and the two sheets
are cross-pasted to obtain the final object.

The result of our assembly is shown in Fig. 4.
The oriented path δ indicated in Fig. 4 can be thought of as lying in the

Riemann sphere, as in Fig. 2, where it encircles one branch cut and is given
parametrically by

δ(θ ) = 1/2 + (1/2 + k)eiθ

for some small k. The two cycles δ and γ are oriented oppositely to the x and
y axes in the complex plane, and so the intersection number of the two cycles
is

δ · γ = 1.

We can read this information off either Fig. 3 or Fig. 2. Note that the two
cycles form a basis for the first homology of E and that their intersection
matrix is the standard unimodular skew form,

J =
(

0 1
−1 0

)
.

With this explanation of the homology of our elliptic curve, we turn to the
cohomology. Recall that cohomology classes are given by linear functionals
on homology classes, and so they are given by integration against a differential
form. (This is de Rham’s theorem – see Theorem 2.1.1). In order for the line
integral to be independent of the path chosen to represent the homology class,
the form must be closed. For the elliptic curve E there is a naturally given
differential one-form that plays a central role in the story we are recounting.
It is defined by

ω = dx

y
= dx√

x(x − 1)(x − λ)
. (1.1.3)
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1.1 Elliptic Curves 7

As discussed in Problem 1.1.1, this form is holomorphic, that is, it can be
written locally as

ω = f (z)dz,

where z is a local coordinate and f (z) is a holomorphic function. In fact,
away from the branch points, x is a local coordinate, so this representation
follows from the fact that y(x) has single-valued holomorphic determinations.
Because f is holomorphic, ω is closed (see Problem 1.1.7). Thus it has a well-
defined cohomology class.

Now let δ∗ and γ ∗ denote the basis for H 1(E ; Z) which is dual to the given
basis of H1(E ; Z). The cohomology class of ω can be written in terms of this
basis as

[ω] = δ∗
∫

δ

ω + γ ∗
∫

γ

ω.

In other words, the coordinates of [ω] with respect to this basis are given by
the indicated integrals. These are called the periods of ω. In the case at hand,
they are sometimes denoted A and B, so that

[ω] = Aδ∗ + Bγ ∗. (1.1.4)

The expression (A, B) is called the period vector of E .
From the periods of ω we are going to construct an invariant that can de-

tect changes in the complex structure of E . In the best of all possible worlds
this invariant would have different values for elliptic curves that have differ-
ent complex structures. The first step toward constructing it is to prove the
following.

Theorem 1.1.5 Let H 1,0 be the subspace of H 1(E ; C) spanned by ω, and let
H 0,1 be the complex conjugate of this subspace. Then

H 1(E ; C) = H 1,0 ⊕ H 0,1.

The decomposition asserted by this theorem is the Hodge decomposition
and it is fundamental to all that follows. Now there is no difficulty in defin-
ing the (1, 0) and (0, 1) subspaces of cohomology: indeed, we have already
done this. The difficulty is in showing that the defined subspaces span the
cohomology, and that (equivalently) their intersection is zero. In the case of
elliptic curves, however, there is a quite elementary proof of this fact. Take
the cup product of (1.1.4) with its conjugate to obtain

[ω] ∪ [ω̄] = (AB̄ − B Ā)δ∗ ∪ γ ∗.
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8 Introductory Examples

Multiply the previous relation by i = √−1 and use the fact that δ∗ ∪ γ ∗ is
the fundamental class of E to rewrite the preceding equation as

i
∫
E
ω ∧ ω̄ = 2 Im(B Ā).

Now consider the integral above. Because the form ω is given locally by f dz,
the integrand is locally given by

i| f |2dz ∧ d̄z = 2| f |2dx ∧ dy,

where dx ∧ dy is the natural orientation defined by the holomorphic coordi-
nate, that is, by the complex structure. Thus the integrand is locally a pos-
itive function times the volume element, and so the integral is positive. We
conclude that

Im(B Ā) > 0.

We also conclude that neither A nor B can be 0 and, therefore, that the
cohomology class of ω cannot be 0. Consequently the subspace H 1,0(E) is
nonzero.

Because neither A nor B can be 0 we can rescale ω and assume that A = 1.
For such “normalized” differentials, we conclude that the imaginary part of
the normalized B-period is positive:

Im B > 0. (1.1.6)

Now suppose that H 1,0 and H 0,1 do not give a direct sum decomposition of
H 1(E ; C). Then H 1,0 = H 0,1, and so [ω̄] = λ[ω] for some complex number
λ. Therefore

δ∗ + B̄γ ∗ = λ(δ∗ + Bγ ∗).

Comparing coefficients, we find that λ = 1 and then that B = B̄, in contra-
diction with the fact that B has a positive imaginary part. This completes the
proof of the Hodge theorem for elliptic curves, Theorem 1.1.5.

An Invariant of Framed Elliptic Curves

Now suppose that f : Eµ −→ Eλ is an isomorphism of complex manifolds.
Let ωµ and ωλ be the given holomorphic forms. Then we claim that

f ∗ωλ = c ωµ (1.1.7)

for some nonzero complex number c. This equation is certainly true on the
level of cohomology classes, although we do not yet know that c is nonzero.
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1.1 Elliptic Curves 9

However, on the one hand,∫
[Eµ]

f ∗ωλ ∧ f ∗ω̄λ = |c|2
∫

[Eµ]
ωµ ∧ ω̄µ,

and on the other,∫
[Eµ]

f ∗ωλ ∧ f ∗ω̄λ =
∫

f∗[Eµ]
ωλ ∧ ω̄λ =

∫
[Eλ]

ωλ ∧ ω̄λ.

The last equality uses the fact that an isomorphism of complex manifolds is a
degree-one map. Because i ωλ ∧ ω̄λ is a positive multiple of the volume form,
the integral is positive and therefore

c �= 0. (1.1.8)

We can now give a preliminary version of the invariant alluded to above.
It is the ratio of periods B/A, which we write more formally as

τ (E, δ, γ ) =
∫
γ

ω∫
δ
ω

.

From Eq. (1.1.6) we know that τ has a positive imaginary part. From the just-
proved proportionality results (1.1.7) and (1.1.8), we conclude the follow-
ing.

Theorem 1.1.9 If f : E −→ E ′ is an isomorphism of complex manifolds,
then τ (E, δ, γ ) = τ (E ′, δ′, γ ′), where δ′ = f∗δ and γ ′ = f∗γ .

To interpret this result, let us define a framed elliptic curve (E, δ, γ ) to
consist of an elliptic curve and an integral basis for the first homology such
that δ · γ = 1. Then we can say that “if framed elliptic curves are isomorphic,
then their τ -invariants are the same.”

Holomorphicity of the Period Mapping

Consider once again the Legendre family (1.1.1) and choose a complex num-
ber a �= 0, 1 and an ε > 0 which is smaller than both the distance from a to 0
and the distance from a to 1. Then the Legendre family, restricted to λ in the
disk of radius ε centered at a, is trivial as a family of differentiable manifolds.
This means that it is possible to choose two families of integral homology
cycles δλ and γλ on Eλ such that δλ · γλ = 1. We can “see” these cycles by
modifying Fig. 2 as indicated in Fig. 5. A close look at Fig. 5 shows that we
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10 Introductory Examples

δ
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Figure 5. Modified cuts in the Riemann sphere.

can move λ within a small disk � without changing either δλ or γλ. Thus
we can view the integrals defining the periods A and B as having constant
domains of integration but variable integrands.

Let us study these periods more closely, writing them as

A(λ) =
∫

δ

dx√
x(x − 1)(x − λ)

, B(λ) =
∫

γ

dx√
x(x − 1)(x − λ)

.

We have suppressed the subscript on the homology cycles in view of the
remarks made at the end of the previous paragraph. The first observation is
the following.

Proposition 1.1.10 On any disk � in the complement of the set {0, 1, ∞},
the periods of the Legendre family are single-valued holomorphic functions
of λ.

The proof is straightforward. Since the domain of integration is constant,
we can compute ∂ A/∂λ̄ by differentiating under the integral sign. But the
integrand is a holomorphic expression in λ, and so that derivative is 0. We
conclude that the period function A(λ) is holomorphic, and the same argument
applies to B(λ).

Notice that the definitions of the period functions A and B on a disk �

depend on the choice of a symplectic homology basis {δ, γ }. Each choice of
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1.1 Elliptic Curves 11

basis gives a different determination of the periods. However, if δ′ and γ ′ give
a different basis, then

δ′ = aδ + bγ

γ ′ = cδ + dγ,

where the matrix

T =
(

a b
c d

)

has determinant 1. The periods with respect to the new basis are related to
those with respect to the old one as follows:

A′ = a A + bB
B ′ = cA + d B.

Thus the new period vector (A′, B ′) is the product of the matrix T and the
old period vector (A, B). The τ -invariants are related by the corresponding
fractional linear transformation:

τ ′ = dτ + c

bτ + a
.

The ambiguity in the definition of the periods and of the τ invariant is due
to the ambiguity in the choice of a homology basis. Now consider a simply
connected open set U of P1\{0, 1, ∞} and a point λ0 and λ of U . The choice
of homology basis for Eλ0 determines a choice of homology basis for all
other fibers Eλ. Thus the periods A(λ) and B(λ) as well as the ratio τ (λ) are
single-valued holomorphic functions on U . On the full domain P1\{0, 1, ∞},
however, these functions are multivalued.

We can now state a weak form of Theorem 1.1.2.

Theorem 1.1.11 The function τ is nonconstant.

If τ , defined on a simply connected open set U , is a nonconstant holomorphic
function then its derivative is not identically zero. Therefore its derivative has
at most isolated zeroes. For a randomly chosen point, different from one of
these zeroes, τ is a locally injective function.

There are at least two ways to prove that τ is nonconstant. One is to compute
the derivative directly and to show that it is nonzero. The other is to show that
τ tends to infinity as λ approaches infinity along a suitable ray in the complex
plane. We give both arguments, beginning with an analysis of τ along a
ray.
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