Fluid Dynamics of Particles, Drops, and Bubbles

This book is a modern presentation of multiphase flow, from basic principles to stateof-the-art research. It explains dispersed fluid dynamics for bubbles, drops, or solid particles, incorporating detailed theory, experiments, simulations, and models while considering applications and recent cutting-edge advances.

The book demonstrates the importance of multiphase flow in engineering and natural systems, considering particle size distributions, shapes, and trajectories as well as deformation of fluid particles and multiphase flow numerical methods. The scope of the book also includes coupling physics between particles and turbulence through dispersion and modulation, and specific phenomena such as gravitational settling and collisions for solid particles, drops, and bubbles. The eight course-based chapters feature over 100 homework problems, including theory-based and engineering application questions. The final three reference-based chapters provide a wide variety of particle point-force theories and models.

The comprehensive coverage will give the reader a solid grounding for multiphase flow research and design, applicable to current and future engineering. This is an ideal resource for graduate students, researchers, and professionals.

Eric Loth is a Rolls-Royce Professor of Mechanical and Aerospace Engineering at the University of Virginia. He is a Fellow of the American Society of Mechanical Engineers (ASME) and the American Institute of Aeronautics and Astronautics (AIAA). He has also received honors and awards from NASA and the National Science Foundation.

Fluid Dynamics of Particles, Drops, and Bubbles

ERIC LOTH University of Virginia

Cambridge University Press & Assessment 978-0-521-81436-2 — Fluid Dynamics of Particles, Drops, and Bubbles Eric Loth Frontmatter More Information

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05-06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521814362

DOI: 10.1017/9781139028806

© Eric Loth 2023

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2023

Printed in the United Kingdom by TJ Books Limited, Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Loth, Eric, author.

Title: Fluid dynamics of particles, drops, and bubbles / Eric Loth, University of Virginia. Description: Cambridge, United Kingdom ; New York, NY, USA : Cambridge University Press, 2023. | Includes bibliographical references and index.

Identifiers: LCCN 2022054292 (print) | LCCN 2022054293 (ebook) | ISBN 9780521814362 (hardback) | ISBN 9781139028806 (epub)

Subjects: LCSH: Multiphase flow. | Drops. | Granular flow. | Bubbles-Dynamics.

Classification: LCC TA357.5.M84 L68 2023 (print) | LCC TA357.5.M84 (ebook) | DDC 620.1/ 064-dc23/eng/20230111

LC record available at https://lccn.loc.gov/2022054292

LC ebook record available at https://lccn.loc.gov/2022054293

ISBN 978-0-521-81436-2 Hardback

Additional resources for this publication at www.cambridge.org/loth.

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. 1

2

Contents

Pref	ace		page x
Acknowledgments			xi
Non	lomenclature		
Intro	duction	to Multiphase Fluid Dynamics	1
1.1	Multip	phase Flow and Book Scope	1
1.2	Multip	phase Flow in Engineered and Natural Systems	2
	1.2.1	Multiphase Flow in Energy and Propulsion Systems	2
	1.2.2	Multiphase Flow in Manufacturing, Processing, and	
		Transport Systems	8
	1.2.3	Multiphase Flow in Biomedical and Environmental Systems	12
1.3	Basic	Terminology and Assumptions for Particle Fluid Dynamics	20
	1.3.1	Basic Multiphase Definitions	20
	1.3.2	Basic Particle Nomenclature	20
	1.3.3	Vector Notation	23
1.4	Resolv	ved-Surface and Point-Force Velocity Fields	24
	1.4.1	Resolved-Surface Velocity Fields	24
	1.4.2	Point-Force Velocities	25
	1.4.3	Contrasting Point-Force and Resolved-Surface Velocities	27
	1.4.4	Point-Force Time Derivatives	28
1.5	Contir	nuum Criteria and Conditions	30
	1.5.1	Normal Temperature and Pressure	30
	1.5.2	Continuum Criteria	30
1.6	Chapt	er 1 Problems	33
Sing	le-Phas	e Flow Equations and Regimes	35
2.1	Conse	rvation Equations and Fluid Properties	35
	2.1.1	Reynolds Transport Theorem and Mass Conservation	36
	2.1.2	Transport of Momentum	39
	2.1.3	Transport of Energy and Species	44
2.2	Therm	odynamic Closure and Flow Compressibility	50
	2.2.1	Thermodynamic Closures	50
	2.2.2	Speed of Sound and Mach Number	54
2.3	Incom	pressible Flow Characteristics	56

© in this web service Cambridge University Press & Assessment

		2.3.1 Stream Function	56
		2.3.2 Vorticity and Irrotational Flow	57
		2.3.3 Velocity Potential and Superposition	59
		2.3.4 No-Slip versus Slip Boundary Condition	60
	2.4	Inviscid Incompressible Flow and Froude Number	61
		2.4.1 Inviscid Irrotational Bernoulli Equations	61
		2.4.2 Froude Number	62
	2.5	Viscous Incompressible Flow and Reynolds Number	63
		2.5.1 Viscous Incompressible Flow Equations	63
	•	2.5.2 Reynolds Number	64
	2.6	Reynolds Number Regimes	66
		2.6.1 Laminar Flow Regimes	66
		2.6.2 Transitional and Turbulent Flow Regimes	69
	2.7	2.6.3 Laminar vs. Transitional vs. Turbulent Flow	71
	2.7	Flow Instability Mechanisms	75
	2.0	2.7.1 Inviscid Flow Instabilities	/5
	2.8	Chapter 2 Problems	81
3	Gove	erning Equations for an Isolated Spherical Particle	84
	3.1	Equations of Motion and Force Decomposition	84
	3.2	Drag for a Spherical Particle in Steady Flow	86
		3.2.1 Solid Sphere in Creeping Flow	87
		3.2.2 Fluid Sphere in Creeping Flow	92
		3.2.3 Sphere in Inviscid Flow and the Paradox	98
		3.2.4 Solid Sphere at Finite Reynolds Numbers	102
	3.3	Surface Forces Due to Accelerations	107
		3.3.1 Fluid-Stress Force	107
		3.3.2 Added-Mass Force	109
		3.3.3 History Force	113
	3.4	Simplified Equation of Motion	116
		3.4.1 Translational Equations of Motion	116
		3.4.2 Terminal Velocity	119
	3.5	Mass and Heat Transfer for an Isolated Spherical Particle	120
		3.5.1 Mass Transfer	121
		3.5.2 Heat Transfer	123
		3.5.3 Comparison of Transfer Time Scales	125
	3.6	Chapter 3 Problems	127
4	Part	icle Sizes, Shapes, and Trajectories	130
	4.1	Particle Size Distribution	130
		4.1.1 Size Probability Distribution Functions	130
		4.1.2 Weighted Averages and Effective Diameters	135
		4.1.3 Analytical Probability Distribution Functions	140

		Contents	vii
	4.2	Solid Particle Shapes and Motion in Free Fall	146
		4.2.1 Shape Classifications	146
		4.2.2 Orientation and Trajectory Dynamics	149
	4.3	Drop Shapes and Breakup in Free Fall	154
		4.3.1 Weber Number and Deformation	154
		4.3.2 Drop Breakup	159
	4.4	Bubble Shapes and Trajectories in Free Rise	164
		4.4.1 Free-Rise Deformation	164
		4.4.2 Free-Rise Trajectory Dynamics	168
	4.5	Shapes and Breakup in Shear Flow	173
	4.6	Oscillating Shape and Size Modes of Fluid Particles	179
		4.6.1 Oscillating Shape Modes	179
		4.6.2 Rayleigh–Plesset Equation for Bubble Radius	180
		4.6.3 Bubble Natural Frequency and Size Dynamics	184
	4.7	Chapter 4 Problems	188
5	Cou	pling Regimes for Multiphase Flow	192
	5.1	Coupling Regimes and Particle Concentration	192
		5.1.1 Multiphase Coupling Regimes	192
		5.1.2 Particle Concentration Parameters	194
	5.2	Macroscopic One-Way Coupling and Domain Stokes Numbers	197
		5.2.1 Domain Stokes Numbers	197
		5.2.2 Particle Response to a Nonuniform Flow	199
		5.2.3 Particle Response to an Oscillating Flow	201
	5.3	Microscopic One-Way Coupling by Brownian Diffusion	203
	5.4	Two-Way Coupling Criteria	208
	5.5	Three-Way Coupling: Particle–Particle Fluid Dynamic Interactions	211
	5.6	Four-Way Coupling: Particle–Particle Collisions	214
		5.6.1 Collision Frequencies and Collision Stokes Number	215
		5.6.2 Collisions Due to Terminal Velocity Variations	218
		5.6.3 Collisions Due to Flow Path Changes	218
		5.6.4 Collisions Due to Brownian Motion	219
	5.7	Chapter 5 Problems	219
6	Sing	le-Phase Turbulent Flow	222
	6.1	Time-Averaged Turbulent Flow	222
		6.1.1 Time Averaging and Reynolds Decomposition	222
		6.1.2 Time-Averaged Boundary Layer	224
		6.1.3 Fluctuation Averaging and Turbulent Kinetic Energy	227
	6.2	Turbulent Transport and Closure Equations (RANS)	230
		6.2.1 Incompressible Time-Averaged Transport Equations	230
		6.2.2 Turbulent Momentum Diffusion Principles	232
		6.2.3 Models for Turbulent Viscosity and Momentum Closure	234
		6.2.4 Turbulent Species Diffusion: Physics and Models	240

√iii	Cont	ents	
	6.3	Fully Resolved and Partially Resolved Turbulence	244
		6.3.1 Fully Resolved Approaches (DNS)	244
		6.3.2 Partially Resolved Approaches (LES)	245
	6.4	Time and Length Scales for Turbulent Flow	248
		6.4.1 Homogeneous Isotropic Stationary Turbulence	248
		6.4.2 Velocity Correlation Coefficient	252
		6.4.3 Integral Time Scales	256
		6.4.4 Integral Length Scales	260
		6.4.5 Integral-Scale Relationships and Frozen Turbulence	264
		6.4.6 Free-Shear Microscales	266
		6.4.7 Turbulent Kinetic Energy Cascade	268
		6.4.8 Computational Requirements of RANS, LES, and DNS	274
	6.5	Theoretical Turbulent Diffusivity of a Species	278
	6.6	Chapter 6 Problems	281
7	Mult	tiphase Turbulent Flow	286
	7.1	Turbulent Stokes Numbers and Particle Dispersion	286
	7.2	Turbulent Diffusion of Particles	292
		7.2.1 Particle Diffusivity Characteristics and Limits	292
		7.2.2 Weak-Drift Limit and Inertial Effects	295
		7.2.3 Strong-Drift Limit and Eddy-Crossing Effects	298
		7.2.4 Particle Diffusivity for Intermediate Drift	303
	7.3	Turbulence Impact on Particle Velocity Fluctuations	307
		7.3.1 Particle Turbulent Kinetic Energy	307
		7.3.2 Particle Relative Velocity Fluctuations	311
	7.4	Turbulent Biases on Mean Particle Velocity	315
		7.4.1 Nonlinear Drag Bias	317
		7.4.2 Preferential Bias and Clustering	318
		7.4.3 Diffusiophoresis and Turbophoresis	326
	7.5	Turbulent Deformation and Breakup of Drops and Bubbles	330
	7.6	Two-Way Turbulence Coupling by Particles	333
	7.7	Three-Way and Four-Way Turbulence Coupling	345
	7.8	Multiphase Coupling Summary	348
	7.9	Chapter 7 Problems	352
8	Mult	tiphase Flow Numerical Approaches	354
	8.1	Lagrangian versus Eulerian Approaches for Point-Force Particles	354
		8.1.1 Lagrangian (Discrete) Particle Approaches	356
		8.1.2 Eulerian (Continuum) Particle Approaches	361
		8.1.3 Particle Size Distribution Aspects	364
		8.1.4 Two-Way and Three-Way Coupling Aspects	366
		8.1.5 Four-Way Coupling Aspects	368
	8.2	Mixed-Fluid and Drift-Flux Eulerian Approaches	373
	8.3	Point-Force, Distributed-Force, and Resolved-Surface Approaches	376

Cambridge University Press & Assessment 978-0-521-81436-2 — Fluid Dynamics of Particles, Drops, and Bubbles Eric Loth Frontmatter <u>More Information</u>

	Contents	ix
	8.3.1 Lagrangian Distributed-Force Approaches	377
	8.3.2 Resolved-Surface Approaches	379
	8.3.3 Computational Node Requirements	382
	8.4 Simulating Diffusion of Particles	384
	8.4.1 Point-Force Brownian Diffusion of Particles	385
	8.4.2 Point-Force RANS-Based Turbulent Particle Diffusion	387
	8.4.3 Point-Force LES-Based Turbulent Particle Diffusion	391
	8.4.4 Summary of Numerical Approaches for Particles	
	in Turbulence	392
	8.5 Chapter 8 Problems	395
9	Drag Force on an Isolated Particle	398
	9.1 Decomposition of Point Forces	398
	9.1.1 General Surface Point-Force Expression	398
	9.1.2 Theoretical Point-Force Momentum for an Isolated Particle	399
	9.2 Drag Force for an Isolated Solid Particle	402
	9.2.1 Influence of Reynolds Number for a Sphere	402
	9.2.2 Influence of Flow Compressibility and Rarefaction	406
	9.2.3 Thermophoretic (Not Drag) Force	414
	9.2.4 Influence of Spin, Vorticity, Turbulence, and Roughness	417
	9.2.5 Nonspherical Regularly Shaped Solid Particle Drag	420
	9.2.6 Irregularly Shaped Solid Particle Drag	427
	9.5 Drag Force for an isolated Fluid Particle	430
	9.3.2 Aspect Ratio and Drag of Deformed Fluid Particles	431
10	Lift, Added-Mass, and History Forces on a Particle	447
	10.1 Lift Force and Torque	447
	10.1.1 Vorticity-Induced Lift	449
	10.1.2 Spin-Induced Lift	454
	10.1.3 Lift and Torque for Combined Particle Spin and	
	Fluid Vorticity	460
	10.1.4 Lift for Nonspherical Particles	464
	10.2 Added-Mass Force	468
	10.3 History Force	469
	10.3.1 Drag History Force for Solid Spheres	470
	10.3.2 Drag History Force for Fluid Spheres and Solid Spheroids	474
	10.3.3 Lift History Force for Solid Spheres	474
11	Particle Interactions with Walls and Other Particles	476
	11.1 Fluid Dynamic Influence of a Wall on Particle	476
	11.1.1 Drag Corrections for Solid Particles	476
	11.1.2 Drag Corrections for Clean Bubbles	479
	11.1.3 Lift Corrections for Solid Particles and Fluid Particles	480

Cambridge University Press & Assessment 978-0-521-81436-2 — Fluid Dynamics of Particles, Drops, and Bubbles Eric Loth Frontmatter <u>More Information</u>

11.1.4 Added-Mass Corrections for Spheres	481
11.2 Fluid Dynamic Influence of Other Particles	482
11.2.1 Effect of Volume Fraction on Quasisteady Drag	482
11.2.2 Drag of Solid Spherical Particles	483
11.2.3 Drag of Solid Nonspherical Particles	485
11.2.4 Drag of Clean and Deformed Bubbles	487
11.2.5 Effect of Volume Fraction on Other Fluid Dynamic Forces	s 489
11.3 Momentum Change Due to Particle Collisions	490
11.4 Normal Collisions of Solid Spheres	493
11.4.1 Normal Collisions for Spheres in an Inviscid Fluid	494
11.4.2 Normal Collisions of Spheres in a Viscous Fluid	498
11.5 Oblique and Spin Collisions for Solid Spheres	502
11.5.1 Oblique Collisions of Spheres	503
11.5.2 Irregularly Shaped Particles and/or Walls	506
11.6 Collision Outcome Regimes for Impacting Fluid Particles	509
11.6.1 Drop Collisions in a Surrounding Gas	509
11.6.2 Drop and Bubble Collisions in a Liquid	515
11.6.3 Drop Collisions on a Wall	515
Appendix	518
References	519
Index	548

Preface

This book provides an overview of dispersed multiphase fluid dynamics of bubbles, drops, and solid particles, whose trajectory is primarily determined by the surrounding flow. The motion of the particles and impact on the fluid is described using governing equations, basic physics, theory, experimental/numerical results, and empirical models.

The text is organized in 11 chapters that provide an introduction, basic equations of motion, particle and coupling classifications, particle–turbulent interactions, an overview of multiphase numerical methods, and reference details for point-force approaches.

The first eight chapters are designed for a course in multiphase flow. The introduction of Chapter 1 describes the importance of multiphase flow to engineering and natural systems. Chapter 2 is a brief review of single-phase fluid dynamic equations, which are used in Chapter 3 to obtain equations of motion for a single spherical particle. Chapter 4 considers particle size distributions, shapes, and trajectories as well as deformation of fluid particles (drops and bubbles). Chapter 5 characterizes multiphase flow-coupling interactions based on particle concentration, along with coupling regime classification. Chapter 6 reviews basic principles of single-phase turbulence, which are used in Chapter 7 to identify coupling physics between particles and turbulence. Chapter 8 overviews numerical methods for multiphase flows and discusses the pros and cons of various approaches. Chapters 1–8 are written for use in a course and have recommended homework problems.

Reference details on the point-force model are provided in Chapters 9–11. Chapter 9 focuses on the fluid dynamic drag on a particle for a wide variety of conditions, while Chapter 10 considers details of lift and other fluid dynamic forces for one-way coupling. Three-way and four-way coupling effects for a point-force description are reviewed in Chapter 11.

Additional information for multiphase flow physics is available in the books of Wallis (1969), Clift et al. (1978), Soo (1990), Drew and Passman (1998), Kleinstreuer (2003), Brennen (2005), Michaelides (2006), Leal (2007), Prosperetti and Tryggvason (2007), Crowe et al. (2011), and Marshall and Li (2014). Heat and mass transfer aspects are also discussed by Williams (1965), Kuo (1986), Oran and Boris (1987), and Sirignano (2010), while dense flow treatments (where particle collisions dominate) are covered by Gidaspow (1994) and Marchisio and Fox (2013).

Acknowledgments

This book endeavors to present dispersed multiphase fluid dynamics within a simple engineering discussion, based on research in the community by my colleagues, whom I thank. I am indebted to Professor G. M. Faeth (1936–2005), who introduced me to the subject, the many great students at the University of Illinois and the University of Virginia who provided valuable feedback (you know who you are!), as well as the team at Cambridge University Press for their superb editorial guidance.

I dedicate this book to my family for all their support, especially my wife Marie.

To honor these people, 100% of the author's proceeds from this book will be donated to the International Committee of the Red Cross (ICRC). The opinions expressed in this text are those of the author (and not necessarily of the ICRC).

Nomenclature

Unless otherwise stated, the numbers in parentheses correspond to the numbered equations presented throughout the text.

Roman Letters

а	Spheroid angle of attack (10.42)
a	Speed of sound (2.42)
А	Area or boundary surface (1.2)
Я	Bubble oscillation amplitude (4.59)
A*	Normalized surface area (9.49)
b	Richardson-Zaki exponent (11.17)
В	Spalding transfer number (3.100)
\mathcal{B}	Compressibility pressure constant (2.36)
Bo	Bond number (4.43)
c	Coefficient, such as (3.76)
с	Specific heat (2.29)
const.	Arbitrary constant of order unity
С	Force coefficient, such as (2.87)
С	Cumulative distribution function (4.4)
Ca	Capillary number (4.61a)
d	Equivalent volumetric diameter of a particle (1.1b)
ď	Particle-path derivative (1.17a) or diameter derivative (4.3b)
D	Macroscopic length scale of physical domain (1.3)
\mathcal{D}	Fluid path derivative (1.17b)
e	Internal energy (2.23)
е	Coefficient of restitution (8.32a)
E	Particle aspect ratio (4.38)
Ε	Turbulent kinetic energy per wavenumber (6.93)
\mathcal{E}	Young's modulus (11.39)
f	Stokes drag correction factor (3.31)
f	Ordinary frequency (2.95)
F	Turbulent kinetic energy per frequency (6.97)
\mathcal{F}	Marker function (8.53)
_	

F Force (3.2)

xiv	Nomen	clature
	Fr	Froude number (2.71)
	α	Gravity acceleration vector (2.13)
	g	Gravity drift parameter (7.18)
	y C	Flow strain (4 67a)
	G	Gradient of viscous stresses (2.11)
	h	Spread parameter for a size distribution (4.24)
	ĥ	Enthalpy (2.38b)
	Н	History force kernel (10.53a)
	i	Unit vector (1.8)
	Ι	Impulse (11.32a)
	Ι	Moment of inertia (4.40)
	I^*	Normalized inertia about broadside axis (4.40)
	J*	Normalized McLaughlin lift parameter (10.9)
	k	Turbulent kinetic energy of the surrounding fluid (6.17)
	ĸ	Thermal conductivity (2.25)
	\mathcal{K}	Compressibility exponent (2.36)
	K _{ij}	Viscous stress tensor on face i in direction j (2.15a)
	Kn	Knudsen number (1.20)
	l	Distance (1.20) or wavelength (2.91)
	m	Mass (1.4)
	и	Viscosity ratio function (9.68b)
	т	Particle mass loading (5.6)
	ṁ	Mass flux per unit time (3.97)
	М	Mach number (2.45)
	${\mathcal M}$	Mass fraction (2.30a)
	Mo	Morton number (4.44)
	MW	Molecular weight of a gas (1.24)
	n	Wavenumber (6.92)
	n	Outward normal vector (2.1)
	n _p	Number of particles per mixed-fluid volume (5.1)
	N	Number of particles (5.1), realizations (5.26), nodes (6.106), or parcels (8.10
	У NICI	Number of collisions per unit volume of mixture (5.54)
	NISI NTD	No index summation intended
	NIP	Normal temperature and pressure (Table A.1)
	0 Oh	Objective number (4.54)
	011 n	Continuous phase pressure neglecting local flow around particle (1.15a)
	р	Pressure around or inside of particle (1.12)
	r Dr	Prandtl number $(2, 20)$
	FI Ø	Probability distribution function $(4, 1)$
	a. T	Arbitrary variable (1.7)
	Ч Л	Arbitrary vector (1.8)
	ч О	Diffusive (nonconvective) flux (2.1)
	×	Heat transfor note (2,100)

Nomenclature

XV

- r Radial distance (1.11)
- *r* Dimensionless particle roughness (9.43b)
- r_p Volumetric particle radius (1.1b)
- R Acceleration parameter (3.88b)
- \mathcal{R} Gas constant (1.24b)
- Re Reynolds number (2.79)
- s Speed ratio (9.32)
- *s* Particle size ratio (11.45b)
- *S* Shape oscillation mode (4.70)
- Sc Schmidt number (2.35)
- Sh Sherwood number (3.103)
- St Stokes number (5.13)
- t Time (1.15)
- t Dimensionless turbulence intensity (9.43a)
- T Temperature (1.24)
- T Torque (8.1c)
- **u** Continuous-phase velocity neglecting local flow around the particle (1.15b)
- U Continuous-phase velocity including local flow around the particle (1.12a)
- v Velocity of the particle centroid (1.15a)
- V Internal particle velocity field (1.12c)
- **w** Relative velocity of the dispersed phase (1.15d)
- W Faxen-corrected relative velocity (9.3f)
- We Weber number (4.41)
- x Streamwise direction for Cartesian coordinates (1.9)
- **X** Position vector (1.9)
- χ Relative position vector (6.60)
- x_i General Cartesian direction (1.9)
- y Wall-normal direction for Cartesian coordinates (1.9)
- Y Drag-power parameter (4.18)
- z Spanwise direction for Cartesian coordinates (1.9)
- Z Transfer function (8.49)

Greek Letters and Other Symbols

- α Volume fraction (5.2)
- β Collision impact parameter (11.59)
- δ Kronecker delta (2.15b) or boundary-layer thickness (2.85b)
- Δ Discretization increment (space or time)
- ε Turbulent dissipation of continuous phase (6.33)
- ϵ Small perturbation («1)
- ϕ Azimuthal angle coordinate (1.11)
- Φ Velocity potential (2.57)
- γ Gas specific heat ratio (2.39)
- Γ Gamma function (4.27)
- η Kolmogorov length scale of the turbulence (6.86)

xvi	Nomen	Iclature
	Э F	Particle impact angle (11.59)
	κI	Soltzmann constant (5.29b)
	λΊ	Γaylor length scale of the turbulence (6.95)
	Λ Ι	ntegral length scale of the turbulence (6.71)
	μĮΙ	Dynamic viscosity (1.6)
	μ _p V	Viscosity ratio (1.6)
	ПМ	Aultiphase coupling parameter (5.35)
	v	Kinematic viscosity (2.74)
	θΕ	Polar angle for particle-centered coordinates (1.11)
	Θ N	Mass diffusivity (2.32)
	ΘΝ	Normalized turbulent particle diffusivity (7.17)
	ρ I * T	Density (1.4)
	ρ _p Ι	Density ratio (1.5)
	σΣ	Surface tension (3.32)
	8 2	Section number $\Gamma_{1}^{(2)}$
	τ	Time scale $(3.88a)$ or temporal shift (6.53)
		Correlation coefficient (6.53)
	∀ \	Volume (1.1)
		Continuous-phase fluid vorticity (2.51)
	ω* 1 Ο	Dimensionless continuous-phase vorticity (10.4a)
		Angular rotation rate (Figure 10.1)
	Ω* I	Dimensionless particle rotation rate (10.4b)
	ψι	Stream function (2.50)
		Taligential velocity fatio (11.51)
	ς (Forminal valuative ratio (11.14)
	χι	
	Subso	cripts
	all	All particles
	avg	Average
	@p	Continuous-fluid property extrapolated to particle center
	b	Bin
	body	Body force
	buoy	Buoyancy effect
	Br	Brownian motion
	curv	Curvature
	clean	Clean conditions where the interface is fully mobile
	coll	Collisions
	cont	Contaminated conditions
	conv	Convective
	crit	Critical condition where flow transitions
	d	Volumetric diameter or dispersed phase
	diss	Dissipation
	dyn	Dynamic pressure

Nomenclature

xvii

D	Drag or overall macroscopic domain scales
E	Particle aspect ratio
\mathcal{E}	Eulerian
eff	Effective
eq	Equilibrium
f	Continuous-phase fluid
fm	Free-molecular value
fr	Wall friction
ft	Frozen-turbulence limit
я	Gas
g	Gravity
G	Subgrid filter
gap	Gap between particle surface and wall or another particle
Н	History force effect
Ι	Interface between particle and surrounding fluid
inj	Injection
Kn	Knudsen
$\nabla \mathbf{k}$	Due to gradients in the turbulent kinetic energy
ſ	Liquid or wavelength
L	Lift
Ĺ	Lagrangian property
lam	Laminar
LN	Log-normal size distribution values
m	Mixed-fluid value
М	Mach number
m-m	Between two molecules
тE	Moving Eulerian property
min	Minimum
n	Normal direction
nat	Natural frequency
0	Initial or reference state
osc	Related to oscillations
р	Particle phase (dispersed phase) or unhindered pressure
P	Parcel (group of particles) or local pressure
p/P	Particles per parcel (8.10b)
p,Δ	Particles that are within a computational cell (8.10a)
p-p	Particle-particle spacing (5.43)
plastic	Onset of plastic deformation
prod	Turbulent production
proj	Projected
pseudo	Pseudoturbulence
r	Radial direction
Re	Reynolds number effect
ref	Normal temperature and pressure conditions

rel	Local difference between particle and surrounding fluid
rms	Root of the mean of the squares (6.16)
RR	Rosin-Rammler size distribution values
S	Fluid-stress value
sd	Strong drift (7.19b)
sep	Separated wake conditions
shear	Linear velocity shear
sphere	For an equivalent spherical particle
stag	Stagnation conditions based on isentropic rest
sub	Subcritical conditions
super	Supercritical conditions
surf	Surface averaged quantity, typically of particle
t	Tangential
∇T	Due to gradients in temperature of continuous phase
term	Terminal characteristic of a particle in quiescent fluid
tot	Total conditions
trans	Transitional flow condition
turb	Turbulent
vapor	Vapor
viscous	Viscous
wall	Wall interaction effect
wd	Weak drift (7.19a)
yield	Yield stress value
α	Finite volume fraction effects
\forall	Added mass effect (3.76)
Δ	Cell resolution discretization
η	Kolmogorov scale of turbulence
Λ	Integral scale of turbulence
θ	Polar component
∞	Long-time or far-field property

Superscripts

- in Before interaction with wall
- out After interaction with wall
- n Time-step index
- + Normalized by wall shear-stress values
- * Dimensionless

Functions of an Arbitrary Property q

- \hat{q} Lagrangian path average (5.15)
- \bar{q} Eulerian time average (6.1)
- q' Instantaneous fluctuation from time average (6.4)
- $\langle q \rangle$ $\;$ Ensemble average for many particles (7.8a) $\;$
- q" Deviation from ensemble average (7.8b)

Nomenclature

xix

- Spatial averaged value for LES (6.44)
- q Spatial-filtered perturbation for LES (6.44) q
- $\overset{{}_{\circ}}{\nabla}'^2$ Stokes specialized spherical operator (3.15)

Comparison Symbols

- Equal by definition \equiv
- \approx Approximately equal
- Same order of magnitude ~
- ≲ Approximately less than
- ≳ Approximately more than
- Much smaller «
- Much larger »
- Normal component 1
- Parallel component
- On the order of q O(q)
- q can be neglected q→0