BASICS OF THE SOLAR WIND

The Sun continually ejects matter into space, blowing a huge bubble of supersonic plasma: the solar wind, which engulfs the Earth and the other planets, shaping their environments.

Basics of the Solar Wind presents a modern introduction to the subject, starting with basic principles and including the latest advances from space exploration and theory. The book discusses the structure of the solar interior and atmosphere, the production of the solar wind, and its perturbations. It addresses the basic physics of the objects of the Solar System, from dust to comets and planets, and their interaction with the solar wind. The final sections explore the subject from an astrophysical point of view, including the interaction with the interstellar medium, cosmic rays and winds from other stars. The book contains a historical survey and a short introduction to plasma physics.

This volume is the first to present a comprehensive basic coverage of this subject. The topics are discussed at various levels of difficulty, by including qualitative as well as quantitative treatments and emphasising physical processes rather than mathematics or observation. This book will appeal to students and researchers in physics, astronomy, space physics and engineering, geophysics and atmospheric sciences.

Cambridge Atmospheric and Space Science Series *Editors:* J. T. Houghton, M. J. Rycroft and A. J. Dessler

This series of upper-level texts and research monographs covers the physics and chemistry of different regions of the Earth's atmosphere, from the troposphere and stratosphere, up through the ionosphere and magnetosphere and out to the interplanetary medium.

NICOLE MEYER-VERNET is an astrophysicist at the Observatoire de Paris and a Research Director with the Centre National de la Recherche Scientifique (CNRS), Paris. She has been involved in pioneering studies with a variety of spacecraft including the Voyagers and Ulysses, for which she received an Académie des Sciences prize and several NASA Group Achievement Awards.

Cambridge Atmospheric and Space Science Series

EDITORS

Alexander J. Dessler John T. Houghton Michael J. Rycroft

TITLES IN PRINT IN THIS SERIES

M. H. Rees Physics and chemistry of the upper atmosphere

R. Daley Atmosphere data analysis

J. R. Garratt The atmospheric boundary layer

J. K. Hargreaves The solar–terrestrial environment

S. Sazhin Whistler-mode waves in a hot plasma

S. P. Gary Theory of space plasma microinstabilities

M. Walt Introduction to geomagnetically trapped radiation

T. I. Gombosi Gaskinetic theory

B. A. Kagan Ocean–atmosphere interaction and climate modelling

I. N. James Introduction to circulating atmospheres

J. C. King and J. Turner Antarctic meteorology and climatology J. F. Lemaire and K. I. Gringauz The Earth's plasmasphere

D. Hastings and H. Garrett Spacecraft–environment interactions

T. E. Cravens Physics of solar system plasmas

J. Green Atmospheric dynamics

G. E. Thomas and K. Stamnes Radiative transfer in the atmosphere and ocean

T. I. Gombosi Physics of space environment

R. W. Schunk and A. F. Nagy Ionospheres: Physics, plasma physics, and chemistry

I. G. Enting Inverse problems in atmospheric constituent transport

R. D. Hunsucker and J. K. Hargreaves The high-latitude ionosphere and its effects on radio propagation

R. W. Schunk and Andrew F. Nagy Ionospheres

M. C. Serreze and R. G. Barry The Arctic Climate System

BASICS OF THE SOLAR WIND

NICOLE MEYER-VERNET

Observatoire de Paris and Centre National de la Recherche Scientifique

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

 $www.cambridge.org \\ Information on this title: www.cambridge.org/9780521814201$

 $\ensuremath{\mathbb{O}}$ N. Meyer-Vernet 2007

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2007

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN-13 978-0-521-81420-1 hardback ISBN-10 0-521-81420-0 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my sons François and Alain Meyer,

and to the memory of my father, Jean Vernet, for the intellectual enrichment he gave me

Contents

Preface				page xiii
1	The	wind	from the Sun: an introduction	1
	1.1	A brie	ef history of ideas	1
		1.1.1	Intermittent particle beams?	2
		1.1.2	Permanent solar corpuscular emission?	4
		1.1.3	The modern solar wind	6
	1.2	Looki	ng at the Sun	8
		1.2.1	Basic solar properties	9
		1.2.2	The solar spectrum	10
		1.2.3	The solar disc	13
		1.2.4	Sunspots, magnetic fields and the solar cycle	15
		1.2.5	Around the Sun: chromosphere and corona	18
	1.3	Obser	ving the solar wind	24
		1.3.1	Observing near the ecliptic	24
		1.3.2	Exploring the third dimension with Ulysses	28
		1.3.3	A simplified three-dimensional picture	33
	Refe	erences		37
2	Tool kit for space plasma physics			41
	2.1 What is a plasma?			42
		2.1.1	Gaseous plasma	44
		2.1.2	Quasi-neutrality	44
		2.1.3	Collisions of charged particles	48
		2.1.4	Plasma oscillations	54
		2.1.5	Non-classical plasmas	56
		2.1.6	Summary	57
	2.2	Dynar	mics of a charged particle	58
		2.2.1	The key role of the magnetic field	58
		2.2.2	Basic charge motion in constant and uniform fields	59
		2.2.3	Non-uniform magnetic field	62
		2.2.4	Adiabatic invariants	65
		2.2.5	Summary	66
	2.3	Many	particles: from kinetics to magnetohydrodynamics	66
		2.3.1	Elements of plasma kinetics	66

CAMBRIDGE

viii

Cambridge University Press 978-0-521-81420-1 - Basics of the Solar Wind Nicole Meyer-Vernet Frontmatter More information

		2.3.2	First-aid kit for space plasma fluids	72
		2.3.3	Elements of magnetohydrodynamics	85
		2.3.4	Waves and instabilities	96
		2.3.5	Summary	100
	2.4	Basic	tools for ionisation	101
		2.4.1	Energy of ionisation and the size of the	
			hydrogen atom	101
		2.4.2	Ionisation by compressing or heating	102
		2.4.3	Radiative ionisation and recombination	103
		2.4.4	Non-radiative ionisation and recombination	105
	2.5	Probl	ems	107
		2.5.1	Linear Debye shielding in a non-equilibrium plasma	107
		2.5.2	Mean free path in a plasma	108
		2.5.3	Particles trapped in a planetary magnetic field	108
		2.5.4	Filtration of particles in the absence of equilibrium	109
		2.5.5	Freezing of magnetic field lines	110
		2.5.6	Alfvén wave	110
		2.5.7	Why is the solar wind ionised?	110
	Refe	erences		110
3	Ana	atomv	of the Sun	113
	3.1	An (a	lmost) ordinary star	113
		3.1.1	Hydrostatic equilibrium of a large ball of plasma	114
		3.1.2	Luminosity	116
		3.1.3	Energy source and timescales	118
		3.1.4	The mass of a normal star	121
	3.2	Struct	ture and dynamics	123
		3.2.1	Modelling the solar interior	124
		3.2.2	Convective instability	125
		3.2.3	Convective energy transfer	128
		3.2.4	The quiet photosphere	132
		3.2.5	Solar rotation	135
	 3.2.2 Convective instability 3.2.3 Convective energy transfer 3.2.4 The quiet photosphere 3.2.5 Solar rotation 	137		
		3.3.1	Elements of dynamo theory	138
		3.3.2	Solar kinematic dynamos	142
		3.3.3	Concentrating and expelling the magnetic field	145
		3.3.4	Lorentz force restriction on dynamo action	148
		3.3.5	Elementary physics of magnetic flux tubes	149
		3.3.6	Surface magnetic field	154
	3.4	Probl	ems	158
		3.4.1	Conductive heat transfer in the solar interior	158
		3.4.2	Timescale for radiative transport	158
		3.4.3	Solar differential rotation	158
		3.4.4	Twisted magnetic flux tube	159
		3.4.5	The heat flux blocked by sunspots	159
	Refe	erences		160

Contents

Contents

Cambridge University Press 978-0-521-81420-1 - Basics of the Solar Wind Nicole Meyer-Vernet Frontmatter <u>More information</u>

4	The	e outer solar atmosphere	165
	4.1	From the photosphere to the corona	166
		4.1.1 The atmosphere in one dimension	166
		4.1.2 One more dimension	168
		4.1.3 Three dimensions in space	169
		4.1.4 and one dimension in time	169
		4.1.5 A (tentative) look at the solar jungle	172
	4.2	Force balance and magnetic structures	174
		4.2.1 Forces	175
		4.2.2 Force-free magnetic field	177
		4.2.3 Magnetic helicity	181
		4.2.4 Inferences on magnetic structure in the low corona	185
	4.3	Energy balance	186
		4.3.1 Radiative losses	186
		4.3.2 Radiative and conductive timescales	187
		4.3.3 Temperature structure	188
	4.4	Some prominent species	190
		4.4.1 Spicules	190
		4.4.2 Magnetic loops	191
		4.4.3 Prominences	193
	4.5	Time variability	194
		4.5.1 Empirical facts	194
		4.5.2 Hints from physics	197
		4.5.3 Further difficult questions	200
	4.6	Coronal heating: boojums at work?	
		4.6.1 The energy budget and how to balance it	204
		4.6.2 Heating through reconnection events	205
		4.6.3 Heating by waves	206
		4.6.4 Filtration of a non-Maxwellian velocity distribution	209
	4.7 Hydrostatic instability of the corona		214
		4.7.1 Simplified picture of a static atmosphere	214
		4.7.2 Magnetic field effects	215
	4.8 Problems		217
		4.8.1 Elementary temperature profile	217
		4.8.2 Helicity of a string wrapped around a doughnut	217
		4.8.3 A static solar atmosphere?	218
	Refe	erences	218
5	Hov	w does the solar wind blow?	223
	5.1	The basic problem	225
		5.1.1 The solar wind on the back of an envelope	225
		5.1.2 Nasty questions, or why it is complicated	227
	5.2	Simple fluid theory	228
		5.2.1 The isothermal approximation	228
		5.2.2 Breeze, wind or accretion?	232
	5.3	Letting the temperature vary	237

 $\mathbf{i}\mathbf{x}$

х				Contents
		5.3.1	Energy balance	237
		5.3.2	Polytrope approximation	239
		5.3.3	Changing the geometry	246
		5.3.4	Further pushing or heating the wind	247
		5.3.5	What about viscosity?	249
	5.4	A mix	xture of fluids	250
		5.4.1	Simple balance equations	251
		5.4.2	Observed proton and electron temperatures	253
		5.4.3	The role of collisions	254
		5.4.4	Heat flux	256
		5.4.5	The electric field	257
		5.4.6	Fluid picture balance sheet and refinements	261
	5.5	Kinet	ic descriptions	262
		5.5.1	Some notations	262
		5.5.2	Observed proton and electron velocity distributions	263
		5.5.3	Non-collisional electron heat flux	267
		5.5.4	Exospheric models	268
		5.5.5	Kinetic models with collisions and	
			wave–particle interactions	273
	5.6	Buildi	ing a 'full' theory?	274
		5.6.1	More and better observations (beware of	
			hidden assumptions)	274
		5.6.2	Difficult theoretical questions	275
	5.7	Probl	ems	277
		5.7.1	Transonic flows in ducts: the de Laval nozzle	277
		5.7.2	The hysteresis cycle of an isothermal flow	279
		5.7.3	Spherical accretion by a star: the Bondi problem	280
		5.7.4	A wind with polytrope protons and electrons	281
		5.7.5	Playing with the kappa distribution	282
		5.7.6	'Temperature' or 'temperatures'?	283
		5.7.7	Non-collisional heat flux	284
		5.7.8	An imaginary wind with charges of equal masses	285
	Refe	erences		286
6	Str	ucture	and perturbations	291
U	61	Basic	large-scale magnetic field	291
	0.1	611	Parker's spiral	201
		612	Basic heliospheric current sheet and other currents	296
		613	Magnetic field effects on the wind	299
	62	Three	-dimensional structure during the solar cycle	300
	0.2	6 2 1	Warned heliospheric current sheet	301
		622	Observed large-scale structure	301
		622	Connecting the Sun and the solar wind or: where do	the
		0.2.0	fast and slow winds come from?	305
	63	Maio	r perturbations	308
	0.0	631	Interaction between the fast and slow winds	308
		0.0.1	moraculon between the fast and SIOW WINDS	500

Contents xi				
		<i>с</i> а а		000
		6.3.2 6.2.2	Coronal mass ejections in the solar wind	309
	64	0.3.3 Wowoo	Associated shocks	311 215
	0.4	6 4 1		315
		6.4.1	Turbulence	313
	65	0.4.2 Minor	constituents	326
	0.0	6 5 1	Abundances: from the Universe to the solar wind	326
		652	Helium and heavier solar wind ions	327
		6.5.3	Pick-up jons	328
	6.6	Proble	ems	329
		6.6.1	Parker's spiral	329
		6.6.2	Heliospheric currents	329
		6.6.3	Coplanarity in MHD shocks	330
		6.6.4	Kraichnan's spectrum in magnetofluid turbulence	330
	Refe	erences		330
7	Boc	lies in	the wind: dust, asteroids, planets and comets	335
•	7.1	Bodie	s in the wind	336
		7.1.1	Various bodies	336
		7.1.2	Mass distribution	338
		7.1.3	Mass versus size	341
		7.1.4	Atmospheres and how they are ionised	344
		7.1.5	Planetary magnetic fields and ionospheric conductivity	347
	7.2	Basics	s of the interaction	348
		7.2.1	Properties and spatial scales of the flow	348
		7.2.2	Being small: electrostatic charging and wakes	352
		7.2.3	Being large: the importance of conductivity	358
		7.2.4	Large objects with a conducting atmosphere	362
		7.2.5	Large magnetised objects	365
		7.2.6	Bow shocks	368
		7.2.7	Not being constant: sputtering and evaporation	371
	7.3	The m	agnetospheric engine	372
		7.3.1	Basic structure	375
		7.3.2	Energy, coupling and timescales	378
		7.3.3	Storms, substorms and auroras	385
	7.4	Physic	cs of heliospheric dust grains	390
		7.4.1	Forces	390
		7.4.2	Evaporation	394
	7.5	Comet		394
		7.5.1	Producing an atmosphere	397
		1.5.2 7 E 9	Diele up of comptony iong	400
		1.0.5 7 5 4	r ick-up of cometary ions Magnetic pile up	401
		7.5.4	The plasma tail	403
		756	Y_ray emission	404
		7.5.0 757	The dust tail	400
		1.0.1		-100

xii				Contents
	76	Problems		
	1.0	761	Electrostatic charging in space	409
		762	Magnetic nile-un	409
		7.6.3	Chapman–Ferraro laver	410
		7.6.4	Interaction of the solar wind with Venus and Mars	411
		7.6.5	Ring current	411
		7.6.6	Does Vesta have a magnetosphere?	412
		7.6.7	Gas-dust drag in a comet: another nozzle problem	412
	Refe	rences		413
0	The	aalam	wind in the Universe	410
0	2 1 2 1	The fr	wind in the Universe	419
	0.1	211 211	The Level Cloud	419
		819	Basics of the interaction	420
		813	The size of the solar wind hubble	421
	82	Cosmi		424
	0.2	8 2 1	Cosmic rays observed near Earth	426
		822	Budiments of the acceleration of particles	430
		823	Modulation of galactic cosmic rays by solar activity	436
		824	'Anomalous cosmic rays'	439
	83	Examples of winds in the Universe		440
	0.0	8.3.1	Some basic physical processes in mass outflows	441
		8.3.2	Some empirical results on stellar winds	443
		8.3.3	The efficiency of the wind engine	445
	8.4	Proble	ems	448
	-	8.4.1	Energy density of cosmic rays	448
		8.4.2	Power law distribution of accelerated particles	448
		8.4.3	The size of an astrosphere	448
		8.4.4	Instability of a star's atmosphere produced by radiat	on
			pressure	448
	Refe	rences	-	449
Ap	ppend	ix		451
Index				457

Preface

Why chase the wind? J. Cocteau, Antigone

For science-fiction writers and some space engineers, the 'wind from the Sun'¹ is a wind of photons – the light we see, whose pressure might allow solar sailing and drive space windjammers through the solar system. Yet the Sun blows another kind of wind, made of material particles, whose importance is considerable since it bathes the whole Solar System and shapes all planetary environments.

This wind has many faces. To the layman, it sounds rather mysterious, being made of a strange medium, a plasma: the fourth state of matter. Not only do its tempests affect our everyday technology by disrupting communications and power stations, but it drives two bewildering sky displays: comet tails and auroras. To the space scientist, in contrast, the solar wind is a close companion, and the challenge is to explore and tame a jungle where his or her instruments reveal a strange fauna. The plasma physicist is delighted to find there a number of stunning surprises and extreme properties which are virtually impossible to simulate in the laboratory. And to the astronomer who is trying to understand how cosmic bodies – from planets and comets to stars and galaxies – eject particles into space, it is the only stellar wind that can be studied in detail.

The solar wind has been explored *in situ* by numerous space probes, from inside Mercury's orbit to far beyond the distance of Neptune, and, quite recently, at virtually all heliocentric latitudes. The last decade has seen an explosion in the volume of data, and the solar wind is now measured in almost embarrassing detail. Yet, from the beginning of modern physics to the present epoch, its origin has motivated – and still motivates – much debate.

This book explores the physics involved, from the solar origin, to the frontier of the Solar System. The object of the game is to retrieve (in a quantitative, albeit approximate, way) the basic properties from first principles, within the limits of our incomplete understanding, keeping in mind that Nature always turns out to be subtler than we had imagined.

This book is intended for scientists, for technical workers involved in space missions, for science students and teachers, and more generally for those who enjoy the application of basic physics to a realm unattainable in Earth's laboratories. The emphasis is aimed at physical intuition rather than mathematical

¹Clarke, Arthur C. 1972, The Wind from the Sun, London, Victor Gollancz.

xiv

Preface

rigour. The calculations only require a basic background in physics and mathematics and assume no prior knowledge of plasma physics, for which a first-aid kit is given in Chapter 2.

This subject has hideously complicated aspects, and I had to make gross simplifications in order to avoid the fundamental ideas being lost in a morass of details. Resisting the temptation of replacing basic understanding by classification, detailed mathematics, and/or computer modelling, creates a dilemma: how be useful to non-specialists, without angering the specialists too much. I therefore made no attempt to be comprehensive, either in the topics, or in the references. Instead, I have tried to follow Victor Weisskopf, who used to say at the start of a course: 'I will not cover the subject, I will try to uncover part of it.'² In the same spirit, the references are meant to help the readers, not to give credit to the authors. Unless otherwise stated, units are SI.

Although I take full responsibility for the errors that have crept in,³ I should not give the impression that this book was written by me alone. Many people of diverse languages and cultures have contributed, either personally or through their writings. It is impossible to acknowledge all of them properly and to give credit to the scientists whose viewpoints influenced me. I offer my warm thanks to the generous friends and colleagues who have scrutinised sections of the manuscript and provided suggestions for improvements, or contributed in other ways, especially to Jean-Louis Steinberg (who got me started on space research), Alex Dessler (who got me started on this book), Marcia Neugebauer, Ludwik Celnikier, Joseph Lemaire, Marco Velli, Serge Koutchmy, Jorge Sanchez-Almeida, Pascal Démoulin, Dominique Bockelée, Karine Briand, Darrell Strobel, Rosine Lallement, Guillaume Aulanier, Françoise Launay, Milan and Antonella Maksimovic and Danielle Briot. I owe much to my friends and colleagues of the Observatoire de Paris at Meudon for the warm environment and numerous discussions, and to several outstanding former graduate students for their insightful and stimulating questions. This work would not have been possible without the kind help of the efficient staffs of the library at Meudon (Observatoire de Paris) and of the laboratory LESIA (CNRS and Universities Paris 6 and 7). The students who endured my lectures on the solar wind at the University Paris 11, and on astrophysical plasmas at the Observatoire de Paris (and the Universities Paris 6, 7 and 11) have contributed in no small way too. Thanks to all of them! Last but not least, I am very grateful to my family and my friends for their encouragement and help. Special thanks are due to my son François Meyer for the drawings he made to illustrate this book.

Nicole Meyer-Vernet CNRS Observatoire de Paris (Meudon, France)

 $^{^2 {\}rm Weisskopf},$ V. F. 1989, The Privilege of Being a Physicist, New York, W. H. Freeman, p. 32.

 $^{^3}I$ encourage readers to send me typographical or other errors at nicole.meyer@obspm.fr. I intend to post an updated list of errors at www.lesia.obspm.fr/~meyer/BSW.html.