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Part I
Methodology

The first five chapters deal with the methodology used to study relaxation pro-
cesses. The first four deal with experimental methods, namely mechanical relax-
ation, dielectric relaxation, nuclear magnetic resonance and neutron diffraction. The
first two are very familiar long-used methods. This is due both to their relevance to
practical material properties and to the insights they have led to in understanding
the time dependence of material behavior. The NMR method is very selective in
probing certain elements based, of course, on the nuclear spins involved. The devel-
opment of complex pulse techniques has allowed the investigation of relaxational
processes over very broad time scales. The availability of sophisticated neutron
sources has led to a wealth of data involving dynamic scattering factors for coher-
ent and incoherent scattering. Molecular dynamics (MD) simulations are becoming
more and more useful in the interpretation of the various relaxation experiments
and Chapter 5 presents the basics of that methodology.
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1

Mechanical relaxation

1.1 Regimes of behavior

Amorphous polymers tend to behave in an elastic manner at low temperature in the
glassy state. The strain at break is usually small (a few percent), they can deform
quickly, hold their length at constant load, and recover completely when unloaded
(Figure 1.1). The material is elastic. In the vicinity of the glass transition temper-
ature when the length of the specimen is held constant the stress decays with time
(stress relaxation). Under constant load (creep), in addition to the instantaneous
deformation characteristic of the glass, the sample deforms in a time dependent
fashion and when released from constant load recovers nearly completely and in a
time dependent manner (retarded elasticity) (Figure 1.2). Such a material is called
anelastic. At higher temperature, in addition to the instantaneous and retarded elas-
ticity a non-recoverable strain appears in the creep experiment due to viscous flow
(Figure 1.3). The material is viscoelastic.

There is a considerable advantage in being able to describe and summarize the
above behavior in terms of a simple model. For example, it would be impractical to
perform every type of mechanical test on a sample. Rather it would be much better
to perform enough measurements to characterize the material and then predict the
results of other tests from a model. Continuum linear elasticity theory is soundly
based on the application of classical mechanics to the deformation of solids. How-
ever, in order to include time dependent material behavior an independent additional
conjecture about how such materials behave must be introduced. Because the con-
jecture has no obvious molecular or other fundamental derivation the model is said
to be a phenomenological one. Based on the above comments it is apparent that a
first step is to introduce the conjecture upon which linear viscoelastic behavior is
based. This is the superposition assumption.
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4 Mechanical relaxation
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Figure 1.1 Glassy state: (a) stress—strain, (b) creep and (c) stress relaxation curves.

For small strains, strain is proportional to stress (see (b)). Recovery from load or
strain is complete and rapid. The material is elastic.
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Figure 1.2 Near the glass temperature: (a) in the creep curve there is, in addition
to the instantaneous strain of the glassy state, a time dependent strain. It is largely

recoverable on removal of the stress. (b) In stress relaxation, the stress decays with
time. The material is said to be anelastic.
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Figure 1.3 Well above glass temperature: (a) creep and (b) stress relaxation curves.
In addition to instantaneous and retarded elasticity, a non-recoverable component
is important, i.e. viscous flow. The material is viscoelastic.
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1.3 Relaxation modulus 5
1.2 Superposition principle

In linear continuum elasticity theory, /inear means that stress and strain are propor-
tional and that strains occasioned by multiaxial stresses and vice versa are additive
or superposable (see Appendix Al). In linear viscoelasticity the same linearity is
invoked. But in addition and of more significance in the present context is the
(Boltzmann [1]) superposition principle that describes the time dependence. The
central consequence of time dependent behavior is the necessity for the concept of
past time and current time. In creep, for example (Figure 1.1), when a perfectly
elastic material is unloaded, the strain immediately responds. Thus there is only one
concept of time necessary, the record of the loading schedule. In Figure 1.2 where
time dependence does appear, a plot with only one time axis can still be made. This
is because a simple loading history, the sudden application or removal of the load,
was invoked. Suppose, however, the load in creep varies slowly over time. For an
elastic material this is of no consequence since the strain responds quickly (subject
only to inertia). For an anelastic or viscoelastic material this is no longer the case.
The strain at the current time is still changing from past applications of the load.
Thus an additional assumption about material behavior is required.

The superposition principle states that the time evolution of a strain response to a
past stress is independent of any stresses applied in the intervening period up to the
time at which the strain is currently being measured. Thus the present time strain is
the sum of all strains arising from past applications of stress. The converse applies
when the strain history is imposed and stress occurs in response (stress relaxation).
The present time stress is the sum of all stresses arising from past applications of
strain.

In what follows all of the examples are given in terms of uniaxial tensile
stress—strain measurements. Similar formulations and equations follow for shear
measurements.

1.3 Relaxation modulus

The superposition principle is easily mathematically quantified. The case of an
imposed strain history is used in illustration. The time dependence is embedded
in a time dependent modulus that is characteristic of the material. This modulus
is a function of the elapsed time between the application of an imposed strain at
past time, u, and the current time, ¢, at which the stress is being measured. The
modulus, now called a relaxation modulus, is denoted as Er(t — u). Suppose a
strain increment, Ae(u) is applied at time u. Then the stress increment at later time,
t, arising from this will be

Ao (t) = Er(t —u)Ae(u). (1.1
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6 Mechanical relaxation

The total stress at the current time, ¢, from a series of past strain applications at
times uy, up, . . ., U;, . . . is, under the superposition principle,

o(t) = Er(t —uy)Ae(uy) + Er(t — uz)Ae(uy)
Foo ot Er(— u)As(u) + - - (1.2)

An arbitrary strain history can be built up by passing to the integral,

t

o(t) = /ER(t — u)(de/du) du, (1.3)

—0o0

where the device of introducing de /du enables the integration to be carried out over
past time, u. This equation forms the basis for the description of the stress response
under all strain histories. In other words, everything about the material is contained
in Er(t — u), everything about various possible experiments, tests, etc. is contained
in e(u). It is obviously presumed that the relaxation modulus Exr(t — u) is known.
The strategy is to determine it experimentally under some standard imposed strain
history. Then the results of other strain histories may be predicted from Er using
eq. (1.3).

As a mathematical convenience later, it will be useful to explicitly recognize that
atlong times the stress generally decays not to zero but to a constant value expressed
through the equilibrium fully relaxed modulus, E.. Thus eq. (1.3) becomes

o(t) = Ece(t) + / (Er(t — u) — E;)(de/du) du. (1.4)

The term (Er(t — u) — E;) does approach zero at large values of t — u.

1.4 Simple stress relaxation

A common experiment is to impose a sudden finite strain step at # = 0 that remains
constant at £ and to observe the ensuing stress as a function of time. Under this
circumstance eq. (1.3) or eq. (1.4) integrates to

o (1) = Er()e’. (1.5)

Thus the relaxation modulus is directly determined by the experiment (for times
greater than several times the rise time of the step strain) as Ez(t) = o (¢)/&°.
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1.5 Dynamic modulus 7

1.5 Dynamic modulus

A common experiment is the imposition of a cyclic stress or strain. It is a mathe-
matical convenience to express such periodic functions in complex notation. Thus
an imposed periodic strain of angular frequency w can be written as

e*(iwr) = %" = &°[cos(wt) + isin(wt)]. (1.6)

It is implied that the actual strain is the real part of £*(iwT), or, therefore £%cos(w?).
Since eq. (1.4) is linear in €, ¢ may be found from the real part of ¢* in

t
o*(wt) = E,%“" + f (Er(t —u') — E))(iwee ") du, (1.7)
—00

where past time is labeled #’ and where eq. (1.6) has been used to find de/du’.
Making the substitution, u = ¢t — u’ gives

o*(iwt) = %" | E, + / (Er(u) — Ep)(iwe™ ") du | . (1.8)
0

It is convenient to define a complex dynamic modulus E*(iw) such that

o*(iwt) = E*(iw)e*(iwt), (1.9)
where
E*(iw) = E, +iw f(ER(u) — E)e " du. (1.10)
0

Although only the real part of o*(iwt) is of physical significance, since the right
hand side of eq. (1.9) involves the product of two complex numbers, the imaginary
part of E*(iw) does have physical meaning as it gives rise to a real term in o *(iwt).
The real and imaginary parts of E*(iw) in

E*(iw) = E'(w) +iE"(w) (1.11)
are given by
E'(w) = E, + a)/ (Er(u) — E,) sin(wu) du, (1.12)
0
E’(w) = a)/ (Er(u) — E;) cos(wu) du. (1.13)

0
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8 Mechanical relaxation
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Figure 1.4 Complex plane representation of E*.

The physical significances of E” and E” are best seen by writing E* in polar form
(see Figure 1.4) as

E* = pe®, (1.14)
where
p=(E?*+ E™)? (1.15)
and
tand = E"/E'. (1.16)
Thus,
o *(iwt) = pelel@+d) (1.17)
and
o(t) = pe’cos(wt + 8) = o cos(wt + ). (1.18)

Therefore it may be seen that the stress in response to an imposed periodic strain
of angular frequency p is also periodic with the same frequency but leads the strain
by an angle §. See Figure 1.5.

The maximum stress, i.e., its amplitude, is given by 0% = pel. The real com-
ponent of E*, E’, is called the dynamic storage modulus and the imaginary part,
E”, is called the dynamic loss modulus. The reasons for these designations are the
following.

The work done per unit volume, W, in deforming the material by a small strain
is given by

dW = ode = Re(E*&*) de. (1.19)
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1.6 Interconversion of stress relaxation and dynamic modulus 9
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Figure 1.5 The stress and strain over one cycle in a dynamic experiment. Both are
normalized to unity as, /e and o/0°. Phase angle § = 20°.

The work associated with E’ is reversible and is zero over a complete cycle.
However, as seen below E” leads to energy absorption. The work per unit volume
per second at frequency, v, is

t=1/v
W =dW/dr = vRe f E*e*(de/du) du (1.20)
0
21 /o )
= 2 02Re / (E' +iE"e @ — e—io)!? g, (1.21)
21 2
0
= wE"e"?)2. (1.22)

1.6 Interconversion of stress relaxation and dynamic modulus

The complex dynamic modulus may be measured directly via the stress magni-
tude and the phase angle in response to an applied periodic strain of magnitude
. However, it may also be derived indirectly from the results of a stress relax-
ation experiment using eq. (1.10) or equivalently eq. (1.12) and eq. (1.13). Notice,
however, that the limits in these integrations are 0, co. The entire stress relaxation
function over time must in principle be known. Because of the rather slowly varying
with time or frequency nature of most polymeric relaxations this latter condition
can be relaxed considerably. More on this is introduced later.
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10 Mechanical relaxation

It is also possible to convert the dynamic modulus into the relaxation modulus.
This is done by invoking the Fourier transformation properties associated with
eq. (1.10) or eq. (1.12), eq. (1.13). That is, if

2 [ 2 [
fx) = \/; / Fe(y)cos(xy)dy =\/; f Fy(y)sin(xy)dy, (1.23)
0 0

then
2 x
Fe(y) = \/;/ S (x)cos(xy)dx (1.24)
0
and
2
F(y) = \/;/ Sf(x)sin(xy) dx, (1.25)
0
from which it follows that
Er(t)=E, + % / [E'(w) — E,]sin(wt) dw/w (1.26)
0
or
Er(t) = E. + ;f E"(w) cos(wt) dw/w. (1.27)
0

Thus interconversion of stress relaxation and dynamic data is possible via numerical
Fourier transform methods provided the data cover or can be accurately extrapolated
over the entire time or frequency range.

Since both E'(w) and E”(w) may be expressed in terms of a single function, Eg(t),
it is apparent that E’'(w) and E”(w) must be themselves related. A relationship may
be found by substituting eq. (1.27) into eq. (1.12),

o0 o0

E(w) = Ee+a)/% /E”(x)cos(xu)(dx/x) sin(wu) du (1.28)
0
=FE.+ a) hm / /E”(x)cos(xu)sin(a)u)du(dx/x) (1.29)
0
20 . [ Tl-cos@—x)R 1—cos(w+x)R
= Eet - lim [ E (x)[ 2w—x) 2Aw+x) }(dx/x)
0
(1.30)
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