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Representation and Bäcklund Transformation 113
3.3.4 Conjugate Nets 117

4 Hasimoto Surfaces and the Nonlinear Schrödinger Equation.
Geometry and Associated Soliton Equations 119

4.1 Binormal Motion and the Nonlinear Schrödinger Equation.
The Heisenberg Spin Equation 120



P1: FHB

CB429-Rogers CB429-FM April 12, 2002 15:27 Char Count= 0

Contents xi

4.1.1 A Single Soliton NLS Surface 122
4.1.2 Geometric Properties 124
4.1.3 The Heisenberg Spin Equation 128

4.2 The Pohlmeyer-Lund-Regge Model. SIT and SRS Connections.
Compatibility with the NLS Equation 129
4.2.1 The Pohlmeyer-Lund-Regge Model 130
4.2.2 The SIT Connection 132
4.2.3 The SRS Connection 134
4.2.4 Compatibility of the Maxwell-Bloch System

with the NLS Equation 135
4.3 Geometry of the NLS Equation. The Auto-Bäcklund
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1
Pseudospherical Surfaces and the Classical

Bäcklund Transformation. The Bianchi System

The explicit study of surfaces of constant negative total curvature goes back
to the work of Minding [261] in 1838. Thus, in that year, Minding’s theorem
established the important result that these surfaces are isometric, that is, points
on two such surfaces can be placed in one-to-one correspondence in a way
that the metric is preserved. Beltrami [28] subsequently gave the term pseudo-
spherical to these surfaces and made important connections with Lobachevski’s
non-Euclidean geometry.

It was Bour [54], in 1862, who seems to have first set down what is now
termed the sine-Gordon equation arising out of the compatibility conditions
for the Gauss equations for pseudospherical surfaces expressed in asymptotic
coordinates.

In 1879, Bianchi [31] in his habilitation thesis presented, in mathematical
terms, a geometric construction for pseudospherical surfaces. This result was
extended by Bäcklund [21] in 1883 to incorporate a key parameter which al-
lows the iterative construction of such pseudospherical surfaces. The Bäcklund
transformation was subsequently shown by Bianchi [32], in 1885, to be as-
sociated with an elegant invariance of the sine-Gordon equation. This invari-
ance has become known as the Bäcklund transformation for the sine-Gordon
equation. It includes an earlier parameter-independent result of Darboux [94].
The Bäcklund transformation has important applications in soliton theory. In-
deed, it appears that the property of invariance under Bäcklund and associated
Darboux transformations as originated in [92] is enjoyed by all soliton equa-
tions. The contribution of Bianchi and Darboux to the geometry of surfaces and,
in particular, the role of Bäcklund transformations preserving certain geomet-
ric properties have been discussed by Chern [77] and Sym et al. in [385]. It is
with Bäcklund and Darboux transformations, their geometric origins and their
application in modern soliton theory that we shall be concerned in the present
monograph.

17
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18 1 The Classical Bäcklund Transformation

1.1 The Gauss-Weingarten Equations for Hyperbolic Surfaces.
Pseudospherical Surfaces. The Sine-Gordon Equation

Here, the study of pseudospherical surfaces is set in the broader context of
hyperbolic surfaces via a nonlinear system due to Bianchi [37]. The background
is that of basic classical differential geometry of curves and surfaces to be found
in such standard works as do Carmo [108] or Struick [352]. The latter work is
a rich source of material on the history of the subject.

Let r = r(u, v) denote the position vector of a generic point P on a surface
� in R

3. Then, the vectors ru and rv are tangential to � at P and, at such points
at which they are linearly independent,

N = ru × rv

|ru × rv| (1.1)

determines the unit normal to �. The 1st and 2nd fundamental forms of � are
defined by

I = dr · dr = E du2 + 2F dudv + G dv2,

II = −dr · dN = e du2 + 2 f dudv + g dv2,
(1.2)

where

E = ru · ru , F = ru · rv , G = rv · rv ,

e = −ru · Nu = ruu · N, g = −rv · Nv = rvv · N.

f = −ru · Nv = −rv · Nu = ruv · N.

(1.3)

An important classical result due to Bonnet [53] states that the sextuplet
{E , F, G; e, f , g} determines the surface � up to its position in space.

The Gauss equations associated with � are [352]

ruu = �1
11ru + �2

11rv + eN,

ruv = �1
12ru + �2

12rv + f N,

rvv = �1
22ru + �2

22rv + gN,

(1.4)

while the Weingarten equations comprise

Nu = f F − eG

H 2
ru + eF − f E

H 2
rv ,

Nv = gF − fG

H 2
ru + f F − gE

H 2
rv ,

(1.5)
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1.1 The Gauss-Weingarten Equations for Hyperbolic Surfaces 19

where

H 2 = |ru × rv|2 = EG − F2. (1.6)

The �i
jk in (1.4) are the usual Christoffel symbols given by the relations

�i
jk = gil

2

(g jl,k + gkl, j − g jk,l), (1.7)

where, with x1 = u, x2 = v,

I = g jkdx j dxk , (1.8)

and

g jk gkl = �
j
l . (1.9)

In the above, the Einstein convention of summation over repeated indices has
been adopted.

The compatibility conditions (ruu)v = (ruv)u and (ruv)v = (rvv)u applied to
the linear Gauss system (1.4) produce the nonlinear Mainardi-Codazzi system(

e

H

)
v

−
(

f

H

)
u

+ e

H
�2

22 − 2
f

H
�2

12 + g

H
�2

11 = 0,

(
g

H

)
u

−
(

f

H

)
v

+ e

H
�1

22 − 2
f

H
�1

12 + g

H
�1

11 = 0

(1.10)

or, equivalently,

ev − fu = e�1
12 + f

(
�2

12 − �1
11

) − g�2
11,

fv − gu = e�1
22 + f

(
�2

22 − �1
12

) − g�2
12,

(1.11)

augmented by the ‘Theorema egregium’ of Gauss. The latter provides an ex-
pression for the Gaussian (total) curvature

K = eg − f 2

EG − F2
(1.12)

in terms of E , F, G alone according to, in Liouville’s representation,

K = 1

H

[(
H

E
�2

11

)
v

−
(

H

E
�2

12

)
u

]
. (1.13)

In physical terms, the ‘Theorema egregium’ implies that the total curvature of
a surface � is invariant under bending without stretching.
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20 1 The Classical Bäcklund Transformation

If the total curvature of � is negative, that is, if � is a hyperbolic surface, then
the asymptotic lines on � may be taken as parametric curves. Then e = g = 0
and the Mainardi-Codazzi equations (1.10) reduce to,(

f

H

)
u

+ 2�2
12

f

H
= 0,

(
f

H

)
v

+ 2�1
12

f

H
= 0 (1.14)

while

K = − f 2

H 2
=: − 1

�2
(1.15)

and

�1
12 = G Ev − FGu

2H 2
, (1.16)

�2
12 = EGu − F Ev

2H 2
. (1.17)

The angle � between the parametric lines is such that

cos � = F√
EG

, sin � = H√
EG

(1.18)

and since E , G > 0, we may take, without loss of generality,

E = �2a2, G = � 2b2, (1.19)

whence I and II reduce to

I = �2(a2du2 + 2ab cos � dudv + b2dv2),

II = 2�ab sin � dudv.
(1.20)

The Mainardi-Codazzi equations (1.11) now show that

av + 1

2

�v

�
a − 1

2

�u

�
b cos � = 0, (1.21)

bu + 1

2

�u

�
b − 1

2

�v

�
a cos � = 0, (1.22)

while the representation (1.13) for the total curvature yields

�uv + 1

2

(
�u

�

b

a
sin �

)
u

+ 1

2

(
�v

�

a

b
sin �

)
v

− ab sin � = 0. (1.23)
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1.1 The Gauss-Weingarten Equations for Hyperbolic Surfaces 21

The nonlinear system of Gauss-Mainardi-Codazzi equations (1.21)–(1.23)
was originally set down by Bianchi (see [37]). Its importance in soliton theory
has been noted by Cenkl [74] and subsequently by Levi and Sym [234]. It will
be returned to later in that connection subject to an additional constraint, namely
�uv = 0. The system then becomes solitonic.

In the particular case whenK = −1/� 2 < 0 is a constant, � is termed a pseu-
dospherical surface. The Mainardi-Codazzi equations (1.21), (1.22) then yield
a = a(u), b = b(v). If � is now parametrised by arc length along asymptotic
lines (corresponding to the transformation du → du′ = √

E(u) du, dv → dv′ =√
G(v) dv), then the fundamental forms become, on dropping the primes,

I = du2 + 2 cos � dudv + dv2,

II = 2

�
sin � dudv,

(1.24)

while (1.23) reduces to the celebrated sine-Gordon equation

�uv = 1

� 2
sin �. (1.25)

The associated Gauss equations yield

ruu = �u cot � ru − �u cosec � rv ,

ruv = 1

�
sin �N,

rvv = −�v cosec � ru + �v cot � rv ,

(1.26)

while those of Weingarten give

Nu = 1

�
cot � ru − 1

�
cosec � rv ,

Nv = − 1

�
cosec � ru + 1

�
cot � rv.

(1.27)

In the twentieth century, the sine-Gordon equation has been shown, remark-
ably, to arise in a diversity of areas of physical interest (see [311]). It was the
work of Seeger et al. [201, 345, 346] that first demonstrated how the classi-
cal Bäcklund transformation for this equation has important application in the
theory of crystal dislocations. Indeed, in [345], within the context of Frenkel’s
and Kontorova’s dislocation theory, the superposition of so-called ‘eigenmo-
tions’ was obtained by means of the classical Bäcklund transformation. The
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22 1 The Classical Bäcklund Transformation

interaction of what today are called breathers with kink-type dislocations was
both described analytically and displayed graphically. The typical solitonic fea-
tures to be subsequently discovered by Zabusky and Kruskal [389] in 1965 for
the Korteweg-de Vries equation, namely preservation of velocity and shape
following interaction, as well as the concomitant phase shift, were all recorded
for the sine-Gordon equation in this remarkable paper of 1953.1 Connections
between the geometry of pseudospherical surfaces and other solitonic equations
have been later investigated in [26, 78, 79, 141, 190, 292, 294, 321, 363].

Lamb [223] and Barnard [23] showed that the nonlinear superposition princi-
ple associated with the Bäcklund transformation for the sine-Gordon equation
has application in the theory of ultrashort optical pulse propagation. In particu-
lar, solitonic decomposition phenomena observed experimentally in Rb vapour
by Gibbs and Slusher [150] were thereby reproduced theoretically. In addition,
the classical Bäcklund transformation has also found application in the theory
of long Josephson junctions [344].

The preceding provides an historical motivation, both with regard to theory
and application, for beginning our study of Bäcklund transformations with the
classical result for the sine-Gordon equation. It will be seen that this Bäcklund
transformation, in fact, corresponds to a conjugation of invariant transfor-
mations due to Bianchi and Lie. The Lie symmetry serves to intrude a key
Bäcklund parameter into the Bianchi transformation which enables its itera-
tion and the generation thereby of what are, in physical terms, multi-soliton
solutions. Therein, the Bäcklund parameters have an important physical inter-
pretation.

1.2 The Classical Bäcklund Transformation
for the Sine-Gordon Equation

Underlying the original Bäcklund transformation for the sine-Gordon equation
is a simple geometric construction for pseudospherical surfaces. Thus, if a point
P is taken on an initial pseudospherical surface � and a line segment PP ′ of
constant length and tangential to � at P is constructed in a manner dictated by a
Bäcklund transformation as described below, then the locus of the points P ′ as P
traces out � is another pseudospherical surface �′ with the same total curvature
as �. The procedure may be iterated to generate a sequence of pseudospherical
surfaces with the same total curvature as the original seed surface �.

1 “Man sieht . . . daß beim Durchdringen von Wellengruppe und Versetzung weder die Energie
noch die Geschwindigkeit beider geändert wird. Es tritt lediglich eine Verschiebung des Verset-
zungsmittelpunktes . . . und des Schwerpunktes der Wellengruppe . . . auf” [345, p 189].
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1.2 The Sine-Gordon Equation 23

Let � be a pseudospherical surface with total curvatureK = −1/� 2 and with
generic position vector r = r(u,v), where u,v correspond to the parametrisation
by arc length along asymptotic lines. In this parametrisation, ru , rv and N are all
unit vectors, but ru and rv are not orthogonal. Accordingly, it proves convenient
to introduce an orthonormal triad {A, B, C}, where

A = ru , B = −ru × N = −ru × (ru × rv)

sin �
, C = N

= cosec � rv − cot � ru .
(1.28)

The Gauss-Weingarten equations (1.26), (1.27) can now be used to obtain ex-
pressions for the derivatives of A, B and C with respect to u and v, namely


 A

B
C




u

=

 0 −�u 0

�u 0 1/�

0 −1/� 0





 A

B
C


 ,


 A

B
C



v

=

 0 0 (1/� ) sin �

0 0 −(1/� ) cos �

−(1/� ) sin � (1/� ) cos � 0





 A

B
C


.

(1.29)

This linear system is compatible if and only if � satisfies the sine-Gordon
equation (1.25).

A new pseudospherical surface �′ with position vector r′ is now sought in
the form

r′ = r + L cos � A + L sin � B, (1.30)

where L = |r′ − r| is constant. Here, �(u, v) is to be constrained by the require-
ment that on �′, as on �, the coordinates u, v correspond to parametrisation
along asymptotic lines. A necessary condition for this to be the case is that �′

have a 1st fundamental form of the type (1.24)1. In particular, this requires that

r′
u · r′

u = 1, r′
v · r′

v = 1, (1.31)

where, on use of (1.30) and the relations (1.29), we have

r′
u = [1 − L(�u − �u) sin �]A + L(�u − �u) cos � B + L

�
sin � C,

r′
v = (cos � − L�v sin �)A + (sin � + L�v cos �)B + L

�
sin(� − �)C.

(1.32)
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24 1 The Classical Bäcklund Transformation

The conditions (1.31) now yield, in turn,

�u = �u + 1

L


1 ±

√
1 − L2

�2


 sin � (1.33)

and

�v = 1

L


1 ∓

√
1 − L2

� 2


 sin(� − �). (1.34)

Accordingly, if we set

� = �

L


1 ±

√
1 − L2

� 2


 = L

�


1 ∓

√
1 − L2

�2




−1

, (1.35)

then the relations (1.33), (1.34), deliver the necessary requirements

�u = �u + �

�
sin �, (1.36)

�v = 1

��
sin(� − �) (1.37)

on the angle � in order that �′ be a pseudospherical surface parametrised by
arc length along asymptotic lines. In fact, the pair of equations, (1.36), (1.37),
is sufficient in this regard. Moreover, these equations are compatible modulo
the sine-Gordon equation (1.25).

On use of (1.36), (1.37), the expressions (1.32) become

r′
u =

(
1 − L

�
� sin2 �

)
A + L

�
� sin � cos � B + L

�
sin � C, (1.38)

r′
v =

[
cos � − L

��
sin � sin(� − �)

]
A

+
[

sin � + L

��
cos � sin(� − �)

]
B − L

�
sin(� − �) C, (1.39)

so that r′
u · r′

v = cos(2� − �) and the 1st fundamental form of �′ becomes

I′ = du2 + 2 cos(2� − �) dudv + dv2. (1.40)
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1.2 The Sine-Gordon Equation 25

Furthermore, the unit normal N′ to �′ is given by

N′ = r′
u × r′

v

|r′
u × r′

v|
= − L

�
sin � A + L

�
cos � B +

(
1 − L�

�

)
C, (1.41)

whence, on use of (1.30), it is seen that (r′ −r) · N′ = 0. Accordingly, the vector
r′ −r joining corresponding points on � and �′ is tangential to �′. It is recalled
that it is tangential to � by construction. Moreover,

N′
u = − L�

� 2
sin � cos � A +

(
L�

� 2
cos2 � − 1

�

)
B + L

� 2
cos � C, (1.42)

N′
v =

[
L

2� 2�
sin(� − 2�) + 1

�

(
1 − L

2��

)
sin �

]
A

+
[

L

2� 2�
cos(� − 2�) − 1

�

(
1 − L

2��

)
cos �

]
B (1.43)

− L

� 2
cos(� − �) C,

whence

r′
u · N′

u = 0, r′
u · N′

v = r′
v · N′

u = − 1

�
sin(2� − �), r′

v · N′
v = 0.

The 2nd fundamental form for �′ is

II′ = 2

�
sin(2� − �) dudv (1.44)

and this together with I′ as given by (1.40) shows that �′ is a pseudospherical
surface parametrised by arc length along asymptotic lines. The angle between
the asymptotic lines on �′ is given by

�′ = 2� − �, (1.45)

where �′ plays the same role in relation to �′ as is played by � in relation to
�. In particular, �′ must satisfy the sine-Gordon equation

�′
uv = 1

� 2
sin �′. (1.46)
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26 1 The Classical Bäcklund Transformation

Use of the relation (1.45) to eliminate � in (1.36) and (1.37) now yields

(
�′ − �

2

)
u

= �

�
sin

(
�′ + �

2

)
(

�′ + �

2

)
v

= 1

��
sin

(
�′ − �

2

)
.

B� (1.47)

This is the standard form of the Bäcklund transformation which links the sine-
Gordon equations (1.25) and (1.46).

It is noted that, under B�,

N′ · N = 1 − L�

�
= const, (1.48)

that is, the tangent planes at corresponding points on � and �′ meet at a constant
angle � where � = tan(�/2). In Bianchi’s original geometric construction, of
which the Bäcklund result is an extension,

L = � , � = 1 (1.49)

so that these tangent planes are orthogonal. Bäcklund’s relaxation of the orthog-
onality requirement allows the key parameter � to be inserted into the Bianchi
transformation. In fact, the Bäcklund transformation B� may be viewed as a
composition of a Bianchi transformation with a simple Lie group invariance.
Thus, the sine-Gordon equation (1.25) is invariant under the scaling

u∗ = �u, v∗ = v

�
, � �= 0 (1.50)

so that, any solution � = �(u, v) generates a one-parameter class of solutions
�∗(u∗, v∗) = �(�u, v/�).2 Lie observed that conjugation of the invariance
(1.50) with the original Bianchi transformation(

�′ − �

2

)
u∗

= 1

�
sin

(
�′ + �

2

)
,

(
�′ + �

2

)
v∗

= 1

�
sin

(
�′ − �

2

) (1.51)

produces the Bäcklund transformation (1.47).

2 Importantly, this Lie point invariance also inserts the Bäcklund parameter � into the ‘linear
representation’ (1.29) and delivers a one-parameter family of pseudospherical surfaces associated
with a given solution � of the sine-Gordon equation.



P1: MRM/FYX P2: MRM/FYX QC: MRM/ABE T1: MRM

CB429-Rogers CB429-01 February 14, 2002 17:0 Char Count= 0

1.2 The Sine-Gordon Equation 27

In terms of the construction of pseudospherical surfaces, the Bäcklund trans-
formation corresponds to the following result: let r be the coordinate vector of
the pseudospherical surface � corresponding to a solution � of the sine-Gordon
equation (1.25). Let �′ denote the Bäcklund transform of � via B�. Then, the
coordinate vector r′ of the pseudospherical surface �′ corresponding to �′ is
given by

r′ = r + L

sin �

[
sin

(
� − �′

2

)
ru + sin

(
� + �′

2

)
rv

]
, (1.52)

where L = � sin �.

1.2.0.1 Key Observations

• The nonlinear sine-Gordon equation (1.25) is derived as the compatibility
condition for the linear Gauss equations (1.26).

• The Bäcklund transformation B� given by (1.47) acts on the sine-Gordon
equation (1.25) and leaves it invariant. Indeed, the action of B� is restricted
to (1.25) in that (1.47) is a valid system for �′ if and only if (1.25) holds:
otherwise the compatibility condition �′

uv = �′
vu is not satisfied.

• B� contains a parameter � = tan(�/2) injected into the underlying Bianchi
transformation by a Lie group invariance.

• At the linear level, the Bäcklund transformation is represented by (1.52) and
acts on the Gauss system (1.26) associated with pseudospherical surfaces
parametrised by arc length along asymptotic lines. The transformation (1.52)
acting on the underlying linear representation (1.26) induces the Bäcklund
transformation B� operating at the nonlinear level.

In that B� represents a correspondence between solutions of the same equa-
tion, it is commonly termed an auto-Bäcklund transformation.

In the next section, a nonlinear superposition principle associated with the
auto-Bäcklund transformation B� will be derived whereby, in particular, multi-
soliton solutions of the nonlinear sine-Gordon equation (1.25) may be generated
by purely algebraic procedures. The algorithmic nature of the latter makes
them well-suited to implementation by symbolic computation packages. Such
nonlinear superposition principles are generically associated with the auto-
Bäcklund transformations admitted by solitonic equations.

Exercises

1. Establish the relations (1.33), (1.34) governing the angle �.
2. Derive the expression (1.52) descriptive of the action of the Bäcklund trans-

formation B� at the pseudospherical surface level.
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28 1 The Classical Bäcklund Transformation

1.3 Bianchi’s Permutability Theorem. Generation
of Multi-Soliton Solutions

Next, we turn to the application of the auto-Bäcklund transformation (1.47) to
construct multi-soliton solutions of the sine-Gordon equation.

Let us start with the seed ‘vacuum’ solution � = 0 of (1.25). The Bäcklund
transformation (1.47) shows that a second, but nontrivial, solution �′ of (1.46)
may be constructed by integration of the pair of first-order equations

�′
u = 2�

�
sin

(
�′

2

)
,

�′
v = 2

��
sin

(
�′

2

)
,

(1.53)

leading to the new single soliton solution

�′ = 4 tan−1

[
exp

(
�

�
u + 1

��
v + �

)]
, (1.54)

where � is an arbitrary constant of integration. It should be noted that, here, it
is the quantities

�′
u = 2�

�
sech

(
�

�
u + 1

��
v + �

)
,

�′
v = 2

��
sech

(
�

�
u + 1

��
v + �

)
,

(1.55)

which have the characteristic hump shape associated with a soliton.
Remarkably, analytic expressions for multi-soliton solutions which encap-

sulate their nonlinear interaction may now be obtained by an entirely algebraic
procedure. This is a consequence of an elegant nonlinear superposition princi-
ple derived from the auto-Bäcklund transformation B� and originally set down
by Bianchi [35] in 1892. It is described in his monumental work [37] and is
now known as:

1.3.1 Bianchi’s Permutability Theorem

Suppose � is a seed solution of the sine-Gordon equation (1.25) and that �1 and
�2 are the Bäcklund transforms of � via B�1 and B�2 , that is, �1 = B�1 (�), �2 =
B�2 (�). Let �12 = B�2 (�1) and �21 = B�1 (�2). The situation may be repre-
sented schematically by a Bianchi diagram as given in Figure 1.1.

It is natural to enquire if there are any circumstances under which the commu-
tative condition �12 = �21 applies. To investigate this matter, we set down the


