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Chapter 1
Introduction to part 1

An F-manifold is a complex manifold M such that each holomorphic tangent
space Tt M , t ∈ M , is a commutative and associative algebra with unit element,
and the multiplication varies in a specific way with the point t ∈ M . More
precisely, it is a triple (M, ◦, e) where ◦ is an OM -bilinear commutative and
associative multiplication on the holomorphic tangent sheaf TM , e is a global
unit field, and the multiplication satisfies the integrability condition

LieX◦Y (◦) = X ◦ LieY (◦) + Y ◦ LieX (◦) (1.1)

for any two local vector fields X and Y in TM . This notion was first defined
in [HM][Man2, I§5], motivated by Frobenius manifolds. Frobenius manifolds
are F-manifolds.

Part 1 of this book is devoted to the local structure of F-manifolds. It turns
out to be closely related to singularity theory and symplectic geometry. Discri-
minants and Lagrange maps play a key role.

In the short section 1.1 of this introduction the reader can experience some
of the geometry of F-manifolds. We sketch a construction of 2-dimensional
F-manifolds which shows how F-manifolds turn up ‘in nature’ and how they
are related to discriminants. In section 1.2 we offer a fast track through the main
notions and results of chapters 2 to 5.

In chapters 2 to 4 the general structure of F-manifolds is developed. In
chapter 5 the most important classes of F-manifolds are discussed.

In chapter 2 F-manifolds are defined and some basic properties are estab-
lished. One property shows that F-manifolds decompose locally in a nice way.
Another one describes the relation to connections, metrics, and the potentiality
condition of Frobenius manifolds.

In chapter 3 the relation to symplectic geometry and especially to Lagrange
maps is discussed. This allows use to be made of Givental’s paper [Gi2] on
singular Lagrange varieties and their Lagrange maps.
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4 Introduction to part 1

Chapter 4 presents several notions and results, which are mostly motivated
by corresponding notions and results in singularity theory. Most important are
the discriminants and their geometry.

In chapter 5 F-manifolds from hypersurface singularities, boundary singu-
larities, and Coxeter groups are discussed. In the case of Coxeter groups we
extend some results of Givental [Gi2] and use them to prove a conjecture of
Dubrovin about their Frobenius manifolds.

The reader should have the following background. There should be fa-
miliarity with the basic concepts of complex analytic geometry, including
coherent sheaves and flatness. One reference is [Fi]. There should also be
awareness of those notions from symplectic geometry which are treated in
[AGV1, chapter 18] (canonical 1-form on the cotangent bundle, Lagrange
fibration, Lagrange map, generating function). We recommend this reference. In
chapter 5 some acquaintance with singularity theory makes the reading easier,
but it is not necessary. Good references are [AGV1] and [Lo2].

1.1 First examples

To give the reader an idea of what F-manifolds look like and how they arise
naturally, a construction of 2-dimensional F-manifolds is sketched. A systematic
treatment is given in sections 4.1 and 4.2.

Let W be a finite Coxeter group of type I2(m), m ≥ 2, acting on R
2 and (by

C-linear extension) on C
2. Then the ring C[x1, x2]W ⊂ C[x1, x2] of W -invariant

polynomials is C[x1, x2]W ∼= C[t1, t2] with 2 homogeneous generators t1 and
t2 of degrees m and 2. Therefore the quotient space C

2/W =: M is isomorphic
to C

2 as an affine algebraic variety, and the vector field e := ∂
∂t1

is unique up to
multiplication by a constant. The image in M of the union of the complexified
reflection hyperplanes is the discriminant D. We choose t1 and t2 such that it is
given as D = {t ∈ M | t2

1 − 4
m2 tm

2 = 0}.
For a point t ∈ M with t2 �= 0, the pair (e,D) gives rise to a multiplication

on Tt M in the following way, which is illustrated in figure 1.1.
The e-orbit through the point t intersects the discriminant at 2 points. We

shift the tangent hyperplanes of D at these points with the flow of e to Tt M .
We find that they are transverse to one another and to e. Therefore there are 2
unique vectors e1 and e2 in Tt M which are tangent to these lines and satisfy
e = e1 +e2. We define a multiplication on Tt M by ei ◦e j := δi j ei . It is obviously
commutative and associative, and e is the unit vector.

If we write this multiplication in terms of the coordinate fields e := ∂
∂t1

and ∂
∂t2

, after some calculation we find ∂
∂t2

◦ ∂
∂t2

= tm−2
2 · ∂

∂t1
, and e is the
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1.2 Fast track through the results 5

Figure 1.1

t1

t2

✻
e

❍❍❍❍❍✟✟✟✟✟

D

✟✟✟✯e1❍❍❍e2
✻e

unit field. Therefore the multiplication extends holomorphically to the whole
tangent bundle T M . One can show that it satisfies (1.1). The orbit space M is
an F-manifold.

This construction of an F-manifold from a discriminant D and a transver-
sal vector field e extends to higher dimensions (Corollary 4.6) and yields
F-manifolds in many other cases, for example for all finite Coxeter groups
(section 5.3).

1.2 Fast track through the results

The most notable (germs of) F-manifolds with many typical and some special
properties are the base spaces of semiuniversal unfoldings of isolated hyper-
surface singularities and of boundary singularities (sections 5.1 and 5.2). Here
the tangent space at each parameter is canonically isomorphic to the sum of the
Jacobi algebras of the singularities above this parameter. Many of the general
results on F-manifolds have been known in another guise in the hypersurface
singularity case and all should be compared with it.

One reason why the integrability condition (1.1) is natural is the following:
Let (M, p) be the germ of an F-manifold (M, ◦, e). The algebra Tp M decom-
poses uniquely into a sum of (irreducible) local algebras which annihilate one
another (Lemma 2.1). Now the integrability condition (1.1) ensures that this
infinitesimal decomposition extends to a unique decomposition of the germ
(M, p) into a product of germs of F-manifolds (Theorem 2.11).

If the multiplication at Tp M is semisimple, that is, if Tp M decomposes into
1-dimensional algebras, then this provides canonical coordinates u1, . . . , un on
(M, p) with ∂

∂ui
◦ ∂

∂u j
= δi j

∂
∂ui

. In fact, at points with semisimple multiplication
the integrability condition (1.1) is equivalent to the existence of such canonical
coordinates. In the hypersurface case, the decomposition of the germ (M, p)
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6 Introduction to part 1

for some parameter p is the unique decomposition into a product of base spaces
of semiuniversal unfoldings of the singularities above p.

Another reason why (1.1) is natural is its relation to the potentiality of
Frobenius manifolds. There exist F-manifolds such that not all tangent spaces
are Frobenius algebras. They cannot be Frobenius manifolds. But if all tangent
spaces are Frobenius algebras then the integrability condition (1.1) is related
to a version of potentiality which requires a metric on M that is multiplication
invariant, but not necessarily flat. See section 2.5 for details.

The most important geometric object which is attributed to an n-dimensional
manifold M with multiplication ◦ on the tangent sheaf TM and unit field e
(with or without (1.1)) is the analytic spectrum L := Specan(TM ) ⊂ T ∗M
(see section 2.2). The projection π : L → M is flat and finite of degree n.
The fibre π−1(p) ⊂ L above p ∈ M consists of the set Homalg(Tp M, C) of
algebra homomorphisms from Tp M to C; they correspond 1-1 to the irreducible
subalgebras of (Tp M, ◦) (see Lemma 2.1). The multiplication on TM can be
recovered from L , because the map

a : TM → π∗OL , X �→ α(X̃ )|L (1.2)

is an isomorphism of OM -algebras; here X̃ is any lift of X to T ∗M and α is the
canonical 1–form on T ∗M . The values of the function a(X ) on π−1(p) are the
eigenvalues of X◦ : Tp M → Tp M .

The analytic spectrum L is a reduced variety if and only if the multiplication
is generically semisimple. Then the manifold with multiplication (M, ◦, e) is
called massive. Now, a third reason why the integrability condition (1.1) is
natural is this: Suppose that (M, ◦, e) is a manifold with generically semisimple
multiplication. Then L ⊂ T ∗M is a Lagrange variety if and only if (M, ◦, e) is
a massive F-manifold (Theorem 3.2).

The main body of part 1 is devoted to the study of germs of massive
F-manifolds at points where the multiplication is not semisimple.

We will make use of the theory of singular Lagrange varieties and their
Lagrange maps, which has been worked out by Givental in [Gi2]. In fact, the
notion of an irreducible germ (with respect to the above decomposition) of
a massive F-manifold is equivalent to Givental’s notion of a miniversal germ
of a flat Lagrange map (Theorem 3.16). Via this equivalence Givental’s paper
contains many results on massive F-manifolds and will be extremely useful.

Locally the canonical 1–form α on T ∗M can be integrated on the ana-
lytic spectrum L of a massive F-manifold (M, ◦, e) to a generating function
F : L → C which is continuous on L and holomorphic on Lreg. It depends on
a property of L , which is weaker than normality or maximality of the complex
structure of L , whether F is holomorphic on L (see section 3.2).
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1.2 Fast track through the results 7

If F is holomorphic on L then it corresponds via (1.2) to an Euler field
E = a−1(F) of weight 1, that is, a vector field on M with LieE (◦) = ◦
(Theorem 3.3).

In any case, a generating function F : L → C gives rise to a Lyashko–
Looijenga map 
 : M → C

n (see sections 3.3 and 3.5) and a discriminant
D = π (F−1(0)) ⊂ M .

If F is holomorphic and an Euler field E = a−1(F) exists then the discrimi-
nant D is the hypersurface of points where the multiplication with E is not in-
vertible. Then it is a free divisor with logarithmic fields DerM (logD) = E ◦ TM

(Theorem 4.9). This generalizes a result of K. Saito for the hypersurface case.
From the unit field e and a discriminant D ⊂ M one can reconstruct every-

thing. One can read off the multiplication on T M in a very nice elementary
way (Corollary 4.6 and section 1.1): The e-orbit of a generic point p ∈ M
intersects D at n points. One shifts the n tangent hyperplanes with the flow of
e to Tp M . Then there exist unique vectors e1(p), . . . , en(p) ∈ Tp M such that∑n

i=1 ei (p) = e(p) and
∑n

i=1 C · ei (p) = Tp M and such that the subspaces∑
i �= j C · ei (p), j = 1, . . . , n, are the shifted hyperplanes. The multiplication

on Tp M is given by ei (p) ◦ e j (p) = δi j ei (p).
In the case of hypersurface singularities and boundary singularities, the clas-

sical discriminant in the base space of a semiuniversal unfolding is such a
discriminant. The critical set C in the total space of the unfolding is canonically
isomorphic to the analytic spectrum L; this isomorphism identifies the map a
in (1.2) with a Kodaira–Spencer map aC : TM → (πC )∗OC and a generating
function F : L → C with the restriction of the unfolding function to the critical
set C . This Kodaira–Spencer map aC is the source of the multiplication on TM

in the hypersurface singularity case. The multiplication on TM had first been
defined in this way by K. Saito.

Critical set and analytic spectrum are smooth in the hypersurface singular-
ity case. By the work of Arnold and Hörmander on Lagrange maps and sin-
gularities an excellent correspondence holds (Theorem 5.6): each irreducible
germ of a massive F-manifold with smooth analytic spectrum comes from an
isolated hypersurface singularity, and this singularity is unique up to stable right
equivalence.

By the work of Nguyen huu Duc and Nguyen tien Dai the same corre-
spondence holds for boundary singularities and irreducible germs of massive
F-manifolds whose analytic spectrum is isomorphic to (Cn−1, 0) × ({(x, y) ∈
C

2 | xy = 0}, 0) with ordered components (Theorem 5.14).
The complex orbit space M := C

n/W ∼= C
n of a finite irreducible Coxeter

group W carries an (up to some rescaling) canonical structure of a massive
F-manifold: A generating system P1, . . . , Pn of W -invariant homogeneous
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8 Introduction to part 1

polynomials induces coordinates t1, . . . , tn on M . Precisely one polynomial,
e.g. P1, has highest degree. The field ∂

∂t1
is up to a scalar independent of any

choices. This field e := ∂
∂t1

as the unit field and the classical discriminant
D ⊂ M , the image of the reflection hyperplanes, determine in the elementary
way described above the structure of a massive F-manifold. This follows from
[Du2][Du3, Lecture 4] as well as from [Gi2, Theorem 14].

Dubrovin established the structure of a Frobenius manifold on the complex
orbit space M = C

n/W , with this multiplication, with K. Saito’s flat metric on
M , and with a canonical Euler field with positive weights (see Theorem 5.23). At
the same place he conjectured that these Frobenius manifolds and their products
are (up to some well-understood rescalings) the only massive Frobenius man-
ifolds with an Euler field with positive weights. We will prove this conjecture
(Theorem 5.25).

Crucial for the proof is Givental’s result [Gi2, Theorem 14]. It characterizes
the germs (M, 0) of F-manifolds of irreducible Coxeter groups by geometric
properties (see Theorem 5.21). We obtain from it the following intermediate
result (Theorem 5.20): An irreducible germ (M, p) of a simple F-manifold such
that Tp M is a Frobenius algebra is isomorphic to the germ at 0 of the F-manifold
of an irreducible Coxeter group.

A massive F-manifold (M, ◦, e) is called simple if the germs (M, p), p ∈ M ,
of F-manifolds are contained in finitely many isomorphism classes. Theorem
5.20 complements in a nice way the relation of irreducible Coxeter groups
to the simple hypersurface singularities An, Dn, En and the simple boundary
singularities Bn, Cn, F4.

In dimensions 1 and 2, up to isomorphism all the irreducible germs of massive
F-manifolds come from the irreducible Coxeter groups A1 and I2(m) (m ≥ 3)
with I2(3) = A2, I2(4) = B2, I2(5) =: H2, I2(6) = G2. But already in dime-
nsion 3 the classification is vast (see section 5.5).
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Chapter 2
Definition and first properties of F-manifolds

An F-manifold is a manifold with a multiplication on the tangent bundle which
satisfies a certain integrability condition. It is defined in section 2.3. Sections
2.4 and 2.5 give two reasons why this is a good notion. In section 2.4 it is
shown that germs of F-manifolds decompose in a nice way. In section 2.5 the
relation to connections and metrics is discussed. It turns out that the integrability
condition is part of the potentiality condition for Frobenius manifolds. Therefore
Frobenius manifolds are F-manifolds.

Section 2.1 is a self-contained elementary account of the structure of finite
dimensional algebras in general (e.g. the tangent spaces of an F-manifold)
and Frobenius algebras in particular. Section 2.2 discusses vector bundles with
multiplication. There the caustic and the analytic spectrum are defined, two
notions which are important for F-manifolds.

2.1 Finite-dimensional algebras

In this section (Q, ◦, e) is a C-algebra of finite dimension (≥ 1) with commuta-
tive and associative multiplication and with unit e. The next lemma gives precise
information on the decomposition of Q into irreducible algebras. The statements
are well known and elementary. They can be deduced directly in the given order
or from more general results in commutative algebra (Q is an Artin algebra).
Algebra homomorphisms are always supposed to map the unit to the unit.

Lemma 2.1 Let (Q, ◦, e) be as above. As the endomorphisms x◦ : Q → Q,
x ∈ Q, commute, there is a unique simultaneous decomposition Q = ⊕l

k=1 Qk

into generalized eigenspaces Qk (with dimC Qk ≥ 1). Define ek ∈ Qk by e =∑l
k=1 ek. Then

(i) One has Q j ◦ Qk = 0 for j �= k; also ek �= 0 and e j ◦ ek = δ jkek; the
element ek is the unit of the algebra Qk = ek ◦ Q.

9
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10 Definition and first properties of F-manifolds

(ii) The function λk : Q → C which associates to x ∈ Q the eigenvalue of x◦
on Qk is an algebra homomorphism; λ j �= λk for j �= k.

(iii) The algebra (Qk, ◦, ek) is an irreducible and a local algebra with maximal
ideal mk = Qk ∩ ker(λk).

(iv) The subsets ker(λk) = mk ⊕⊕
j �=k Q j , k = 1, . . , l, are the maximal ideals

of the algebra Q; the complement Q−⋃
k ker(λk) is the group of invertible

elements of Q.
(v) The set {λ1, . . . , λl} = HomC−alg(Q, C).

(vi) The localization Qker(λk ) is isomorphic to Qk.

We call this decomposition the eigenspace decomposition of (Q, ◦, e).
The set L := {λ1, . . . , λl} ⊂ Q∗ carries a natural complex structure OL such
that OL (L) ∼= Q and OL ,λk

∼= Qk . More details on this will be given in
section 2.2.

The algebra (or its multiplication) is called semisimple if Q decomposes into
1-dimensional subspaces, Q ∼= ⊕dim Q

k=1 Qk = ⊕dim Q
k=1 C · ek .

An irreducible algebra Q = C · e ⊕ m with maximal ideal m is a Gorenstein
ring if the socle AnnQ(m) has dimension 1.

An algebra Q = ⊕l
k=1 Qk is a Frobenius algebra if each irreducible sub-

algebra is a Gorenstein ring (cf. for example [Kun]).
The next (also well known) lemma gives equivalent conditions and additional

information. Note that this classical definition of a Frobenius algebra is slightly
weaker than Dubrovin’s: he calls an algebra (Q, ◦, e) together with a fixed
bilinear form g as in Lemma 2.2 (a) (iii) a Frobenius algebra.

Lemma 2.2 (a) The following conditions are equivalent.

(i) The algebra (Q, ◦, e) is a Frobenius algebra.
(ii) As a Q-module Hom(Q, C) ∼= Q.

(iii) There exists a bilinear form g : Q × Q → C which is symmetric, non-
degenerate and multiplication invariant, i.e. g(a ◦ b, c) = g(a, b ◦ c).

(b) Let Q = ⊕l
k=1 Qk be a Frobenius algebra and Qk = C · ek ⊕ mk . The

generators of Hom(Q, C) as a Q-module are the linear forms f : Q → C with
f (AnnQk (mk)) = C for all k.

One obtains a 1-1 correspondence between these linear forms and the bi-
linear forms g as in (a) (iii) by putting g(x, y) := f (x ◦ y).

Proof: (a) Any of the conditions (i), (ii), (iii) in (a) is satisfied for Q if and
only if it is satisfied for each irreducible subalgebra Qk . One checks this with
Q j ◦ Qk = 0 for j �= k. So we may suppose that Q is irreducible.
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2.2 Vector bundles with multiplication 11

(i) ⇐⇒ (ii) A linear form f ∈ Hom(Q, C) generates Hom(Q, C) as a
Q-module if and only if the linear form (x �→ f (y ◦ x)) is nontrivial for
any y ∈ Q − {0}, that is, if and only if f (y ◦ Q) = C for any y ∈ Q − {0}.

The socle AnnQ(m) is the set of the common eigenvectors of all endomor-
phisms x◦ : Q → Q, x ∈ Q. If dim AnnQ(m) ≥ 2 then for any linear form f an
element y ∈ (ker f ∩AnnQ(m))−{0} satisfies y ◦ Q = C · y and f (y ◦ Q) = 0;
so f does not generate Hom(Q, C). If dim AnnQ(m) = 1 then it is contained
in any nontrivial ideal, because any such ideal contains a common eigenvector
of all endomorphisms. The set y ◦ Q for y ∈ Q − {0} is an ideal. So, then a
linear form f with f (AnnQ(m)) = C generates Hom(Q, C) as a Q-module.

(i) ⇒ (iii) Choose any linear form f with f (AnnQ(m)) = C and define g
by g(x, y) := f (x ◦ y). It remains to show that g is nondegenerate. But for any
x ∈ Q −{0} there exists a y ∈ Q with C · x ◦ y = AnnQ(m), because AnnQ(m)
is contained in the ideal x ◦ Q.

(iii) ⇒ (i) The equalities g(m, AnnQ(m)) = g(e, m◦AnnQ(m)) = g(e, 0) = 0
imply dim AnnQ(m) = 1.

(b) Starting with a bilinear form g, the corresponding linear form f is given
by f (x) = g(x, e). The rest is clear from the preceding discussion. �

The semisimple algebra Q ∼= ⊕dim Q
k=1 C · ek is a Frobenius algebra.

A classical result is that the complete intersections OCm ,0/( f1, . . . , fm) are
Gorenstein. But there are other Gorenstein algebras, e.g. C{x, y, z}/(x2, y2, xz,
yz, xy − z2) is Gorenstein, but not a complete intersection.

Finally, in the next section vector bundles with multiplication will be consid-
ered. Condition (ii) of Lemma 2.2 (a) shows that there the points whose fibres
are Frobenius algebras form an open set in the base.

2.2 Vector bundles with multiplication

Now we consider a holomorphic vector bundle Q → M on a complex manifold
M with multiplication on the fibres: The sheafQ of holomorphic sections of the
bundle Q → M is equipped with an OM -bilinear commutative and associative
multiplication ◦ and with a global unit section e.

The set
⋃

p∈M HomC−alg(Q(p), C) of algebra homomorphisms from the sin-
gle fibres Q(p) to C (which map the unit to 1 ∈ C) is a subset of the dual bundle
Q∗ and has a natural complex structure. It is the analytic spectrum Specan(Q).
We sketch the definition ([Hou, ch. 3], also [Fi, 1.14]):

TheOM -sheaf SymOM
Q can be identified with theOM -sheaf of holomorphic

functions on Q∗ which are polynomial in the fibres. The canonical OM -algebra
homomorphism SymOM

Q → Q which maps the multiplication in SymOM
Q
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