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Chapter 1

Introduction

One cannot possibly study the disease unless one understands what it means to be
healthy. We probably only have a few more decades to study a ‘healthy’ earth.

R. F. Keeling: Ph. D. Thesis [251].

1.1 Overview

Human activity is changing the composition of the atmosphere. This goes beyond the
often obvious problems of local and regional pollution – even in remote locations
there are changes in concentrations of minor atmospheric constituents such as carbon
dioxide,methaneandnitrous oxide. These andother long-lived gases affect the balance
of radiation of the earth – they are the so-called greenhouse gases. Other long-lived
gases are implicated in the decrease in concentration of ozone in the stratosphere.
The ability to understand the current atmospheric budgets of these trace gases is es-

sential if we are to be able to project their future concentrations in the atmosphere. This
bookconcentratesononegroupof techniques that arebeingused to improveour knowl-
edge – the interpretation of spatial distributions of trace-gas concentrations. An impor-
tant themeof this book is the use of a statistical approach as being essential to obtaining
realistic assessments of the uncertainties in the interpretation of trace-gas observations.
Modellingof theatmospheric transport of carbondioxide (CO2),methane (CH4)and

other greenhouse gases is used to interpret the observed spatial distributions of these
gases. The spatial distribution of trace-gas concentrations represents a combination
of the effect of spatially varying sources and sinks and the effect of atmospheric
transport. Therefore a model of atmospheric transport is needed if the source/sink
distributions are to be deduced from observed concentrations. The main reason for
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4 Introduction

deducing the source/sink distributions is to help identify and quantify the processes
responsible. We define ‘tracer inversion’ as the process of deducing sources and sinks
frommeasurements of concentrations. We also consider a number of related inversion
problems involving trace atmospheric constituents. This use of modelling is termed
‘diagnostic’ – the model is being used to interpret observations. The alternative use of
models is in ‘prognostic’ operation, in which the model is used to make projections of
future conditions.
Modelling of global atmospheric change has progressively widened its scope from

the physical properties of the atmosphere to include atmospheric chemistry and bio-
geochemistry and is progressing to the currently emerging area of ‘earth-system sci-
ence’. This increase in scope has been motivated by the recognition of causal links
between the components of the earth system. Realistic projections have to consider
these connections and model their evolution in time. In contrast, diagnostic modelling
is able to analyse components of the earth system, defining the linkages in terms of
observations. Therefore, we can expect that inverse modelling in general (and inverse
modelling of the atmosphere in particular) will become an increasingly important
part of the development of earth-system science and the validation of earth-system
models.
Recognition of the information present in global-scale spatial differences in con-

centration of CO2 came soon after the establishment of high-precision measurement
programmes at Mauna Loa (Hawaii) and the South Pole in 1958. The CO2 records
revealed a persistent difference and this mean spatial gradient has increased over the
subsequent decades. Much of this difference is due to fossil-fuel use, which occurs
mainly in the northern hemisphere. It is a measure of the difficulty of interpretation
that there remain competing interpretations for the residual.
In order to achieve local air-quality objectives, many jurisdictions have established

regulations controlling emissions. On a larger scale, cross-border transport of sulfur
compoundshas led to international agreements in somecases.Onaglobal scale, the two
objectives have been the control of ozone-depleting chemicals through the Montreal
Protocol (see Box 16.3) and the restrictions on emission of greenhouse gases through
the still-to-be-ratified Kyoto Protocol (see Box 6.1). The existence of these agreements
creates a need to ensure that they are based on sound science, in order to ensure that
the prescribed actions achieve the objectives of the agreements.
This book aims to capture my own experience and that of my colleagues in us-

ing atmospheric-transport modelling to help understand the global carbon cycle and
other similar biogeochemical cycles. Since this activity is composed of so many inter-
linked parts, this introduction is designed to serve as a road-map to what lies ahead.
The main division of this book is into Part A, which surveys general principles, and
Part B, which reviews recent applications.
Thecomponents of tracer inversionsare (i) a set of observations, (ii) anatmospheric-

transport model and (iii) a set of mathematical/statistical techniques for matching
observations to model results. This book is mainly about the matching process. It
takes its context from the specific issues raised by the nature of atmospheric transport,
the types of observations that are available and what we would like to learn about
trace-gas fluxes.
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Two important issues that we identify in developing practical inversion calculations
are

� ill-conditioning, as introduced in Section 1.3, whereby the inversions are
highly sensitive to errors and uncertainties in the inputs and assumptions; and

� the use of a statistical approach to the assessment of uncertainty.

1.2 Atmospheric inversion problems

As noted above, this book is divided into two parts, covering principles and applica-
tions, respectively. Nevertheless, principles need illustrative examples and most of the
developments of techniques of trace-gas inversion have been in response to specific
problems. The main classes of trace-gas inverse problem are the following.

Estimation of atmospheric transport. Inversion calculations to determine
atmospheric transport have played a relatively small role in trace-gas studies.
An exception is early studies of ozone as a tracer of atmospheric motion. A few
tracer studies have concentrated on estimating key indices of transport, such as
interhemispheric exchange times. Some of these are reviewed in Chapter 18.

Estimation of sources and sinks of halocarbons.Studies of the various
halocarbons have mainly been motivated by their role in ozone depletion.
Initially, studies of chlorofluorocarbons (CFCs) concentrated on estimating the
loss rates, expressed in terms of atmospheric lifetimes. Studies of methyl
chloroform (CH3CCl3), for which there are good concentration data and quite
good estimates of emissions, also aim to estimate the loss rate. CH3CCl3 is
removed from the troposphere by reaction with the hydroxyl radical (OH) and
so the CH3CCl3 loss rate can characterise the loss by reaction with OH of other
trace gases, particularly methane [377]. More recently, studies of halocarbons
have attempted to estimate the strengths and locations of unreported emissions.
Inversions of halocarbon distributions are discussed in Chapter 16.

Estimation of sources and sinks of CO2. The key issue in studies of CO2 is the
atmospheric carbon budget and, in particular, the partitioning of CO2

exchanges between oceanic and biospheric processes. Atmospheric CO2

inversions aim to use the spatial distribution of CO2 to infer the spatial
distribution of surface fluxes, the objective being to obtain sufficient detail to
distinguish terrestrial from ocean fluxes. (Note that this book uses the term flux
to mean both (i) exchange of mass per unit area, generally in the context of
partial differential equations, and (ii) area-integrated exchange of mass, in
contexts involving finite areas.) CO2 inversions are discussed in Chapter 14.

Estimation of sources and sinks of CH4. As with CO2, the important questions
for CH4 are those concerning the atmospheric budget. Consequently, the main
atmospheric inverse problem is that of estimating the spatial distribution of
methane fluxes, mainly from surface-concentration data. The sink in the free
atmosphere is an additional complication. Methane inversions are discussed in
Chapter 15.
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Real world → Mathematical model → Computer model

Figure 1.1 A schematic diagram of the relation among the real world, the
mathematical model and the computer model. We adopt the terminology
[423] of using ‘validation’ for testing the mathematical model against the
real world and ‘verification’ for testing the computer model against the
mathematical model.

Global-scale inversionsof other tracegasesarenoted inSection16.4and regional-scale
inversions are discussed in Chapter 17.
We consider the most common tracer inversion problem, that of deducing sources

and sinks from concentration data. As noted above, this requires the use of a model
of atmospheric transport. Figure 1.1 represents the relation among (i) the real world,
(ii) amathematicalmodel of (someaspect of) theworld and (iii) a computer implemen-
tation of the mathematical model. Identifying the mathematical model as an explicit
intermediate step in model building allows us to use a wide range of mathematical
techniques to analyse the modelling process. Much of this book is written in terms of
such mathematical models.
The general mathematical form of the transport equation for a trace constituent

describes the calculated rate of changewith timeofm(r , t), the (modelled) atmospheric
concentration:

∂

∂t
m(r , t) = s(r , t)+ T [m(r , t), t ] (1.2.1)

wheres(r , t) is the local source andT [., .] is a transport operator. Equation (1.2.1)
expresses the rate of change of a trace-gas concentration at a point,r , and time,t , as
the sum of the net local source-minus-sink strength at that point, plus a contribution
due to trace-gas transport from other locations. The transport is usually modelled
with an advective component,∇ · (vm), often with a diffusive component to represent
sub-grid-scale processes.
We can identify two main classes of inversion, which we denote ‘differential’ and

‘integral’. The former works with equation (1.2.1). The latter uses Green’s functions
obtained by (numerical) integration of the transport equations. There are also various
‘hybrid’ techniques.

(a) Differential inversions. These are based on rewriting the transport equation
(1.2.1) as

ŝ(r , t) = ∂

∂t
m̂(r , t)− T [m̂(r , t), t ] (1.2.2)

whereŝ andm̂ denote statistical estimates. The most common application is
deducing surface sources from surface observations, so (1.2.2) is used at
surface grid points, while (1.2.1) is numerically integrated throughout the free
atmosphere. Equation (1.2.2) is applied withm̂(r , t) as a statistically smoothed
version of the observed concentration field,c(r , t) (hence the notation̂m). This
technique is described as a ‘differential’ form because of the (∂/∂t)m̂ term – it
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is often referred to as the ‘mass-balance’ technique since the transport
equations both in the original and in transformed forms are expressing local
conservation of mass. Mass-balance inversion techniques are reviewed in
Section 11.1.

(b) Green-function methods.These are expressed formally through the Green
function,G(r , t, r ′, t ′), relating modelled concentrations,m(r , t), to source
strengths,s(r , t),

m(r , t) = m0(r , t)+
∫ t

t0

G(r , t, r ′, t ′)s(r ′, t ′) d3r ′ dt ′ (1.2.3)

wherem0(r , t) describes the way in which the initial state,m(r , t0), evolves in
the absence of sources. Of necessity, actual calculations are performed using
some discretisation of (1.2.3). This is expressed as the generic relation

cj =
∑

µ

Gjµsµ + ε j = mj + ε j (1.2.4)

wherecj is an item of observational data,mj is the model prediction for this
item of data,ε j is the error incj , sµ is a source strength andGjµ is a
discretisation ofG(r , t, r ′, t ′).
The discretisation is based on decomposing the sources as

s(r , t) =
∑

µ

sµσµ(r , t) (1.2.5)

so that theGjµ are the responses (for observationj ) to a source defined by the
distributionσµ(r , t). (Often, for convenience,Gjµ includes pseudo-sources
defining them0 of (1.2.3), which is assumed to be constant for each species.)
The sources are estimated by using (1.2.4) to fit the coefficients,sµ. For this
reason, these Green-function methods that work in terms of pre-defined
components,σµ(r , t), have been termed ‘synthesis’ calculations [165], since
the source estimate is synthesised from these pre-defined components.
The most important point for the development of Green-function methods

is that (1.2.1) defines a linear relation between the concentrations,m(r , t),
and the sources,s(r , t), so the full machinery of linear algebra can
be applied to solving (1.2.4). Green-function techniques are discussed in
Chapter 10.

(c) Hybrid techniques.These techniques lie between the differential
(mass-balance) and the integral (synthesis) inversions. Generally, they take the
form of synthesis inversions over a sequence of relatively short time-steps.
Examples of this are the techniques of Brown [56], Hartley and Prinn [197] and
Ramonetet al. [394]. These and other similar techniques are reviewed in
Section 11.2. In addition, there is an exploratory discussion in Chapter 12 of
techniques involving non-linear estimation.
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Figure 1.2 A schematic
representation of synthesis
inversion as analogous to a
jigsaw, fitting an unknown
number of differently
shaped components (fossil,
ocean and terrestrial) to find
the best fit to observations
(solid points).

The emphasis given toGreen-function, or synthesis, techniques in this book primar-
ily reflects the scope for error analysis. This also underlies the second reason, which is
the extensive experience of synthesis inversions in our research group. In its simplest
form, the synthesis approach corresponds to multiple regression: a functionc(x) is
expressed as a linear combination of specified functions,Gµ(x), in terms of unknown
coefficients,sµ, by fitting a set of observations at pointsxj asc(xj ) ≈ ∑

µ sµGµ(xj ).
A visual illustration of the technique can be obtained by regarding the fitting process

as a ‘jigsaw’. Figure 1.2 gives a schematic representation of the regression (in terms
of latitudinal variation only) for CO2 distributions. Rather than fit pieces of unknown
size but known shape, the ‘jigsaw’ analogy approximates this by fitting an unknown
number of pieces of fixed shape and size, shown by alternating hatching. Figure 1.2
demonstrates fitting an unknown number of land pieces (five in this example, above
the upper dashed line and shown with diagonal hatching) and an unknown number of
ocean pieces (three in this case, between the dashed lines) plus a fairly well-known
fossil piece (below the lower dashed line with dot fill) to fit the observed spatial
distribution (solid points). (Note that the higher concentrations in the ‘land’ pieces
at high southern latitudes reflect the transport of northern air southwards through the
upper troposphere.)

1.3 Uncertainty analysis

A key focus of this book is the estimation of uncertainties. It is particularly important
in ill-conditioned problems that are subject to large error-amplification. Uncertainty
analysis is required on general grounds of scientific integrity and the needs of policy-
related science, as well as for input into further levels of scientific (or policy-related)
analysis. In addition, as described inChapter 13, we have used a systematic uncertainty
analysis as the basis of experimental design.
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The underlying principle is thatany statistical analysis requires a statistical model.
Generally we need toassumesuch a model. We can test (but never prove) the validity
of the assumptions. In discussing the various types of error that can affect trace-
gas inversions, Enting and Pearman [141] noted that “any variability that cannot be
modelled [· · ·] must be treated as part of the ‘noise’ [· · ·]”. In other words, the noise
in the statistical model is whatever is not being modelled deterministically. Statistical
estimation is described in Chapter 3; the special case of time series is described in
Chapter 4.
This book follows Tarantola [471] in being firmly based on the use of prior in-

formation. This is both an optimal use of available information and an essential part
of stabilising ill-conditioned problems. The standard Bayesian formalism has proved
adequate for the problems that we have encountered in practice, without the need to
adopt the extensions proposed by Tarantola (see Box 12.1).
The emphasis on the statistical modelling of uncertainty leads us to express the re-

sults from inversioncalculations in the terminologyof statistical estimation.The results
of inverting (1.2.4) areestimates, denoted̂sµ, of the source components,sµ, or more
generally estimates,̂xµ, of parameters,xµ. As noted above, the essential requirement
for any statistical analysis is that one must have a statistical model of the problem.
The word ‘model’ has been used both for the transport model and for the statistical

model. Thismultiple usageneeds tobe recognisedsinceboth typesofmodel areneeded
for tracer inversions. The transport model represents a deterministic relation between
the sources and the concentrations. However, our overall knowledge of the sources
and concentrations is incomplete. Most obviously, our knowledge is not infinitely
precise. This incompleteness in our knowledge is expressed in statistical terms. With
this terminology, the quote from Enting and Pearman [141] needs to be reworded as
any variability that cannot be modelled deterministically[· · ·] must be treated as part
of the ‘noise’ and modelled statistically.
In order to address these issues of uncertainty, inversion studies need to use an

overall model with both deterministic and statistical aspects. A common form of the
combined model is one in which the statistical aspects appear as noise added to the
outputs of a deterministic model and (when one is using a Bayesian approach) finite
uncertainties on the inputs. With such a structure, there can be an apparent distinction
between thedeterministic (transport)model and thestatisticalmodel. Thedeterministic
model never ‘sees’ the statistical model – all the statistical analysis occurs somewhere
outside. Conversely, the statistical model sees the deterministic model as a functional
relation and need take no account of the immense complexity that may lie inside a
functional representationof atmospheric transport. This convenient separationbetween
deterministic and statistical models becomes rather less tenable whenwewish to apply
a statistical approach to considering uncertainties in the deterministic model itself.
State-space modelling (see Section 4.4) provides one framework in which statistical
and deterministic aspects of modelling can be integrated.
The simplest statistical model of the observations is to assume independent nor-

mally distributed errors. For the case of linear relations between observations and
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parameters, this leads to a weighted least-squares fit giving the optimal (minimum-
variance) estimates. Conversely, adopting a least-squares fitting procedure and asso-
ciated error analysis is equivalent to assuming, whether implicitly or explicitly, that
the errors are normally distributed. Errors with a multivariate normal distribution lead
to a weighted least-squares fit with ‘off-diagonal’ weights (see Section 3.3) as the op-
timal estimates. Other error distributions (and associated non-linear estimation) have
been considered in a highly simplified zonally averaged inversion [130]. Additional
discussion of non-linear estimation is given in Chapter 12.
Many of the inversions use a Bayesian approach, i.e. independent prior estimates

of the sources are included in the estimation procedure. Detailed discussions of ap-
plications of Bayesian estimation in carbon-cycle studies have been given for global
model calibration [140], for synthesis inversion [143, 145], for methane [242, 206]
and in subsequent work.
Some of the key aspects of error analysis are the following.

Measurement error.Most error analyses in trace-gas studies have assumed that
the errors in the various observations,cj , are independent. To the extent that
‘error’ includes the effect of small-scale sources that are omitted from the
model, the assumption of independence of distinct sites can easily fail.
Probably, a more important omission is the time correlation in the errors for a
single site. Most inversion studies have ignored this problem. Two early
exceptions are the three-dimensional model study reported by Bloomfield [34],
in which an autoregressive error model was used, and the synthesis inversion
by Entinget al. [145], in which the issue of autocorrelation in the data was
avoided because time-dependence was expressed in the frequency domain.

Model error. The problem of determining the effect of model error remains
largely unsolved. The difficulty is particularly great in ill-conditioned inverse
problems with their large sensitivity to errors. Tarantola [471] describes a
formalism in which model error becomes an extra component added to
observational error (see equation (9.1.2)). Enting and Pearman [141]
considered such a formalism with particular reference to the ‘truncation error’
when the small-scale degrees of freedom are excluded from the process of
synthesis inversion (see also Section 8.3). One difficulty with this approach is
that these errors are unlikely to be independent and there is little basis for
defining an appropriate error covariance.
Numerical modelling involves an initial discretisation of the spatial and

temporal variations both of sources and of concentrations. Further
discretisation of source distributions may be needed because of the limited
information contained in a sparse observational network and the loss of
information associated with the ill-conditioning of the inversion. The
‘synthesis-inversion’ approach defined by equation (1.2.4) is usually based on
a coarse discretisation of source/sink processes.
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In recent years there has been a collaborative project of the International
Geosphere–Biosphere Program (IGBP) known asTransCom, which compares
some of the atmospheric-transport models used to study CO2 [398, 277; see
also Section 9.2 and Box 9.1]. These studies have confirmed the importance of
the problem but have not yielded a ‘magic-bullet’ solution. A further aspect of
‘model error’ that must be considered is that of errors in the statistical model.

Source statistics.The Bayesian approach requires, as one of its inputs, prior
statistics of the source strengths. One of the most critical issues is the time
correlation of these prior source estimates in time-dependent Bayesian
inversions. Initially, Rayneret al. [402] used time pulses whose prior
distributions were assumed to be independent. Later calculations (e.g. those in
Figure 14.9) used ‘mean-plus-anomaly’ representation of data error and prior
estimates. Mulquineyet al. [332] used a random-walk model for the prior
statistical characterisation of sources.
In addition, consideration of the spatial statistics of the sources is required in

order to assess the discretisation error inherent in the synthesis approach. The
particular importance of spatial statistics is quite explicit for inversions using
adjoint calculations [240], in which very large numbers of source components
are involved. Assumptions of independent uncertainties for a large number of
small regions could imply an unrealistically small uncertainty in the total.
Similar issues of spatial statistics are implicit in synthesis inversionsbased on a
small number of highly aggregated components.

The process of deducing trace-gas fluxes from concentration data is severely ham-
pered by a mathematical characteristic known as ill-conditioning. Figure 1.3 gives a
schematic representation of the source of the difficulty: dissipative processes in the
real world lead to a loss of detail in the information available for analysis. In cases in
which the model calculations (or, more precisely, the model-based inferences) are in
the opposite direction to the real-world chain of causality, the attenuation of detailed

REAL WORLD              MATHEMATICAL MODEL
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information requires a corresponding amplification to try to reconstruct the source
distribution. This will also amplify errors introduced by the observational process and
errors in the transport model.
The loss of information in ill-conditioned inverse problems can be quantified in

termsof how rapidly the attenuation in the forward problemchangesas the length-scale
decreases. In terms of an inverse length-scale specified by a wave-number,k, the
low-frequency response of the surface concentration to a surface flux behaves ask−1.
The asymptotic behaviour of global-scale transport can be (and was) derived from
an analytical purely diffusive model, because the limiting behaviour is determined by
the most dissipative process. Calculations with numerical models show that thek−1

behaviour applies quite accurately fork > 1 [132, 136]. The ill-conditioned nature of
the atmospheric-tracer inversion problem has been known since the work of Bolin and
Keeling [37], although thek−2 response that they found applies to vertically averaged
concentrations rather than surface concentrations.
Similar ill-conditioned inverse problems are common in many areas of the earth

sciences. Much of our work has drawn on analogies from seismology, particularly
the network design study [400] noted in Chapter 13. Chapter 8 revisits these issues
of ill-conditioning. For the present, the important point is that the limited ability to
recover details from indirect information is an important reason for using Bayesian
estimation.

1.4 Toy models

This book makes frequent use of ‘toy models’ to illustrate aspects of tracer inversion.
Toy models are highly simplified models that capture only a few important attributes
of a system. The value of these models comes from the insights that can be obtained
from analytical or semi-analytical solutions and/or the ability to explore solutions for a
large number of different conditions quickly. For example, identifying the sensitivities
to keymodel parameters is an important application of toymodels. In this book, one of
the most important applications of toy models is to illustrate the differences between
forward and inverse modelling with various types of model.
In addition, toy models may often give useful estimates of uncertainty. For ill-

conditioned inverse problems, estimates of the formx̂ = ∑
aj cj will frequently

involve cancellations and so accurate estimates require accurate values of the ‘inverse-
model’ coefficients,aj . In contrast, for independent data, errors of the form
var x̂=∑ |aj |2 varcj involvesumswithout cancellationsandsoaremuch lesssensitive
to errors and approximations in the model.
There are five classes of toy model that are followed in a sequence of boxes and

exercises throughout the book, refining the models and/or the analysis, to elucidate
aspects of the general theoretical treatment. We classify them as three groups of toy
transport model, a group of statistical models and a class of toy chemistry model.
Suggested values for the model parameters are given in Appendix B.



1.4 Toy models 13

Box 1.1. Toy transport model A.1. The one-reservoir atmosphere

In representing the atmosphere as a small number,N, of reservoirs, we start with
N = 1. Transport is irrelevant and the only changes in concentration are due to the
net effect of sources and sinks.
We write the rate of change of concentration as

d

dt
m= λ(t)m(t)+ s(t) (1)

wheres(t) is an ‘external’ source and−λ represents an atmospheric decay rate
(or inverse ‘lifetime’) for a decay process, such as chemical reaction or radioactive
decay.
For a specified initial condition,m(t0) at time t0, equation (1) has the formal

solution

m(t) = m(t0) exp

(∫ t

t0

λ(t ′) dt ′
)

+ exp

(∫ t

t0

λ(t ′) dt ′
) ∫ t

t0

exp

(∫ t ′′

t0

−λ(t ′) dt ′
)
s(t ′′) dt ′′

= m(t0)ξ (t)+
∫ t

t0

ξ (t)/ξ (t ′)s(t ′) dt ′

(2)

where

ξ (t) = exp

(∫ t

t0

λ(t ′) dt ′
)

(3)

is termed an integrating factor. Relation (2) isa special case of the Green-function
formalism

m(t) = m0(t)+
∫ t

t0

G(t, t ′)s(t ′) dt ′ (4)

(see Section 10.1) whereby an inhomogeneous differential equation is ‘solved’ in
terms of an integral operator that is the inverse of the differential operator.
For constantλ, (2) reduces to

m(t) = m(t0)e
(t−t0)λ +

∫ t

t0

e(t−t
′′)λs(t ′′) dt ′′ (5)

A. Few-reservoir representations of atmospheric transport.These models
allow us to look at broad-scale features at a low level of discretisation. From a
mathematical perspective, the models are defined by sets of ordinary
differential equations (ODEs). This simplifies some of the analyses.

B. Diffusive transport models.At the opposite extreme to the highly discretised
models, the purely diffusive model uses a continuum view of the atmosphere.
Tracer distributions are modelled with partial differential equations (PDEs).
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Box 1.2. Toy transport model B.1. The diffusive atmosphere

The first representation of an atmospherewith purely diffusive transport distorts the
geometry in order to simplify themathematics.Weconsider anisotropic diffusion in
a rectangular region. Schematically it represents a zonal average of the atmosphere.
The flux across the lower boundary is specified in terms of a flux-gradient relation
and zero flux is prescribed on the other three boundaries. The lower boundary is
at y = 1 and the upper boundary is aty = 0 so thaty is acting like a pressure
coordinate andx is analogous to 0.5[1+ sin(latitude)].
The diffusion equation is

∂m

∂t
= κx

∂2m

∂x2
+ κy

∂2m

∂y2
(1)

in the domainx ∈ [0,1] andy ∈ [0,1] and subject to
∂m

∂x
= 0 atx = 0 andx = 1

∂m

∂y
= 0 aty = 0 and

∂m

∂y
= s(x) at y = 1

For the steady-state case, the boundary conditions imply solutions of the form

m(x, y) =
∞∑
n=0

mn�n(x, y) (2a)

with

�n(x, y) = cos(nπx) cosh(γny) (2b)

and the differential equation implies

κxn
2π2 − κyγ

2
n = 0 whence γn = nπ

√
κx/κy (2c)

From the boundary conditions, the sources are

s(x) =
∑
n

sn�n(x,1) with sn = γn tanh(γn)mn

The mn ∼ sn/n attenuation illustrated here remains a common feature of the
problem of deducing surface sources from surface data as the diffusive model
is refined (Box 2.2) and also characterises realistic advective–diffusive models
[136, 132].

This model is of historical interest because of its early use (1963), averaged
over height and longitude, by Bolin and Keeling [37]. However, the greatest
importance of this model is that it gives a realistic estimate of the rate at which
information about small-scale details of the fluxes is attenuated by atmospheric
mixing.
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Box 1.3. Toy transport model C.1. An advective ‘atmosphere’

The model domain is fromx = 0 to x = 1 andy = 0 to y = 1. The transport is
purely advective and is expressed as a time-varying stream function:

χ = sin(πy) [sin(2πx)+ α sin(πx) cos(ωt)] (1)

This represents a system of two counter-rotating cells with a time-varying modu-
lation of the relative sizes of the cells.
The transport in this system is not amenable to analytical solution – indeed the

purpose of this toy model is to illustrate how simple time-varying flow fields can
lead to chaotic transport of matter.
The stream function,χ (x, y), defines the velocity components as

vx = ∂χ

∂y
= π cos(πy) [sin(2πx)+ α sin(πx) cos(ωt)] (2a)

vy = −∂χ

∂x
= −π sin(πy) [2 cos(2πx)+ α cos(πx) cos(ωt)] (2b)

This transport formalism can be used in two ways, either in a Lagrangian mode
to advect individual particles with velocity [vx, vy] or in an Eulerian mode to
describe the evolution of a concentration field,m(x, y, t), as

∂

∂t
m(x, y, t) = − ∂

∂x
(vxm)− ∂

∂y
(vym) = ∂χ

∂x

∂m

∂y
− ∂χ

∂y

∂m

∂x
(3)

C. Atmospheric transport modelled by advective-stirring.This is also
presented as a continuum view of the atmosphere. The transport representation
is the opposite of that in model B: model C is purely advective, whereas model
B is purely diffusive. The role of model C is to explore the statistics of chaotic
processes and the conditions under which chaotic transport can appear as
diffusive.

D. Statistics of ‘signal plus noise’.These models are used to illustrate the
underlying statistical principles. The common framework is one of a
deterministic signal plus random noise. The standard problem is that of
estimating the signal in the presence of the noise. Initially the ‘signal’
is simply a mathematical function. Later refinements of the model
incorporate deterministic components specified by the ‘toy’ transport
models.

E. Toy chemistry.This is a ‘whole-atmosphere’ representation of the
CH4–CO–OH balance, with lumped production/loss rates characterising all
other reactions.
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Box 1.4. Toy statistical model D.1. Linear trend plus white noise

The sequence of statistical models is of the general form signal plus noise. We
start withN data values,cn for n = 1 toN modelled with a simple signal: a linear
trend and simple noise: independent normally distributedwhite noise,εn, with zero
mean and known variance,Q. Thus the statistical model is

cn = α + nβ + εn (1)

with E[εn] = 0 andE[(εn)2] = Q.
Ordinary least-squares (OLS) estimates ofα andβ are obtained by minimising

JOLS =
∑

(cn − α − nβ)2 (2)

giving the estimates

α̂ =
∑
(n2)

∑
cn − ∑

n
∑
(ncn)

N
∑
(n2)− (

∑
n)2

(3a)

β̂ = N
∑
(ncn)−

∑
n

∑
cn

N
∑
(n2)− (

∑
n)2

(3b)

Using (1), these can be rewritten as

α̂ = α +
∑
(n2)

∑
εn − ∑

n
∑
(nεn)

N
∑
(n2)− (

∑
n)2

(4a)

β̂ = β −
∑
n

∑
εn − N

∑
(nεn)

N
∑
(n2)− (

∑
n)2

(4b)

which emphasises that, once the data are modelled as random variables, estimates
derived from these data will also be random variables. Since theεn have zero
mean and appear linearly in (4a) and (4b), the estimates ˆα andβ̂ are unbiased, i.e.
E[α̂] = α andE[β̂] = β, whereE[.] denotes the mean over the error distribution,
i.e. the expected value averaging over an arbitrarily large ensemble of realisations
of the random noise process,εn.
Equations (4a) and (4b) also give the starting point for calculating the variance

of these estimates asE[(α̂ − α)2] andE[(β̂ − β)2] (problem 2 of this chapter) as
well as the covariance,E[(α̂ − α)(β̂ − β)].
This regression can also be solved by a recursive technique that goes back

to C. F. Gauss [525]. This is a special case of the Kalman filter (see equations
(11.2.3a)–(11.2.3c) and Box 4.4).
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Box 1.5. Toy chemistry model E.1

Several workers have used highly simplified models of the major balance of tropo-
spheric chemistry amongmethane (CH4), carbonmonoxide (CO) and the hydroxyl
radical (OH). These were expressed in terms of the global totals,mCH4, mCO and
mOH of CH4, CO and the OH radical. Several of the models are special cases of
the general form

d

dt
mCH4 = −k1mCH4mOH − λCH4mCH4 + SCH4 (1a)

d

dt
mCO = −k2mCOmOH + ζk1mCH4mOH − λCOmCO+ SCO (1b)

d

dt
mOH = −k′

1mCH4mOH − k′
2mCOmOH − λOHmOH + SOH (1c)

wherek1 andk2 are the rate constants for the reactions for oxidation (by OH) of
CH4 and CO, respectively, and usingk′

1 = k1/ξ andk′
2 = k2/ξ allowsmOH to be

expressed in mm−3 and equation (1c) to have time units of seconds. The factorζ

represents the proportion of oxidation of CH4 that generates CO. For CH4, CO and
OH, SCH4, SCO andSOH are the respective rates of production andλCH4, λCO and
λOH are the respective loss rates, in each case excluding the reactions described
by k1 andk2. Because of its very short lifetime, the concentration of OH can be
treated as being in a steady state defined by

mOH = SOH
λOH + k′

1mCH4 + k′
2mCO

(2)

Guthrie [186] considered the caseζ =1,λOH = λCO = 0 and found that the system
was unstable unless 2SCH4 > (ξSOH − SCO) > 0.
Prather [366] considered the caseλCH4 = λCO=0, ζ =1 in his analysis of ad-

justment times for methane perturbations.
Krol and van der Woerd [265] considered the caseλOH = 0 andζ = 0.8, with

SCO including indirect sources from non-methane hydrocarbons.
The units that we use for numerical examples generally follow those used

in the IMAGE-2 description [265], time is in years, so that theλη are in yr−1.
The concentrationsmCH4 andmCO are in ppm while, unlike the IMAGE units,
we usemOH in mm−3. Thus k1 and k2 are in mm3 yr−1. The sources are ex-
pressed as in IMAGE in terms of emissions in mass units per year multiplied
by conversion factors of 0.202× 10−3 ppm/(Tg CO) and 0.353× 10−3 ppm/
(Tg CH4).
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Further reading

As I noted in the preface, one of the joys and difficulties of studying biogeochemical
cycles is the need to know about so many fields of science. The following list of
suggested reading reflects my own experience of what has been useful. In most cases
the references are chosen for depth rather than breadth.

Atmospheric chemistry.A comprehensive account of atmospheric chemistry has
recently been produced by Brasseuret al. [51]. Although inverse problems are
given only a brief discussion, many of the chapters parallel some of the
‘background’ sections of the present book. In particular, the chapter
Atmospheric dynamics and transport[168] gives an account that goes well
beyond the overview in Chapter 2,Observational methods[301] expands on
Section 5.1 andModeling[50] goes beyond Chapter 2. Additional overview
accounts of atmospheric chemistry are given in the IPCC assessments
[369, 370] and WMO ozone assessments [516].

Atmospheric circulation and dynamics.There are many books. For the
purposes of understanding tracer distributions, that of James [230] gives a good
balance between the description of the circulation and the dynamical processes
that cause it. The books by Holton [212], Gill [177] and Green [184] are
notable examples of books on dynamical meteorology.

Bayesian statistics.The classic textbook on Bayesian estimation is Box and Tiao
[47]. As an older book, Jeffreys [231] has the interest of being written from a
more defensive position, taking note of the foundations of mathematics and
theories of knowledge. It justifies the Bayesian formalism as being that which
answers the questions that scientists actually ask. Tarantola [471] takes the
Bayesian approach as a necessary ‘given’ and extends the formalism
(see Box 12.1).

Biogeochemical cycles.Schlesinger [424] reviews biogeochemistry firstly in
terms of processes and then by considering the respective cycles of water,
carbon, nitrogen, phosphorus and sulfur. Broecker and Peng [54] consider the
carbon cycle with an emphasis on the role of the oceans. Lovelock [292]
introduced an entirely different perspective with his ‘Gaia hypothesis’,
proposing that the biogeochemical system is self-regulating, with living
organisms acting to provide negative feedbacks that maintain the earth in
conditions suitable for maintaining life.

Carbon cycle.The global carbon cycle is an active area of research, since CO2 is
the most important of the anthropogenic greenhouse gases. The assessments by
the Intergovernmental Panel on Climate Change (IPCC) include assessments
of the state of science for the greenhouse gases. CO2 and the carbon cycle have
been reviewed in the Radiative Forcing Report [422] and, most recently, in the
Third Assessment Report [371]. Several volumes from ‘summer schools’, e.g.
[200, 507], provide valuable introductions to the field.
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Computer programming. Computer-programming techniques have evolved
considerably since the days when I initially trained in Fortran and Cobol. I
have found Michael Jackson’s book [225] to give a lot of valuable concepts
about program structure. In addition,Elements of Programming Style[255]
gives a number of rules (with informed justification), of which my favourite is
‘Make it right before you make it faster’.

Earth-system modelling.The ‘earth-system’ view goes back at least to the
NASA report [334]. Harvey [198] has written a textbook that uses simple
modelling to quantify influences contributing to global change. Integrated
assessment models tend to include at least the faster-acting components of the
earth system, although often in a highly parameterised manner. The IMAGE
model volume [4] describes one such model. The volume by Martens and
Rotmans [306] covers both model formulations and the implications of
model-based decision making.

Inverse problems.For a comprehensive presentation of the mathematical
formulation of inverse problems, Tarantola’s book [471] stands out. In the
same way as that in which all western philosophy has been described as
footnotes to Plato, the whole of the present book can be regarded as footnotes
to Tarantola – identifying the specific quantities to insert into one or other of
Tarantola’s estimation techniques to solve a biogeochemical inverse problem.

Numerical techniques.The bookNumerical Recipesby Presset al. [373] has
become extremely popular and editions are now available for Fortran-77, C,
Pascal and Fortran-90. In this case, the coverage reflects breadth rather than
depth. For depth, the ‘references therein’ provide a starting point. There has
been a series of discussions on the internet, criticising the quality of some of
the algorithms. My overall assessment is that, generally, using a ‘numerical
recipe’ is better for a non-specialist than writing your own routine from an
abstract mathematical formulation. Certainly they should be adequate for the
exercises in this book. For problems that are large, or otherwise difficult,
routines from a specialised mathematical subroutine library may be needed.
Acton’s book [1]Numerical Methods That Workgives advice on pitfalls in
some common calculations. For the specific area of numerical optimisation
applied to inverse problems, Tarantola [471] describes the main algorithms.

Time-series analysis.There are many books on time-series analysis. Priestley’s
book [374] stands out for comprehensiveness, although achieving such
coverage in ‘only’ 890 pages makes for a generally compact presentation. Even
within the field of atmospheric science, there are many books on time-series
analysis; that by von Storch and Zwiers [455] is both comprehensive and
recent. In the specialized area of Kalman filtering Gelb’s book [173] is a
classic. Young’s book [525] is also a good introduction to recursive estimation.

Spatial statistics.Cressie’s book [84] is the best general reference that I know of
for spatial statistics. Techniques relevant to climate research are covered by
von Storch and Zwiers [455]. Kagan [238] describes the statistical aspects of
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averaging observational data. Mandelbrot [300] provides something entirely
different. First, there is the style (which he describes as a scientific essay:
dealing with a subject from a personal point of view). Secondly, there was the
highly innovative topic of self-similar probability distributions (fractals), with
arguments for the ubiquity of such distributions in nature.

Atmospheric tracer inversion.Writing this book was motivated by the lack of
books covering this field. There are, however, some review papers: Mulquiney
et al. [331] give a summary of the main inversion techniques, with a little
background on applications; Prinn and Hartley [376] concentrate on state-space
modelling; and Heimann and Kaminski [203] give a more recent overview. The
AGU monograph [244] from the Heraklion workshop contains a number of
articles that review particular inversion techniques [375, 133, 176, 429, 97, 58,
20, 449]. In addition there are several other descriptions that focus on
applications of tracer inversion [430, 460, 356]. The present book grew from
my own contribution to the Heraklion conference [133]. My aims in writing
this book have been the following: to achieve a more unified presentation; to
emphasise the inversions as problems in statistical estimation; and to explore
the boundaries of current practice as a guide to possible future developments.

Others.A number of other books are important references for topics less closely
related to tracer inversions. Morganet al. [324] discuss uncertainty, including
aspects of uncertainty that have little relevance to atmospheric science but very
great relevance to policy-related analyses. Daley’s book gives a comprehensive
coverage of the assimilation of meteorological data into operational
weather-forecasting models [94]. Trenberth’s account of climate modelling
[485] is a comprehensive introduction. TheConcise Encyclopedia of
Environmental Systems[526] is a useful reference to a range of statistical
techniques.

Applied mathematics.Finally, in the case of ‘applied mathematics’, rather than
selecting particular books, I will try to identify the level of mathematics
required. The key requirements are a knowledge of vectors and matrices, the
calculus of vector fields and an understanding of probability distributions.

In most cases, additional suggestions for further reading are given at the ends of
the chapters.

Notes on exercises

Exercises illustrating various aspects of the presentation are included at the end of
each of Chapters 1–13, i.e. those chapters dealing with techniques. Many of them are
mathematical in nature. For those that require numerical values, Appendix B gives
values of real-world constants and toy-model parameters. It also gives information
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about electronic access to observed concentration data and emission inventories. Other
exercises involve writing simple computer programs, particularly to implement the
Kalman filter, at least for the special case of recursive regression (see Box 4.4). Other
useful generic components are a Monte Carlo inversion unit and a singular-value-
decomposition (SVD) routine.Routines forSVD (and its use in regressionanalysis) are
included inNumericalRecipes[373] and theseversionsare included in IDL (Interactive
Data Language, from Research Systems Inc.). In a class situation, instructors may be
able to provide such components.

Exercises for Chapter 1

1. By how much does the annual burning of 6 Gt (1 Gigatonne=1015 g) of fossil
carbon change the mass of the atmosphere if 50% of the carbon remains in the
atmosphere and the rest is taken up by the oceans?

2. Use the expressions in Box 1.4 to obtain an expression (valid for largeN) for
the variance of the estimated trendβ, in terms ofR, the variance of theεn. How
much does this change if (as is suggested for monthly mean CO2 data – see
Section 5.4.3) the covariance of consecutive errors isR/2?

3. (Numerical problem, no solution given) Write a computer program (preferably
with graphical display) to implement two or more particles advected according
to toy model C.1 of Box 1.3. Note the pattern of residence times in each
hemisphere. If multiple colours can be displayed, simulate the evolution of an
initial colour gradient.




