

Author index

References to the list of references are not made, and names associated with concepts, such as Bohr radius, Bessel functions, Schrödinger equation, etc., are not mentioned. As regards N. Fröman and P. O. Fröman references are made only to Chapter 1.

Abawi, A. T., 115 Ford, K. W., 11, 52 Abramowitz, M., 157 Fowler, R. H., 6, 7 Fröman, N., in Chapter 1: 1, 9-11 de Alfaro, V., 10 Fröman, P. O., in Chapter 1: 1, 3, 9-11 Amaha, A., 46 Fubini, S., 14 Andersson, N., 31 Fulling, S. A., 15 Bateman, H., 8 Furlan, G., 14 Berry, M. V., 9 Furry, W. H., 8, 10 Bertocchi, L., 14 Birkhoff, G. D., 5, 6, 8 Gallop, E. G., 6 Blumenthal, O., 5 Gans, R., 1, 6, 7 Braun, G., 11 Glaser, W., 11 Brillouin, L., 7, 8 Good, Jr, R. H., 147 Broer, L. J. F., 14 Green, G., 3-5, 7 Gustafson, S.-Å., 170 Campbell, J. A., 16, 17 Carlini, F., 1–5, 7 ter Haar, D., 139 Cauchy, A. L., 4 Heading, J., 9, 11 Cherry, T. M., 11 Hill, D. L., 11, 52 Child, M. S., 48 Hökback, A., 31, 166, 171 Choi, S., 10 Horn, J., 5-7 Cole, M. W., 147 Connor, J. N. L., 52 Jacobi, C. G. J., 4 Jedrzejek, C., 171 Jeffreys, H., 1, 6–10, 76, 81 Copson, E. T., 93, 94 Dagens, L., 10 Damburg, R. J., 197 Karlsson, F., 3, 10, 166, 170, 171 Dammert, Ö., 14, 15, 17, 203 Kemble, E. C., 8, 9 Dashen, R. F., 115 Koch, P. M., 197 Debye, P., 3 Kolosov, V. V., 197 Delves, L. M., 10 Kramers, H. A., 1, 3, 7, 8 Dingle, R. B., 9 Kraus, L., 115 Düring, M., 152, 166 Krieger, J. B., 10, 142 Encke, J. F., 4 Lagrange, J. L., 4 Erdélyi, A., 11 Lamb, H., 5, 7 Langer, R. E., 9 Larsson, K., 18, 140, 142 Fedoriuk, M. V., 11 Flügge, S., 139 Levine, H., 115

209

210

Author index

Levine, L. M., 115 Lindahl, S., 170 Linnæus, S., 152, 166, 171 Liouville, J., 3, 4 Lock, C. N. H., 6 Luke, Y. L., 89, 159 Lundborg, B., 11, 20, 26, 28, 36, 47, 51, 52, 58, 180

Maslov, V. P., 11 Maxwell, J. C., 6 McHugh, J. A. M., 1 Messiah, A., 14 Mount, K. E., 9 Myhrman, U., 11, 48, 185

Olver, F. W. J., 8, 10

Paulsson, R., 11, 48, 166, 171, 185

Rayleigh, Lord (J. W. Strutt), 1, 5–7 Regge, T., 10 Richmond, W. H., 6 Rosenzweig, C., 10, 142 Ross, J., 10 Scheibner, W., 4, 5 Schlesinger, L., 5, 6 Schlissel, A., 1 Siebert, E., 10 Silverstone, H. J., 9, 100, 197 Skorupski, A. A., 16 Soop, M., 52 de Sparre, M., 5, 6 Stegun, I. A., 157 Streszewski, M., 171

Thidé, B., 152, 166 Truesdell, C., 8

Swirles Jeffreys, B., 8

Wakano, M., 11, 52 Walles, E., 166, 171 Wentzel, G., 7, 8 Wheeler, J. A., 11, 52, 147

Yngve, S., 3, 10, 35, 131, 133, 152, 166, 171

Zwaan, A., 8, 9

Subject index

a-coefficients, 23	complex amplitude, 13
associated with Airy functions, 94-6	complex barrier, definition of, 171
change of, 24, 30	complex energy, 192
differential equation for, 23	complex phase, 13
in expression for exact wave function, 23	compound symbol for tracing solutions in the
integral equation for, 24	complex plane, 29–31
Airy differential equation solution represented at a	orientation of, 30–1
fixed point by a pure phase-integral function,	traffic rules for, 30–1
98–102	compressed atom, see displacement of energy levels
α , see parameters α , β and γ	connection formula,
amplitude and phase of wave function,	associated with
complex, 13	complex barrier, 171–81
relation between, 12–14	real barrier, 49–53, 181–5
anti-Stokes lines, see Stokes and anti-Stokes lines	transition zero in the complex plane, 72, 73
	turning point on the real axis, 10, 75–6, 80–1
base function, 14	derived by comparison equation technique, 85, 88
choice of, 18–19, 60–2	derived for the Airy differential equation, 102–4
that makes quantization condition exact, 140-1	disregard of one-directional nature of
that makes the phase-integral approximation valid	yielding correct result, 136
close to the origin and the radial phase shift	yielding erroneous result, 76–7, 81–2, 100,
equal to zero for free particle, 60-2, 121, 123	102–3, 104, 137, 185
determination of, 15, 17–19, 60–2	for tracing s-electron wave function away from the
non-uniqueness of, 18	origin, where there is a strong Coulomb
basic estimates of F-matrix elements, 26–7	singularity, 159–60
β , see parameters α , β and γ	one-directional nature of, 9, 77–9, 81–2
black-hole normal modes, 31	demonstrated for Airy differential equation,
bookkeeping parameter, 15	78–9, 102–4
Borel summation of JWKB expansions, 100	connection problem,
	formulation of, 22
Carlini approximation, 8, 21	importance of precise formulation of, 9, 22
classical turning point, definition of in generalized	in condensed mathematical form, 22, 24
sense, 35	rigorous method for mastering, 9, 22
classically allowed region in generalized sense, 35	contour integral, 19
classically forbidden region,	short-hand notation for, 20
in generalized sense, 35	
of infinite thickness, 187, 188	Debye's asymptotic formula, derived by
coefficient function $R(z)$, 47	Carlini, 3
comparison equation technique, 83-8	modern phase-integral technique, 3
Stokes constants obtained by means of, 11	determination of potential from
supplementary quantity ϕ for complex barrier	energy spectrum of particle in one-dimensional
obtained by means of, 51, 180	single-well potential, 142–4
supplementary quantity $\tilde{\phi}$ for real barrier obtained	energy spectrum of particle in radial single-well
by means of, 47, 51–2	potential, 144–50

212 Subject index

determination of potential from (cont.) energy dependence of transmission coefficient of barrier, 147	Kramers' modification of first-order WKB approximation, 3, 7, 8
energies and widths of quasi-stationary states, 147 differential equation,	local problem, 21
auxiliary, 15, 163	matrix element,
original, 15, 163	phase-integral formulas for, not involving wave
displacement of energy levels due to	functions, 10, 170
change of boundary condition (compressed atom),	great accuracy of, 170–171
130–5	μ -integral, definition of, 27, 41, 42
omission of parameter β , 135, 191–2 distance between nearlying energy levels, 123–5, 127,	normalization factor armassed in terms of frequency
132–3, 135, 192	normalization factor expressed in terms of frequency of oscillation, 155
double-well potential,	normalization integral, formula for, not involving
general, quantization condition for, 189–90	wave function, 10
symmetric, quantization condition for, 190-1	exact formula, 152
	phase-integral formula, 154
ε , definition of, 23	normalized wave function, 155
ε_0 , definition of, 15	
expectation value formula, not involving wave	one-directional nature of connection formulas, see
function, 10	connection formula
exact formula, 164	Podá approximent 107
phase-integral formula, 165 explanation of its unexpectedly high accuracy, 166	Padé approximant, 197 parameterization of <i>F</i> -matrix connecting points on
for kinetic energy, 168	opposite sides of turning point, 39
some cases in which it is exact in first order, 166–7	power and limitation of, 45–6
	procedure for use of, 46
F-matrix,	parameters α , β and γ ,
connecting points on opposite sides of turning	associated with Airy differential equation, 97-8
point, 35–8	changes of, 41–2
expressed in terms of parameters α , β and γ , 39	definition of, 39
corresponding to encircling of simple transition	estimates of, 39
zero, 26 definition of, 24–5	limiting values of, 43
dependence of on lower limit of integration in the	relations between parameters associated with turning points of symmetric barrier, 114
phase integral, 33	situations in which γ remains in final phase-integral
determinant of, 25	formula, 76–7, 81–2, 110–11, 137
differential equation for, 25	phase and amplitude of wave function, see amplitude
elements,	and phase of wave function
basic estimates of, 26–7	phase of wave function,
explicit expressions for, 24–5	change of due to change of boundary condition,
exact solution expressed with use of, 23–4	107, 108–13, 120–1
expressed in terms of two solutions of the	on opposite sides of symmetric barrier, 108–13
differential equation, 34 for simplest non-monotonic path, 28	phase integral <i>w</i> (<i>z</i>), 12–13, multi-dimensional, 11
general procedure for use of, 27–8	replaced by contour integral, 19–20
general relations satisfied by, 25	short-hand notation for, 20
given by convergent series, 24–5	three-dimensional, 11
inversion formula for, 25	phase-integral approximation generated from
method for mastering connection problems, 14, 22	unspecified base function, 10, 13–17
multiplication rule for, 25	advantages of compared to WKB approximation,
symmetry relations for, 25–6, 37	13–15, 17–18, 20–1, 23, 142
form of wave function, 12	phase-integral functions $f_1(z)$ and $f_2(z)$, 22
γ , see parameters α , β and γ	associated with Airy differential equation, 93 constant Wronskian of, 23
global problem, 21	differential equation for, 23
5.00m p.0010m, 21	phase integrand $q(z)$, 10, 13
Hamilton–Jacobi equation, 7	asymptotic, 13
Hellmann–Feynman formula, 164	exact, 13
·	simple zeros of in neighbourhood of transition
Jeffreys' connection fomulas, 8	zero, 17

Subject index

213

phase-shift formula, 121–3 Planck's constant not always useful as small	Stokes and anti-Stokes lines, definition of, 28, 63
parameter, 15 potential, auxiliary, 163 potential barrier,	emerging from transition point of odd order, definition of, 29, 70, 171 orthogonality of, 28
complex,	simple and double arrows on, 29, 31
definition of, 171	Stokes constants associated with,
connection formula for, 178, 181	complex barrier, 171–5
real,	simple transition zero, 69–71
connection formula for, 49, 52-3, 183-5	simplest non-monotonic path, 28
Eckart–Epstein, 199	Stokes phenomenon, 21
erroneous connection matrix for, 185	rigorous method for mastering, 22
probability density at the origin for s-electron,	supplementary quantity
163	ϕ associated with complex single-hump barrier, 11
properties of phase-integral approximation along anti-Stokes line, 66	formulas for, obtained by comparison equation technique, 51, 180
path of strict monotonicity, in particular Stokes	$\tilde{\phi}$ associated with real single-hump barrier, 11, 47
line, 66–9	formulas for, 51–2, 184–5
,	symmetry relations for <i>F</i> -matrix elements, 25–6,
q-equation,	36–7
auxiliary, 15	
original, 13, 15	tracing of wave function,
quantization condition,	along anti-Stokes line, 66
for particle in	along path of strict monotonicity, in particular
general double-well potential, 189–90 potential with very steep walls, 140–2	Stokes line, 66–9 rule of thumb for, 68–9
single-well potential, 115–17, 126–7, 130, 132,	traffic rules for vehicle consisting of compound
135, 138–9, 140–1, 162	symbol, 30–1
symmetric double-well potential, 190–1	transition point,
for s-electron in potential with strong Coulomb	definition of, 66
singularity, 162	transition zero,
obtained exactly by determination of base function	definition of, 72
such that higher-order contributions vanish,	simple zeros of phase integrand $q(z)$ in
140–2	neighbourhood of, 17
optimized in first-order approximation by requiring that first- and third-order results coincide, 142	transmission coefficient for real Eckart–Epstein barrier, 199
related to scattering of waves by elliptic cone,	parabolic barrier, 199–200
115–17	single-hump barrier, 54, 198
quasi-stationary state,	obtained accurately in higher-order
boundary condition for, 30–2, 193	approximation also for thin barrier, 199
half-width of, 196	symmetric double-hump barrier, 203–4
quantization condition for, 195	turning point,
Destrict Calculation and the state of the same 107	definition of, 35
Rayleigh–Schrödinger perturbation theory, 197 reflectionless potential, 62–3	in generalized sense, 35 well-isolated, 35
removal of boundary condition for quasi-stationary	well-isolated, 33
state from real axis to anti-Stokes line, 30–2	value of normalized s-electron wave function at the
resonances, 57	origin, 163
displacement of due to omission of small quantity, 58	value of wave function at turning point, 85, 88 accuracy of formulas for, 88–91
rule of thumb for tracing phase-integral solution	vehicle consisting of compound symbol, 30
along path of strict monotonicity, in particular	traffic rules for, 30–1
Stokes line, 68–9	virial theorem, 168–9
Rydberg–Klein–Rees procedure, 147	
	wave function,
scattering of waves by elliptic cone, 115 splitting of energy levels, <i>see</i> distance between	for <i>s</i> -electron in radial potential with strong Coulomb singularity, 159–60
nearlying energy levels	on opposite sides of real barrier, 49, 52–7
Stark effect of hydrogen atom treated by	on opposite sides of turning point, 43–5
phase-integral method, great	represented by phase-integral approximation along
accuracy of, 196–7	anti-Stokes line, 66

214

Subject index

wave function (*cont.*)
represented by phase-integral approximation along path of strict monotonicity, in particular Stokes line, 66–9
wave function associated with real barrier, 49, 52–3, 183–5
change of phase and amplitude of on one side of the barrier due to change of phase on the other side of the barrier, 55–6
given as outgoing wave, 53
given as standing wave, 54–6

phase of, when its logarithmic derivative is given in middle of symmetric barrier, 110–11 resonance structure of, 57
WKB approximation, inadequacy of the name, 8 relation to earlier known results, 2–7
WKB functions, deficiences of, 13, 23
Wronskian of phase-integral functions, 12–14, 20, 23 importance of its constancy, 13–14
WKB functions, drawbacks of its non-constancy, 13, 23