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Foreword

Harmonic maps between Riemannian manifolds provide a rich display
of both differential geometric and analytic phenomena. These aspects
are inextricably intertwined — a source of undiminishing fascination.

Analytically, the problems belong to elliptic variational theory: har-
monic maps are the solutions of the Euler–Lagrange equation (section
1.2)

∆gu
i + gαβ(x)Γijk(u(x))

∂uj

∂xα
∂uk

∂xβ
= 0 (1)

associated to the Dirichlet integral (section 1.1)

E(u) =
∫
M

|du(x)|2
2

dvolg .

Surely that is amongst the simplest — and yet general — intrinsic
variational problems of Riemannian geometry. The system (1) is second
order elliptic of divergence type, with linear principal parts in diagonal
form with the same Laplacian in each entry; and whose first derivatives
have quadratic growth. That is quite a restrictive situation; indeed,
those conditions ensure the regularity of continuous weak solutions of
(1).
The entire harmonic mapping scene (as of 1988) is surveyed in the

articles [50] and [51].

2-dimensional domains

Harmonic maps u : M −→ N with 2-dimensional domains M present
special features, crucial to their applications to minimal surfaces (i.e. con-
formal harmonic maps) and to deformation theory of Riemann surfaces.
Amongst these, as they appear in this monograph:

ix
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x Foreword

(i) The Dirichlet integral is a conformal invariant of M. Conse-
quently, harmonicity of u (characterized via the Euler–Lagrange
operator associated to E) depends only on the conformal struc-
ture of M (section 1.1).

(ii) Associated with a harmonic map is a holomorphic quadratic dif-
ferential on M (locally represented by the function f of section
1.3).

(iii) The inequality of Wente. Qualitatively, that ensures that the Ja-
cobian determinant of a map u (a special quadratic expression
involving first derivatives of u) may have slightly more differen-
tiability than might be expected (section 3.1).

(iv) The C2 maps are dense in H1(M,N )†

To gain a perspective on the use of harmonic maps of surfaces, the
reader is advised to consult [48] and [116] for minimal surfaces and the
problem of Plateau. Applications to the theory of deformations of Rie-
mann surfaces can be found in [68] and [49]. The book [98] provides an
introduction to all these questions.

Regularity

A key step in Morrey’s solution of the Plateau problem is his

Theorem 1 (Morrey) Let M be a Riemann surface, and u : M −→ N
a map with E(u) < +∞. Suppose that u minimizes the Dirichlet integral
EB on every disk B of M (with respect to the Dirichlet problem induced
by the trace of u on the boundary of B). Then u is Hölder continuous.

In particular, u is harmonic (and as regular as the data permits).

The proof is based on Morrey’s Dirichlet growth estimate — related to
the growth estimates in section 3.5.
The main goal of the present monograph is the following result, giving

a definitive generalization of Theorem 1:

Theorem 2 (Hélein) Let (M, g) be a Riemann surface, and (N , h) a
compact Riemannian manifold without boundary. If u : M −→ N is a
weakly harmonic map with E(u) < +∞, then u is harmonic.

† See the proof of lemma 4.1.6 and [145].
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Foreword xi

That is indeed a major achievement, made some fifty years after Mor-
rey’s special case. Hélein first established his theorem in certain partic-
ular cases (N = Sn and various Riemannian homogeneous spaces); then
he announced Theorem 2 in [85]. That Note includes a beautifully clear
sketch of the proof, together with a description of the new ideas — an
absolute gem of presentation!

The high quality is maintained here:

Commentary on the text

First of all, the author’s exposition requires only a few formalities from
differential geometry and variational theory. Secondly, the pace is leisurely
and well motivated throughout.
For instance: chapter 1 develops the required background for har-

monic maps. The author is satisfied with maps and Riemannian metrics
of differentiability class C2; higher differentiability then follows from gen-
eral principles. Various standard conservation laws are derived. All that
is direct and efficient.
As a change of scene, chapter 2 is an excursion into the methods of

completely integrable systems, as applied to harmonic maps of a Rie-
mann surface into Sn (or a Lie group; or a homogeneous space), via
conservation laws. One purpose is to illustrate hidden symmetries of
Lax form (e.g. related to dressing action). Another is to provide motiva-
tions for the methods and constructions used in chapter 4 — especially
the role of symmetry in the range.
Chapter 3 describes various spaces of functions — Hardy and Lorentz

spaces, in particular — as an exposition specially designed for applica-
tions in chapters 4 and 5. Those include refinements and modifications
of Wente’s inequality; and come under the heading of compensation
phenomena — certainly delicate and lovely mathematics!
Chapter 4 is the heart of the monograph — as already noted. There

are two new steps required as preparation for the proof of theorem 2:

(i) Lemma 4.1.2, which reduces the problem to the case in which
(N , h) is a Riemannian manifold diffeomorphic to a torus.

(ii) Careful construction of a special frame field on (N , h) — called
a Coulomb frame. Equations (4.10) are derived, serving as some
sort of conservation law. When the spaces of Hardy and Lorentz
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xii Foreword

enter the scene, they produce a gain of regularity (see lemma
4.1.7).

Finally, in chapter 5 the methods of Coulomb frames and compensa-
tion techniques are applied to problems of surfaces in Euclidean spaces
whose second fundamental form or mean curvatures are square-integrable.

James Eells
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Introduction

The contemplation of the atlas of an airline company always offers us
something puzzling: the trajectories of the airplanes look curved, which
goes against our basic intuition, according to which the shortest path
is a straight line. One of the reasons for this paradox is nothing but
a simple geometrical fact: on the one hand our earth is round and on
the other hand the shortest path on a sphere is an arc of great circle:
a curve whose projection on a geographical map rarely coincides with a
straight line. Actually, choosing the trajectories of airplanes is a simple
illustration of a classical variational problem in differential geometry:
finding the geodesic curves on a surface, namely paths on this surface
with minimal lengths.
Using water and soap we can experiment an analogous situation, but

where the former path is now replaced by a soap film, and for the surface
of the earth — which was the ambient space for the above example —
we substitute our 3-dimensional space. Indeed we can think of the soap
film as an excellent approximation of some ideal elastic matter, infinitely
extensible, and whose equilibrium position (the one with lowest energy)
would be either to shrink to one point or to cover the least area. Thus
such a film adopts a minimizing position: it does not minimize the length
but the area of the surface. Here is another classical variational problem,
the study of minimal surfaces.
Now let us try to imagine a 3-dimensional matter with analogous prop-

erties. We can stretch it inside any geometrical manifold, as for instance
a sphere: although our 3-dimensional body will be confined — since
generically lines will shrink to points — it may find an equilibrium con-
figuration. Actually the mathematical description of such a situation,
which is apparently more abstract than the previous ones, looks like
the mathematical description of a nematic liquid crystal in equilibrium.

xiii
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xiv Introduction

Such a bulk is made of thin rod shaped molecules (nema means thread
in Greek) which try to be parallel each to each other. Physicists have
proposed different models for these liquid crystals where the mean ori-
entation of molecules around a point in space is represented by a vector
of norm 1 (hence some point on the sphere). Thus we can describe the
configuration of the material using a map defined in the domain filled
by the liquid crystal, with values into the sphere. We get a situation
which is mathematically analogous to the abstract experiment described
above, by imagining we are trying to imprison a piece of perfectly elastic
matter inside the surface of a sphere. The physicists Oseen and Frank
proposed a functional on the set of maps from the domain filled with
the material into the sphere, which is very close to the elastic energy of
the abstract ideal matter.

What makes all these examples similar (an airplane, water with soap
and a liquid crystal)? We may first observe that these three situations
illustrate variational problems. But the analogy is deeper because each
of these examples may be modelled by a map (describing the deformation
of some body inside another one) which maps a differential manifold into
another one, and which minimizes a quantity which is more or less close
to a perfect elastic energy. To define that energy, we need to measure the
infinitesimal stretching imposed by the mapping and to define a measure
on the source space. Such definitions make sense provided that we use
Riemannian metrics on the source and target manifolds.
Let M denote the source manifold, N the target manifold and u a

differentiable map from M into N . Given Riemannian metrics on these
manifolds we may define the energy or Dirichlet integral

E(u) =
1
2

∫
M

|du|2dvol,

where |du| is the Hilbert–Schmidt norm of the differential du of u and
dvol is the Riemannian measure on M. If we think of the map u as the
way to confine and stretch an elastic M inside a rigid N , then E(u)
represents an elastic deformation energy. Smooth maps (i.e. of class C2)
which are critical points of the Dirichlet functional are called harmonic
maps. For the sake of simplicity, let us assume that N is a submanifold
of a Euclidean space. Then the equation satisfied by a harmonic map is

∆u(x) ⊥ Tu(x)N ,
where ∆ is the Laplacian on M associated to the Riemannian metric,
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Introduction xv

and Tu(x)N is the tangent space to N at the point u(x). For differ-
ent choices on M and N , a harmonic map will be a constant speed
parametrization of a geodesic (if the dimension of M is 1), a harmonic
function (if N is the real line) or something hybrid.
It is possible to extend the notion of harmonic maps to much less

regular maps, which belong to the Sobolev space H1(M,N ) of maps
from M into N with finite energy. The above equation is true but only
in the distribution sense and we speak of weakly harmonic maps.
Because of the simplicity of this definition, we can meet examples of

harmonic maps in various situations in geometry as well as in physics.
For example, any submanifold M of an affine Euclidean space has a
constant mean curvature (or more generally a parallel mean curvature)
if and only if its Gauss map is a harmonic map. A submanifold M of
a manifold N is minimal if and only if the immersion of M in N is
harmonic. In condensed matter physics, harmonic maps between a 3-
dimensional domain and a sphere have been used as a simplified model
for nematic liquid crystals. In theoretical physics, harmonic maps be-
tween surfaces and Lie groups are extensively studied, since they lead
to properties which are strongly analogous to (anti)self-dual Yang–Mills
connections on 4-dimensional manifolds, but they are simpler to handle.
In such a context they correspond to the so-called σ-models. Recently,
the interest of physicists in these objects has been reinforced since their
quantization leads to examples of conformal quantum field theories —
an extremely rich subject. In some sense the quantum theory for har-
monic maps between a surface and an Einstein manifold (both endowed
with Minkowski metrics) corresponds to string theory (in the absence of
supersymmetries). Other models used in physics, such as the Skyrme
model, Higgs models or Ginzburg–Landau models [12], show strong con-
nections with the theory of harmonic maps into a sphere or a Lie group.
Despite their relatively universal character, harmonic maps became

an active topic for mathematicians only about four decades ago. One
of the first questions was motivated by algebraic topology: given two
Riemannian manifolds and a homotopy class for maps between these
manifolds, does there exist a harmonic map in this homotopy class? In
the case where the sectional curvature of the target manifold is negative,
James Eells and Joseph Sampson showed in 1964 that this is true, using
the heat equation. Then the subject developed in many different direc-
tions and aroused many fascinating questions in topology, in differential
geometry, in algebraic geometry and in the analysis of partial differential
equations. Important generalizations have been proposed, such as the
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xvi Introduction

evolution equations for harmonic maps between manifolds (heat equa-
tion or wave equation) or the p-harmonic maps (i.e. the critical points of
the integral of the p-th power of |du|). During the same period, and es-
sentially independently, physicists also developed many interesting ideas
on the subject.

The present work does not pretend to be a complete presentation of
the theory of harmonic maps. My goal is rather to offer the reader an
introduction to this subject, followed by a communication of some recent
results. We will be motivated by some fundamental questions in analy-
sis, such as the compactness in the weak topology of the set of weakly
harmonic maps, or their regularity. This is an opportunity to explore
some ideas and methods (symmetries, compensation phenomena, the use
of moving frames and of Coulomb moving frames), the scope of which
is, I believe, more general than the framework of harmonic maps.

The regularity problem is the following: is a weakly harmonic map u
smooth? (for instance if N is of class Ck,α, is u of class Ck,α, for k ≥ 2,
0 < α < 1?). The (already) classical theory of quasilinear elliptic partial
differential equation systems ([117], [103]) teaches us that any continuous
weakly harmonic map is automatically as regular as allowed by the the
regularity of the Riemannian manifolds involved. The critical step is
thus to know whether or not a weakly harmonic map is continuous.
Answers are extremely different according to the dimension of the source
manifold, the curvature of the target manifold, its topology or the type
of definition chosen for a weak solution.
The question of compactness in the weak topology of weakly harmonic

maps is the following problem. Given a sequence (uk)k∈N of weakly har-
monic maps which converge in the weak topology of H1(M,N ) towards
a map u, can we deduce that the limit u is a weakly harmonic map?
Such a question arises when, for instance, one wants to prove the ex-
istence of solutions to evolution problems for maps between manifolds.
This is a very disturbing problem: we will see that the answer is yes in
the case where the target manifold is symmetric, but we do not know
the answer in the general situation.

The first idea which this book stresses is the role of symmetries in
a variational problem. It is based on the following observation, due to
Emmy Noether: if a variational problem is invariant under the action
of a continuous group of symmetries, we can associate to each solution
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Introduction xvii

of this variational problem a system of conservation laws, i.e. one, or
several, divergence-free vector fields defined on the source domain. The
number of independent conservation laws is equal to the dimension of the
group of symmetries. The importance of this result has been celebrated
for years in theoretical physics. For example, in the particular case where
the variational problem involves one variable (the time) the conservation
law is just the prediction that a scalar quantity is constant in time
(the conservation of the energy comes from the invariance under time
translations, the conservation of the momentum is a consequence of the
invariance under translations in space. . . ). One of the goals of this book
is to convince you that Noether’s theorem is also fundamental in the
study of partial differential equations such as harmonic maps.
In a surprising way, the exploitation of symmetries for analytical pur-

poses is strongly related to compensation phenomena: by handling con-
servation laws, remarkable non-linear quantities (for an analyst) natu-
rally appear. The archetype of this kind of quantity is the Jacobian
determinant

{a, b} :=
∂a

∂x

∂b

∂y
− ∂a
∂y

∂b

∂x
,

where a and b are two functions whose derivatives are square-integrable
(i.e. a and b belong to the Sobolev space H1). Since Charles B. Morrey,
it is known that such a quantity enjoys the miraculous property of be-
ing simultaneously non-linear and continuous with respect to the weak
topology in the space H1; if aε and bε converge weakly in H1 towards
a and b, then {aε, bε} converges towards {a, b} in the sense of distribu-
tions. This is the subject of the theory of compensated compactness
of François Murat and Luc Tartar. Moreover the same quantity {a, b}
possesses regularity or integrability properties slightly better than any
other bilinear function of the partial derivatives of a and b. It seems that
this result of “compensated regularity” was observed for the first time by
Henry Wente in 1969. For twenty years this phenomenon was used only
in the context of constant mean curvature surfaces, by H. Wente and
by Häım Brezis and Jean-Michel Coron (further properties were pointed
out by these last two authors and also by L. Tartar). But more recently,
at the end of the 1980s, works of Stefan Müller, followed by Ronald Coif-
man, Pierre-Louis Lions, Yves Meyer and Stephen Semmes, shed a new
light on the quantity {a, b}, and in particular it was established that this
Jacobian determinant belongs to the Hardy space, a slightly improved
version of the space of integrable functions L1. All these results played
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xviii Introduction

a vital role in the progress which has been obtained recently in the reg-
ularity theory of harmonic maps, and are the companion ingredients to
the conservation laws.
The limitation of techniques which use conservation laws is that sym-

metric variational problems are exceptions. Thus the above methods are
not useful, a priori, for the study of harmonic maps with values into a
non-symmetric manifold. We need then to develop new techniques. One
idea is the use of moving frames. It consists in giving, for each point y
in N , an orthonormal basis (e1, . . . , en) of the tangent space to N at y,
that depends smoothly on the point y. This system of coordinates on the
tangent space TyN was first developed by Gaston Darboux and mainly
by Elie Cartan. These moving frames turn out to be extremely suitable
in differential geometry and allow a particularly elegant presentation of
the Riemannian geometry (see [37]). But in the problems with which we
are concerned, we will use a particular class of moving frames, satisfying
an extra differential equation. It consists essentially of a condition which
expresses that the moving frame is a harmonic section (a generalization
of harmonic maps to the case of fiber bundles) of a fiber bundle over M
whose fiber at x is precisely the set of orthonormal bases of the tangent
space to N at u(x). Since the rotation group SO(n) is a symmetry group
for that bundle and for the associated variational problem, our condition
gives rise to conservation laws, thanks to Noether’s theorem. We call
such a moving frame a Coulomb moving frame, inspired by the analogy
with the use of Coulomb gauges by physicists for gauge theories. The
use of such a system of privileged coordinates is crucial for the study of
the regularity of weakly harmonic maps, with values into an arbitrary
manifold. It leads to the appearance of these magical quantities similar
to {a, b}, that we spoke about before.

The first chapter of this book presents a description of harmonic maps
and of various notions of weak solutions. We will emphasize Noether’s
theorem through two versions which play an important role for harmonic
maps. In the (exceptional but important) case where the target manifold
N possesses symmetries, the conservation laws lead to very particular
properties which will be presented in the second chapter. But in con-
strast, there is a symmetry which is observed in general cases and which
is related to invariance under change of coordinates on the source man-
ifold M. It is not really a geometrical symmetry in general and it will
lead to some covariant version of Noether’s theorem: the stress–energy
tensor
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Introduction xix

Sαβ =
|du|2
2
gαβ −

〈
∂u

∂xα
,
∂u

∂xβ

〉
always has a vanishing covariant divergence. This equation has a conse-
quence which is very important for the theory of the regularity of weak
solutions: the monotonicity formula. In the case where there is a ge-
ometrical symmetry acting on M, some of the covariant conservation
laws specialize and become true conservation laws. One particular case
is when the dimension of M is 2, since then the harmonic map prob-
lem is invariant under conformal transformations of M, and hence the
stress–energy tensor coincides with the Hopf differential and is holomor-
phic. We end this chapter by a quick survey of the regularity results
which are known concerning weak solutions.
The second chapter is a suite of variations on the version of Noether’s

theorem which concerns harmonic maps with values into a symmetric
manifold N . We present various kinds of results but they are all con-
sequences of the same conservation law. If for instance N is the sphere
S2 in 3-dimensional space, we start from

div(ui∇uj − uj∇ui) = 0, ∀i, j = 1, 2, 3.

Using this conservation law, we will see that it is easy to exhibit the
relations between harmonic maps from a surface into S2, and surfaces
of constant mean curvature or positive constant Gauss curvature in 3-
dimensional space. We hence recover the construction due to Ossian
Bonnet of families of parallel surfaces with constant mean curvature
and constant Gauss curvature. Moreover, we can deduce from this
conservation law a formulation (which was probably discovered by K.
Pohlmeyer and by V.E. Zhakarov and A.B. Shabat) using loop groups,
of the harmonic maps problem between a surface and a symmetric man-
ifold. Such a formulation is a feature of completely integrable systems,
like the Korteweg–de Vries equation (see [150]). Many authors have used
this theory during the last decade in a spectacular way: Karen Uhlen-
beck deduced a classification of all harmonic maps from the sphere S2

into the group U(n) [174]. After Nigel Hitchin, who obtained all har-
monic maps from a torus into S3 by algebraico-geometric methods [94],
Fran Burstall, Dirk Ferus, Franz Pedit and Ulrich Pinkall were able to
construct all harmonic maps from a torus into a symmetric manifold
(the symmetry group of which is compact semi-simple) [24] and more
recently an even more general construction has been obtained by Joseph
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xx Introduction

Dorfmeister, Franz Pedit and HongYu Wu [46]. We will give a brief
description of some of these results.
In another direction, the same conservation law allows one to prove

in a few lines some analysis results such as the compactness in the weak
topology of the set of weakly harmonic maps with values into a sym-
metric manifold, or their regularity (complete or partial depending on
other hypotheses): we present the existence result for solutions to the
wave equation for maps with values in a symmetric manifold due to Jalal
Shatah, and my regularity result for weakly harmonic maps between a
surface and a sphere.
The third chapter, which is essentially devoted to compensation phe-

nomena and to Hardy and Lorentz spaces, brings very different ingredi-
ents by constrast with the previous chapter, but complementary. The
main object is the Jacobian determinant {a, b}. We begin by showing
the following result due to H. Wente: if a and b belong to the Sobolev
space H1(Ω,R), where Ω is a domain in the plane R

2, and if φ is the
solution on Ω of { −∆φ = {a, b} in Ω

φ = 0 on ∂Ω,

then φ is continuous and is in H1(Ω,R). Moreover, we can estimate the
norm of φ in the spaces involved as a function of the norms of da and
db in L2. Then we will discuss some optimal versions of this theorem
and its relations with the isoperimetric inequality and constant mean
curvature surfaces. Afterwards we will introduce Hardy and Lorentz
spaces and see how they can be used to refine Wente’s theorem. As an
illustration of these ideas, the chapter ends with the proof of a result
of Lawrence Craig Evans on the partial regularity of weakly stationary
maps with values into the sphere.
The fourth chapter deals with harmonic maps with values into mani-

folds without symmetry. We thus need to work without the conservation
laws which were at the origin of the results of chapter 2. For the regular-
ity problem we substitute for the conservation laws the use of Coulomb
moving frames on the target manifold N . Given a map u from M into
N , a Coulomb moving frame consists in an orthonormal frame field on
M which is a harmonic section of the pull-back by u of the orthonormal
tangent frame bundle on N (i.e. the fiber bundle whose base manifold
is M, obtained by attaching to each point x in M the set of (direct)
orthonormal bases of the tangent space to N at u(x)). Using to this
construction and the analytical tools introduced in chapter 3, we may
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Introduction xxi

extend the regularity results obtained in the two previous chapters, by
dropping the symmetry hypothesis on N : we prove my theorem on the
regularity of weakly harmonic maps on a surface, then a generalization
of it due to Philippe Choné and lastly the generalization of the result of
L.C. Evans proved in chapter 3, obtained by Fabrice Bethuel. Strangely,
we are not able to present a definite answer to the compactness problem
in the weak topology of the set of weakly harmonic maps. Motivated
by this question we end chapter 4 by studying the possibility of build-
ing conservation laws without symmetries. It leads us to “isometric
embedding” problems for covariantly closed differential forms, with co-
efficients in a vector bundle equipped with a connection. Such problems
look interesting by themselves, as this class of questions offers a hybrid
generalization of Poincaré’s lemma for closed differential forms, and the
isometric embedding problem for Riemannian manifolds.
The fifth chapter does not directly concern harmonic maps, but is

an excursion into the study of conformal parametrizations of surfaces.
The starting point is a result of Tatiana Toro which established the re-
markable fact that an embedded surface in Euclidean space which has a
square-integrable second fundamental form is Lipschitz. Soon after, Ste-
fan Müller and Vladimir S̆verák proved that any conformal parametriza-
tion of such a surface is bilipschitz. Their proof relies in a clever way
on the compensation results described in chapter 3 about the quantity
{a, b}, and on the use of Hardy space. We give here a slightly different
presentation of the result and of the proof of their result: we do not use
Hardy space but only Wente’s inequality and Coulomb moving frames.
More precisely, we study the space of conformal parametrizations of sur-
faces in Euclidean space with second fundamental form bounded in L2,
and we show a compactness result for this space. This tour will natu-
rally bring us to an amusing interpretation of Coulomb moving frames:
a Coulomb moving frame associated to the identity map from a surface
to itself corresponds essentially to a system of conformal coordinates.
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Notation

Ω will denote an open subset of R
m.

• Lp(Ω): Lebesgue space. For 1 ≤ p ≤ ∞, Lp(Ω) is the set (of equiv-
alence classes) of measurable functions f from Ω to R such that
||f ||Lp < +∞, where

||f ||Lp :=
(∫

Ω

|f(x)|pdx1...dxm
) 1

p

, if 1 ≤ p <∞,

||f ||L∞ := inf{M ∈ [0,+∞] | |f(x)| ≤M a.e.}.

• Lploc(Ω): space of measurable functions f from Ω to R such that for
every compact subset K of Ω, the restriction of f to K, f|K , belongs
to Lp(K).

• W k,p(Ω): Sobolev space. For each multi-index s = (s1, ..., sm) ∈ N
m,

we define |s| = ∑m
α=1 sα, and Ds =

∂|s|
(∂x1)s1 ...(∂xm)sm . Then, for k ∈ R

and 1 ≤ p ≤ ∞,

W k,p(Ω) := {f ∈ Lp(Ω) | ∀s, |s| ≤ k,Dsf ∈ Lp(Ω)}.

Here, Dsf is a derivative of order |s| of f , in the sense of distributions.
On this space we have the norm

||f ||Wk,p :=
∑
|s|≤k

||Dsf ||Lp .

• W−k,p(Ω): the dual space of W k,p(Ω).
• Hk(Ω) := W k,2(Ω). On this space we have the norm (equivalent to

xxiii
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xxiv Notation

||f ||Wk,2)

||f ||Hk :=

 ∑
|s|≤k

||Dsf ||2L2


1
2

.

• Ck(Ω): set of continuous functions on Ω which are k times differen-
tiable and whose derivatives up to order k are continuous (for k ∈ N

or k = ∞).
• Ckc (Ω): set of functions in Ck(Ω) with compact support in Ω.
• D′(Ω): space of distributions over Ω (it is the dual of D(Ω) := C∞

c (Ω)).
• C0,α(Ω): Hölder space. Set of functions f , continuous over Ω, such

that

supx,y∈Ω

|f(x)− f(y)|
|x− y|α < +∞,

(for 0 < α < 1).
• Ck,α(Ω): set of k times differentiable continuous functions such that

all derivatives up to order k belong to C0,α(Ω).
• H1: Hardy space, see definitions 3.2.4, 3.2.5 and 3.2.8.
• BMO(Ω): space of functions with bounded mean oscillation, see def-
inition 3.2.7.

• L(p,q)(Ω): Lorentz space, see definition 3.3.2.
• Lq,λ(Ω): Morrey–Campanato space, see definition 3.5.9.
• Ex,r: see example 1.3.7, section 4.3 and section 3.5.
• The scalar product between two vectors X and Y is denoted by 〈X,Y 〉

or X · Y .
• {a, b} := ∂a

∂x
∂b
∂y − ∂a

∂y
∂b
∂x , see section 3.1.

• {u · v}: if u and v are two maps from a domain in R
2 with values into

a Euclidean vector space (V, 〈., .〉), {u · v} := 〈∂u∂x , ∂v∂y 〉 − 〈∂u∂y , ∂v∂x 〉.
• {a, b}αβ : see section 4.3.
• ãb, ãbΩ: see section 3.1.
• ΛpRm: algebra of p-forms with constant coefficients over R

m (p-linear
skew-symmetric forms over R

m). ΛR
m =

⊕m
p=0 Λ

p
R
m.

• ∧: wedge product in the algebra ΛR
m (see [47] or [183]).

• d: exterior differential, acting linearly over D′(Ω) ⊗ ΛR
m and such

that ∀φ ∈ C∞(Ω), ∀α ∈ ΛR
m, d(φ⊗ α) = ∑m

α=1
∂φ
∂xα dx

α ∧ α.
• ×: vector product in R

3: x1

x2

x3

 ×
 y1

y2

y3

 =

 x2y3 − x3y2
x3y1 − x1y3
x1y2 − x2y1

 .
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Notation xxv

• tu: for any vector u =

 u1

...
un

, tu = (u1, . . . , un).

• GL(E): if E is a vector space, GL(E) is the group of invertible endo-
morphisms of E.

• M(n × n,R) or M(n × n,C): algebra of (real or complex) square
matrices with n rows (and n columns).

• 1l: identity matrix.
• δab : Kronecker symbol, its value is 1 if a = b and 0 if a �= b.
• O(n) := {R ∈M(n× n,R) | tRR = 1l}.
• SO(n) := {R ∈M(n× n,R) | tRR = 1l,detR = 1}.
• SO(n)C := {R ∈M(n× n,C) | tRR = 1l,detR = 1}.
• so(n) := {A ∈M(n× n,R) | tA+A = 0}.
• SU(n) := {R ∈M(n× n,C) | tR̄R = 1l,detR = 1}.
• su(n) := {A ∈M(n× n,C) | tĀ+A = 0, trA = 0}.
• Spin(3): (2-fold) universal covering of SO(3). It is identified with
SU(2).

• Sn−1 := {y ∈ R
n | |y| = √

(y1)2 + · · ·+ (yn)2 = 1}.
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