
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Solving Polynomial Equation Systems I

The Kronecker–Duval Philosophy

TEO MORA

University of Genoa

PUBL ISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarco´n 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Cambridge University Press 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,

no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

TypefaceTimes 10/13 pt SystemLATEX2ε [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Mora, Teo.
Solving polynomial equation systems : the Kronecker-Duval philosophy / Teo Mora.

p. cm. – (Encyclopedia of mathematics and its applications; v. 88)
Includes bibliographical references and index.

ISBN 0 521 81154 6
1. Equations–Numerical solutions. 2. Polynomials. 3. Iterative methods (Mathematics)

I. Title. II. Series.
QA218 .M64 2002

512.9′4–dc21 2001043132

ISBN 0 521 81154 6 hardback

Contents

Preface pagexi

Part one: The Kronecker – Duval Philosophy 1
1 Euclid 3

1.1 The Division Algorithm 4
1.2 Euclidean Algorithm 6
1.3 Bezout’s Identity and Extended Euclidean Algorithm 8
1.4 Roots of Polynomials 9
1.5 Factorization of Polynomials 10
1.6* Computing a gcd 12

1.6.1* Coefficient explosion 12
1.6.2* Modular Algorithm 16
1.6.3* Hensel Lifting Algorithm 16
1.6.4* Heuristic gcd 18

2 Intermezzo: Chinese Remainder Theorems 23
2.1 Chinese Remainder Theorems 24
2.2 Chinese Remainder Theorem for a Principal Ideal Domain 26
2.3 A Structure Theorem (1) 29
2.4 Nilpotents 32
2.5 Idempotents 35
2.6 A Structure Theorem (2) 39
2.7 Lagrange Formula 41

3 Cardano 47
3.1 A Tautology? 47
3.2 The Imaginary Number 48
3.3 An Impasse 51
3.4 A Tautology! 52

vii

viii Contents

4 Intermezzo: Multiplicity of Roots 53
4.1 Characteristic of a Field 54
4.2 Finite Fields 55
4.3 Derivatives 57
4.4 Multiplicity 58
4.5 Separability 62
4.6 Perfect Fields 64
4.7 Squarefree Decomposition 68

5 Kronecker I: Kronecker’s Philosophy 74
5.1 Quotients of Polynomial Rings 75
5.2 The Invention of the Roots 76
5.3 Transcendental and Algebraic Field Extensions 81
5.4 Finite Algebraic Extensions 84
5.5 Splitting Fields 86

6 Intermezzo: Sylvester 91
6.1 Gauss Lemma 92
6.2 Symmetric Functions 96
6.3* Newton’s Theorem 100
6.4 The Method of Indeterminate Coefficients 106
6.5 Discriminant 108
6.6 Resultants 112
6.7 Resultants and Roots 115

7 Galois I: Finite Fields 119
7.1 Galois Fields 120
7.2 Roots of Polynomials over Finite Fields 123
7.3 Distinct Degree Factorization 125
7.4 Roots of Unity and Primitive Roots 127
7.5 Representation and Arithmetics of Finite Fields 133
7.6* Cyclotomic Polynomials 135
7.7* Cycles, Roots and Idempotents 141
7.8 Deterministic Polynomial-time Primality Test 148

8 Kronecker II: Kronecker’s Model 156
8.1 Kronecker’s Philosophy 156
8.2 Explicitly Given Fields 159
8.3 Representation and Arithmetics 164

8.3.1 Representation 164
8.3.2 Vector space arithmetics 165
8.3.3 Canonical representation 165
8.3.4 Multiplication 167
8.3.5 Inverse and division 167

Contents ix

8.3.6 Polynomial factorization 168
8.3.7 Solving polynomial equations 169
8.3.8 Monic polynomials 169

8.4 Primitive Element Theorems 170
9 Steinitz 175

9.1 Algebraic Closure 176
9.2 Algebraic Dependence and Transcendency Degree 180
9.3 The Structure of Field Extensions 184
9.4 Universal Field 186
9.5* Lüroth’s Theorem 187

10 Lagrange 191
10.1 Conjugates 192
10.2 NormalExtension Fields 193
10.3 Isomorphisms 196
10.4 Splitting Fields 203
10.5 Trace and Norm 206
10.6 Discriminant 212
10.7* Normal Bases 216

11 Duval 221
11.1 Explicit Representation of Rings 221
11.2 Ring Operations in a Non-unique Representation 223
11.3 Duval Representation 224
11.4 Duval’s Model 228

12 Gauss 232
12.1 The Fundamental Theorem of Algebra 232
12.2 Cyclotomic Equations 237

13 Sturm 263
13.1* Real Closed Fields 264
13.2 Definitions 272
13.3 Sturm 275
13.4 Sturm Representation of Algebraic Reals 280
13.5 Hermite’s Method 284
13.6 Thom Codification of Algebraic Reals (1) 288
13.7 Ben-Or, Kozen and Reif Algorithm 290
13.8 Thom Codification of Algebraic Reals (2) 294

14 Galois II 297
14.1 Galois Extension 298
14.2 Galois Correspondence 300
14.3 Solvability by Radicals 305
14.4 Abel–Ruffini Theorem 314

x Contents

14.5* Constructions with Ruler and Compass 318

Part two: Factorization 327
15 Prelude 329

15.1 A Computation 329
15.2 An Exercise 338

16 Kronecker III: factorization 346
16.1 Von Schubert Factorization Algorithm over the Integers 347
16.2 Factorization of Multivariate Polynomials 350
16.3 Factorization over a Simple Algebraic Extension 352

17 Berlekamp 361
17.1 Berlekamp’s Algorithm 361
17.2 The Cantor–Zassenhaus Algorithm 369

18 Zassenhaus 380
18.1 Hensel’s Lemma 381
18.2 The Zassenhaus Algorithm 389
18.3 Factorization Over a Simple Transcendental Extension 391
18.4 Cauchy Bounds 395
18.5 Factorization over the Rationals 398
18.6 Swinnerton-Dyer Polynomials 402
18.7 L3 Algorithm 405

19 Finale 415
19.1 Kronecker’s Dream 415
19.2 Van der Waerden’s Example 415

Bibliography 420

Index 422

1

Euclid

This preliminary chapter is just devoted to recalling the Euclidean Algorithms
over a univariate polynomial ring and its elementary applications: roughly
speaking they are essentially the obvious generalization of those over
integers.
The fundamental tool related to the Euclidean Algorithms and to solving

univariate polynomials is nothing more than the elementary Division Algo-
rithm (Section 1.1), whose iterative application produces the Euclidean Algo-
rithm (Section 1.2), which can be extended to prove and compute Bezout’s
Identity (Section 1.3).
The Division- and Euclidean Algorithms and theorems have many impor-

tant consequences for solving polynomial equations: they relate roots and lin-
ear factors of a polynomial (Section 1.4) allowing them, at least, to be counted,
and are the basis for the theory (not the practice) of polynomial factorization
(Section 1.5).
They also have another, more important, consequence which is a crucial tool

in solving: they allow a computational system to be developed within quotients
of polynomial rings; the discussion of this is postponed to Section 5.1.
A direct implementation of the Euclidean Algorithm provides an unexpected

phenomenon, the ‘coefficient explosion’: during theapplication of the Eu-
clidean Algorithm to two polynomials whose coefficients have small size, poly-
nomials are producedwith huge coefficients, even if the final output is simply 1.
Finding efficient implementations of the Euclidean Algorithm was a crucial
subject of research in the early days of Computer Algebra; in Section 1.6
I will briefly discuss this phenomenon and present efficient solutions to this
problem.

3

4 Euclid

1.1 The Division Algorithm

Throughout this chapterk will be a field andP := k[X] the univariate polyno-
mial ring overk.
If f = ∑n

i=0 ai Xi ∈ P with an �= 0, denote by lc(f) := an the leading
coefficientof f .

Theorem 1.1.1 (Division Theorem).Given A(X), B(X) ∈ P, B �= 0, there
are unique Q(X), R(X) ∈ P such that
(1) A(X) = Q(X)B(X) + R(X);
(2) R �= 0 �⇒ deg(R) < deg(B).

We call Q the quotient and R the remainder of A modulo Bin P.

Proof Existence: The proof is by induction on deg(A).
If A = 0 or deg(A) < deg(B), thenQ := 0 andR := A obviously satisfy the
thesis.
If deg(A) = n ≥ m = deg(B), we inductively assume that the theorem is true
for each polynomialA0 such thatA0 = 0 or deg(A0) < n. We then have

A(X) = anXn + A1(X), B(X) = bmXm+ B1(X),

with an �= 0,bm �= 0, A1 = 0 or deg(A1) < n, B1 = 0 or deg(B1) < m.
Let

A0(X) := A(X) − anb−1m Xn−mB(X),

which, if non-zero, has degree less thann; by the inductive assumption there
are thenQ0, R0 such that

(1) A0(X) = Q0(X)B(X) + R0(X),

(2) R0 �= 0 �⇒ deg(R0) < deg(B),

so that

A(X) = (anb
−1
m X

n−m+ Q0(X))B(X) + R0(X)

and therefore

Q(X) := anb−1m Xn−m+ Q0(X), R(X) := R0(X)

satisfy the requirement.

Uniqueness: Assume that

(1) A(X) = Q1(X)B(X) + R1(X),

(2) A(X) = Q2(X)B(X) + R2(X),

1.1 The Division Algorithm 5

(3) Ri �= 0 �⇒ deg(Ri) < deg(B),1≤ i ≤ 2,

so that

R1(X) − R2(X) = (Q2(X) − Q1(X)) B(X).

If R1 �= R2 then

deg(R1 − R2) < deg(B) ≤ deg(Q2 − Q1) + deg(B) = deg(R1 − R2)

giving a contradiction.
ThereforeR1 − R2 = 0 and (sinceB �= 0) alsoQ2 − Q1 = 0.

Corollary 1.1.2. The ringP is a euclidean domain.
In further applications, denote

Q := Quot(A, B), R := Rem(A, B).

Because of their uniqueness inP, if K is a field such thatK ⊇ k, the quotient
and the remainder ofAmoduloB in K [X] are stillQ andR.

Algorithm 1.1.3.An inductive proof can be transformed into a recursive algo-
rithm: If we assumek to be effective1 then the iterative algorithm in Figure 1.1
performs polynomial division.

1 The concept of effectiveness was first introduced as the notion ofendlichvielen Schritten(finite
number of steps) by Grete Hermann in 1926 for polynomial ideals in the fundamental paper

G. Hermann,Die Frage der endlich vielen Schritte in der Theorie der Polynomideale,Math. Ann.
95 (1926) 736–788,

where she wrote:

Die Behauptung, eine Berechnung kann mit endlich vielen Schritten durchgeführt werden, soll
dabei bedeuten, es kann eineobere Schranke für die Anzahl der zur Berechnung notwendigen
Operationenangegeben werden. Es genügt also z. B. nicht, ein Verfahren anzugeben, von dem
man theoretisch nachweisen kann, daß es mit endlich vielen Operationen zum Ziele führt, wenn
für die Anzahl dieser Operationen keine obere Schranke bekannt ist.
The assertion that a computation can be carried through in a finite number of steps shall mean
that anupper bound for the number of operations needed for the computationcan be given. Thus
it is not sufficient, for example, to give a procedure for which one can theoretically verify that it
leads to the desired result in a finite number of operations, so long as no upper bound is known
for the number of operations,

To this, van der Waerden in

B.L. van der Waerden, Eine Bemerkungüber die Unzelegbarkeit von Polynomen,Math. Ann.102
(1930), 738–739,

6 Euclid

Fig. 1.1. Polynomial Division Algorithm
(Q,R) :=PolynomialDivision(A,B)
where
A, B ∈ k[X], B �= 0
Q, R ∈ k[X] are such that
– A = QB+ R
– R �= 0 �⇒ deg(R) < deg(B)

b := lc(B),m := deg(B)
A0 := A, Q := 0
While A0 �= 0 and deg(A0) ≥ deg(B) do
a := lc(A0),n := deg(A0)
Q := Q+ ab−1Xn−m
A0 := A0 − ab−1Xn−mB

R := A0

1.2 Euclidean Algorithm

Let P0, P1 ∈ P, with P1 �= 0 (and, to dispose of the trivial cases, assume also
thatP0 �= 0). LetP2 := Rem(P0, P1) and inductively, define

Pi+1 := Rem(Pi−1, Pi)

while Pi �= 0. It is clear that the sequenceP0, P1, . . . , Pi , . . . (which is called
thepolynomial remainder sequence(PRS) ofP0, P1) is finite since, otherwise,

added the note

Ein KörperK soll explizite-bekannheißen, wenn seine Elemente Symbole aus einem bekannten
abz̈ahlbaren Vorrat von unterscheidbaren Symbolen sind, deren Addition, Multiplikation, Subtrak-
tion und Division sich in endlichvielen Schritten ausführen lassen.
A field K is calledexplicitly givenwhen its elements are symbols from a known numerable set
of distinguishable symbols, whose addition, multiplication, subtraction and division can be per-
formed ina finite number of steps.

In this book I will happily drop Hermann’s requirement that an algorithmmust be provided with
its complexity evaluation, and will mainly follow Macaulay’s opinion in

F.S. Macaulay,The Algebraic Theory of Modular Systems, Cambridge University Press (1916).

Macaulay considered the practical feasibility of an algorithm to be more crucial:

[The theory of polynomial ideals] might be regarded as in some measure complete if it were ad-
mitted that a problem is solved when its solution has been reduced to a finite number of feasible
operations. If, however, the operations are too numerous or too involved to be carried out in prac-
tice the solution is only a theoretical one.

1.2 Euclidean Algorithm 7

eachPi must be non-zero which would give an infinite decreasing sequence of
natural numbers:

deg(P1) > deg(P2) > · · · > deg(Pi) > · · · .
Let D(X) denote the last non-zero elementPr of the sequence, and note that
r ≤ min(deg(P0),deg(P1)). Also denoteQi := Quot(Pi−1, Pi).
Proposition 1.2.1. D(X) = gcd(P0, P1).

Proof SincePr−1 = Qr Pr , thenPr dividesPr−1. So let us assume thatPr
divides Pi for i > k and prove that it dividesPk: this is obvious from the
identity

Pk = Qk+1Pk+1 + Pk+2.
ThereforeD = Pr is a common divisor ofP0 andP1.
If S(X) divides bothP0 andP1, then since

P2 = P0 − Q1P1,
it dividesP2. Assuming thatSdividesPi , for i < k, then by the identity

Pk = Pk−2 − Qk−1Pk−1,

it also dividesPk, therefore it dividesPr .

Greatest common divisors inP are obviously not unique, but they are asso-
ciate (cf. Definition 1.5.1).
Again if K is a field such thatK ⊇ k, gcd(A, B) and the PRS ofA andB

are the same inK [X] as inP.
Algorithm 1.2.2.If k is effective, the algorithm in Figure 1.2 computes the gcd
of two polynomials; it actually computes the PRS of the two polynomials and
also computes all the intermediate quotientsQj .

Fig. 1.2. Euclidean Algorithm
D := GCD(A, B)
where

A, B ∈ P, A �= 0, B �= 0
D is a gcd(A, B)

D := A,U := B
While U �= 0 do

(Q,V) := PolynomialDivision(D,U)
D := U,U := V

8 Euclid

1.3 Bezout’s Identity and Extended Euclidean Algorithm

Proposition 1.3.1 (Bezout’s Identity). Let P0, P1 ∈ P \ k, and let us denote
D := gcd(P0, P1). Then there are S, T ∈ P \ {0} such that
(i) P0S+ P1T = D
(ii) deg(S) < deg(P1),deg(T) < deg(P0)

Proof Let P0, P1, . . . , Pi , . . . , Pr = D be the PRS ofP0 andP1. Also, for
i = 0, . . . , r − 1, letQi := Quot(Pi−1, Pi). Inductively define:
S0 := 1, T0 := 0;
S1 := 0, T1 := 1;
S′
i := Si−2 − Qi−1Si−1, T ′

i := Ti−2 − Qi−1Ti−1, 2≤ i ≤ r ;
Si := Rem(S′

i , P1), Ti := T ′
i +Quot(S′

i , P1)P0, 2≤ i ≤ r.
We claim that fori = 0, . . . , r :

(i) P0Si + P1Ti = Pi ;
(ii) deg(Si) < deg(P1),deg(Ti) < deg(P0).

In fact the claims are trivial fori = 0,1, and so, inductively assuming them to
be true fori < k, and denotingUk := Quot(S′

k, P1), so that

S′
k = UkP1 + Sk, Tk = T ′

k +UkP0,
we have

Pk = Pk−2 − Qk−1Pk−1
= P0Sk−2 + P1Tk−2 − Qk−1P0Sk−1 − Qk−1P1Tk−1
= P0 (Sk−2 − Qk−1Sk−1) + P1 (Tk−2 − Qk−1Tk−1)
= P0S

′
k + P1T ′

k

= P0UkP1 + P0Sk + P1Tk − P1UkP0
= P0Sk + P1Tk.

Clearly deg(Sk) < deg(P1) and therefore also deg(Tk) < deg(P0), otherwise

deg(P1Tk) ≥ deg(P1P0) > deg(SkP0)

and deg(P1Tk) > deg(P1) ≥ deg(Pk) would lead to an obvious contradiction.

Corollary 1.3.2. The ringP is a principal ideal domain.

1.4 Roots of Polynomials 9

Fig. 1.3. Extended Euclidean Algorithm
(D, S, T) := ExtGCD(A, B)
where
A, B ∈ P, A �= 0, B �= 0
D is a gcd(A, B)
SA+ BT = D
deg(S) < deg(B),deg(T) < deg(A)

D := A,U := B
S0 := 1, S1 := 0
→ T0 := 0, T1 := 1
While U �= 0 do

(Q,V) := PolynomialDivision(D,U)
D := U,U := V
S := S0 − QS1,
→ T := T0 − QT1
(Q, S) := PolynomialDivision(S, B)
→ T := T + QA
S0 := S1, S1 := S
→ T0 := T1, T1 := T

S := S0,
→ T := T0

Algorithm 1.3.3.Again, on an effective field,SandT can be computed by the
algorithm in Figure 1.3.

Algorithm 1.3.4.The so-called Half-extended Euclidean Algorithm allows us
to computeS, without having to computeT ; it simply involves removing the
lines marked by→ in the algorithm in Figure 1.3. It is useful to compute
inverses of field elements (see Remark 5.1.4).

1.4 Roots of Polynomials

The Division Theorem also has an obvious but important consequence on the
solving of polynomial equations:

Corollary 1.4.1. For f (X) ∈ P, andα ∈ k we have:
f (α) = 0 ⇐⇒ (X − α) dividesP(X).

Proof Let

Q(X) := Quot(f (X), X − α), R(X) := Rem(f (X), X − α);
since(X−α) is linear, eitherR(X) = 0 or deg(R) = 0, i.e.R(X) is a constant
r ∈ k.

10 Euclid

Therefore,

f (X) = Q(X)(X − α) + r,

and evaluating inα obtains f (α) = r , from which the proof follows.

As a consequence a polynomial cannot have more roots than its degree.

1.5 Factorization of Polynomials

Definition 1.5.1. In a domain D:

(i) two elements a and b are calledassociateif there exists c∈ D, with c
invertible, such that a= bc;

(ii) a non-zero and non-invertible element a is calledirreducibleif it is divisi-
ble only by invertible elements and by its associates, i.e.

a = bc, andb non-invertible�⇒ c is invertible and so b is associate to a.

Definition 1.5.2. A domain D is aunique factorization domainif for each
non-invertible a∈ D \ {0}
(i) there is a factorization a= p1 . . . pr where each pi is irreducible;
(ii) the factorization is unique in the following sense:

if a = q1 . . .qs is another factorization with qi irreducible, then

• r = s,
• each pi is associate to some qj ,
• each qj is associate to some pi .

Lemma 1.5.3. If p(X) ∈ k[X] is irreducible, p divides q1q2 and p does not
divide q2, then p divides q1.

Proof Since gcd(p,q2) dividesp, it either is associate top or is a unit; since
p does not divideq2, we can then conclude that gcd(p,q2) = 1.
By Bezout’s Identity, there ares, t ∈ k[X], such thatsp+ tq2 = 1 and there-
forespq1 + tq1q2 = q1, so thatp dividesq1.

Lemma 1.5.4. Let f ∈ k[X]; Let f = p1 . . . pr , f = q1 . . .qs be two factor-
izations in irreducible factors. Then

(i) r = s,
(ii) each pi is associate to some qj ,
(iii) each qj is associate to some pi .

1.5 Factorization of Polynomials 11

Proof The proof is by induction onr . If r = 1, thenp1 = f = q1 . . .qs, so
thats= 1 andp1 = q1 becausep1 is irreducible.
Assume therefore that each polynomial that has a factorization with less than
r irreducible factors, has a unique factorization and letf = p1 . . . pr , f =
q1 . . .qs be two factorizations off in irreducible factors. Thenp1 divides
q1 . . .qs and therefore, by Lemma 1.5.3, it must divide one among theqi s,
sayqj .
Sinceqj is irreducible, we havep1 = uqj for someu ∈ k \ {0}. We then have

f = uqj p2 . . . pr = q1 . . .qs,

and, dividing outqj ,

(up2)p3 . . . pr = q1 . . .qj−1qj+1 . . .qs.

The proof can then be completed using the inductive assumption.

Lemma 1.5.5.Each non-constant polynomial f∈ k[X] has a factorization
into irreducible factors.

Proof The proof is by induction on deg(f).
Since linear polynomials are obviously irreducible, the result is true for poly-
nomials of degree 1.
Assume next that it is true for polynomialsg ∈ k[X], deg(g) < n, and let
f ∈ k[X] be such that deg(f) = n. Either f is irreducible, so thatf satisfies
the lemma, orf is not irreducible, so thatf = f1 f2 where neitherf1 nor f2
is a constant and each has degree less thann; therefore there are factorizations
f1 = p1 . . . pr and f2 = q1 . . .qs in irreducible factors, and

f = p1 . . . pr q1 . . .qs

is then a factorization off .

Theorem 1.5.6.k[X] is a unique factorization domain.

Proof Existence of a factorization is guaranteed by Lemma 1.5.5, uniqueness
by Lemma 1.5.4.

12 Euclid

Remark 1.5.7.It is important to note that, unlike the other results of this
chapter, Theorem 1.5.6 does not give any way of computing a factorization.
In fact the argument of Lemma 1.5.5, that eitherf is irreducible or it has a
proper factorization, does not give any hint of how to decide which is the
case, nor how to find proper divisors. We will show in Part II that there
are factorization algorithms for polynomials over all fields which are
important for our theory (namely all finite fields and all finite extensions of the
rationals).
However, there exist effective fieldsk such that it is undecidable whether

the polynomialX2 + 1 ∈ k[X] is irreducible or not, the reason being that it is
undecidable whether the imaginary number i is ink (see Section 19.2).

1.6 Computing a gcd

1.6.1 Coefficient explosion

Example 1.6.1.Let us assume that we need to compute the gcd of the two
polynomials

P0 := X8 + X6 − 3X4 − 3X3 + 8X2 + 2X − 5,

P1 := 3X6 + 5X4 − 4X2 − 9X + 21,

in Z[X]; we need of course to apply the Euclidean Algorithm; let us even
assume that we have available nothing more than a pocket calculator, so that
we can compute only inZ but not inQ.
Well, that is not a serious problem: in fact, since the gcd is stable under

associate elements, it is clear that by substituting the line of the algorithm of
Figure 1.1

A0 := A0 − ab−1Xn−mB
by

A0 := bA0 − aXn−mB,

the answer is correct.
In this way we obtain the following PRS:

P2 := −15X4 + 3X2 − 9,

P3 := −15795X2 − 30375X + 59535,

P4 := 1254542875143750X − 1654608338437500,

P5 := 12593338795500743100931141992187500,

fromwhich, provided we are able to complete this computation, we deduce that

gcd(P0, P1) = 1.

1.6 Computing a gcd 13

Clearly, we can perform rational arithmetic, even if it is not available on our
pocket calculator, using simply the Euclidean Algorithm for the integers; the
computation is of course more complex and the answer is

P2 := −5
9
X4 + 1

9
X2 − 1

3
,

P3 := −117
25
X2 − 9X + 441

25
,

P4 := 233150

6591
X − 102500

2197
,

P5 := 1288744821

543589225
.

Having already used stability under associate elements, we could, at each
step, force eachPi to become monic; this requires more integer Euclidean
Algorithms, but we could hope to do it with small size elements; in fact we get:

P2 := X4 − 1

5
X2 + 3

5
,

P3 := X2 + 25

13
X − 49

13
,

P4 := X − 6150

4663
,

P5 := 1.

Historical Remark 1.6.2.The amusing assumption of having just a pocketcal-
culator, while not realistic, has a meaning. In fact, the above example is taken
from the second volume of Knuth’s bookThe Art of Computer Programming.
That book was published in 1969, when programs were input via punched

cards. . .and computer algebra was being born. In fact, an analysis of the unex-
pected phenomenon ofcoefficient growth explosion, and the first tentative steps
taken for solving it, marked the beginning of the unexpected phenomenon of
computer algebra’s rapid growth.
Independently Collins and Brown2, applying subresultant theory, showed

that in computing the PRS overZ it was possible at each step, while produc-
ing an elementPi , to predict an integerci dividing each coefficient ofPi , and
thereby, performing the substitutionPi ← Pi /ci , get smaller size coefficients;

2 See

G.E. Collins, Subresultants and Polynomial Remainder Sequence,J. ACM14 (1967), 128–142;
W.S. Brown, On Euclid’s Algorithm and the Computation of Polynomial and Greatest Common
Divisors,J. ACM18 (1971), 478–504.

The discussion (and the computations) of the example are taken from Brown’s paper.

14 Euclid

for instance, in the example above we get:

P2 := 15X4 − 3X2 + 9,

P3 := 65X2 + 125X − 245,

P4 := 9326X − 12300,

P5 := 260708.

Research on how to compute the polynomial gcd continues; on the basis of
general knowledge, there are three competing approaches3:

modular algorithmbased on the Chinese Remainder Theorem (Brown, 1971);
the Hensel Lifting Algorithm(Moses–Yun, 1973; Wang, 1980) based on
Hensel’s Lemma (cf. Section 18.1);

theHeuristic GCD(Char–Geddes–Gonnet, 1984; Davenport–Padget, 1985).

In the following sections we will briefly discuss these three algorithms4,
using freely some facts that will be proved later:

Fact 1.6.3. Let f ∈ Z[X] be a polynomial. Then:

(1) there is a computable integerB ∈ N such that for each factor
∑
ai Xi of

f , we have−B < ai ≤ B;
(2) there is a computable integerr ∈ N such that for each rootρ ∈ C of f , we

have|ρ| < r.

Proof cf. Section 18.4.

For eachp ∈ N let us denote the canonical projection morphism as
−p : Z[X] �→ Zp[X]; conversely, we can consider the (implicit) immersion
Zp[X] ⊂ Z[X], where each polynomialf (X) ∈ Zp[X] can be interpreted,

3 See

W.S. Brown, On Euclid’s Algorithm and the Computation of Polynomial and Greatest Common
Divisors,J. ACM18 (1971), 478–504;
J. Moses, D.Y.Y. Yun, The EZ GCD Algorithm, inProc. of the ACM Annual Conference(1973),
159–166;
P. Wang, The EZZ-GCD Algorithm,SIGSAM Bulletin14 (1980), 50–60;
B.W. Char, K.O. Geddes, G. H. Gonnet, GCDHEU: Heuristic Polynomial GCD Algorithm
Based On Integral GCD Computation,L. N. Comp. Sci.174(1984), Springer, 285–296;
J. Davenport, J. Padget, HEUGCD: How Elementary Upperbounds Generate Cheaper Data,L.
N. Comp. Sci.204(1985), Springer, 18–28.

4 The presentation of modular algorithm depends freely on the results discussed in Section 2.1
and the presentation of the Hensel Lifting Algorithm in Section 18.1. It is suggested that the
interested reader go to those sections first.

1.6 Computing a gcd 15

with a slight abuse of notation, as a polynomialf(X) := ∑n
i=0 ai Xi ∈ Z[X]

such that

f (X) = fp(X),
−p/2< ai ≤ p/2,

from which we can readily identifyf and f .
Let f, g ∈ Z[X], h := gcd(f, g) and letp ∈ N be a prime. Then:

Lemma 1.6.4.With the above notation:

(1) hp dividesgcd(f p, gp);
(2) if lc(f) �≡ 0 �≡ lc(g)(mod p), then

deg(gcd(f p, gp)) ≥ deg(hp) = deg(h).

Proof Part 1 is obvious and implies deg(hp) ≤ deg(gcd(f p, gp)). The as-
sumption of Part 2 implies that lc(h) �≡ 0 (mod p) so that

deg(h) = deg(hp) ≤ deg(gcd(f p, gp)).

Fact 1.6.5. If lc(f) �≡ 0 �≡ lc(g)(mod p), then there existsR ∈ Z such that

p does not divideR �⇒ hp = gcd(f p, gp).

Proof (sketch) Corollary 6.6.6 will show that, givenf ′, g′ ∈ Z[X], there is
R ∈ Z such that the following are equivalent

R �≡ 0 (mod p);
gcd(f ′p, g′

p) = 1.

Therefore we only have to apply this result tof ′ := f/h andg′ := g/h since
gcd(f p, gp) = hp gcd(f ′p, g′

p).

Corollary 1.6.6. There are only finitely many primes p∈ N for which

gcd(f p, gp) = hp
does not hold.

Proof We only need to discard those primes which divide either lc(f),
lc(g) orR.

16 Euclid

1.6.2 Modular Algorithm

On the basis of the above result, denoting byP the set of integer primes, the
modular algorithm consists of computing

h(p) := gcd(f p, gp)

for several primesp ∈ P ⊂ N until we obtain a subsetP ⊂ P such that

p does not divide lc(f) lc(g), for all p ∈ P;
deg(h(p)) ≤ deg(h(q)), for all p ∈ P, for all q ∈ P;∏

P p ≥ B,

whereB satisfies Fact 1.6.3.1, for bothf andg.
Then,

either for all p ∈ P, deg(h(p)) = deg(h) and soh(p) = hp, in which case
we can apply the Chinese Remainder Theorem (Corollary 2.1.5) in order
to compute the single elementh = ∑

ai Xi ∈ Z[X] such that

−B < ai ≤ B, for all i ;
hp = h(p) = hp,

from which

h = h = gcd(f, g);
or for all p ∈ P, we have deg(h(p)) > deg(h), which happens with low
probability; in this case the above computation gives a wrong answer, but
this can be detected by checking whetherh divides f andg: in fact, if
the answer is positive then we can deduce thath dividesh = gcd(f, g)
and since deg(h) ≥ deg(h) we can deduce thath = h = gcd(f, g).

Algorithm 1.6.7.This approach leads to the algorithm presented in
Figure 1.4.

1.6.3 Hensel Lifting Algorithm

The algorithm is based on the following

Fact 1.6.8. Let p∈ N be a prime and let f(X) ∈ Z[X] satisfy

lc(f) �≡ 0(mod p).

Let f, h ∈ Z[X] satisfy

(1) f ≡ fh(mod p),
(2) deg(f) = deg(f) + deg(h),
(3) gcd(fp, hp) = 1.

1.6 Computing a gcd 17

Fig. 1.4. Modular GCD
h :=GCD(f,g)
where
f, g ∈ Z[X],
h := gcd(f, g)

Repeat
choosea primep ∈ N such thatp does not divide lc(f) lc(g)
h(p) := gcd(f p, gp)
p := p, h := h(p),d := deg(h)
Repeat
If deg(h(p)) < d then
p := p, h := h(p),d := deg(h)

else
If d = 0 then
h := 1

else
choosea primep ∈ N such thatp does not dividep lc(f) lc(g)
h(p) := gcd(f p, gp)
If deg(h(p)) = deg(h) then
Computeby the Chinese Remainder Theoremh′ such that

h′ ≡
{
h (modp)
h(p) (mod p)

h := h′,p := pp
until p ≥ B

until h divides f andg

Then for each n∈ N, denoting q:= pn, it is possible to compute

f′, h′ ∈ Z[X]

such that

(1) f ≡ f′h′ (modq),
(2) f′ ≡ f(mod p), h′ ≡ h(mod p),
(3) deg(f′) = deg(f), deg(h′) = deg(h).

Moreover there is an algorithm (the Hensel Lifting Algorithm) for comput-
ing them.

Proof Compare with Theorem 18.1.2.

Let f, g ∈ Z[X], andh := gcd(f, g). After computing gcd(f p, gp) for sev-
eral primesp ∈ N, we will probabilistically obtain an elementh := gcd(f p, gp)

18 Euclid

for a suitable primep ∈ N, such that deg(h) = deg(h), choosing only the one
for which deg(h) is minimal.
Denotingf := f/h, thenf andh satisfy the assumptions of the above Fact.

Therefore choosingn ∈ N such thatq := pn ≥ B, we can obtain the polyno-
mials f′, h′ = ∑

ai Xi satisfying the above condition.
Therefore

deg(h′) = deg(h) ≥ deg(h), and
−B < ai ≤ B, for all i , so that

if h′ divides f andg thenh′ = gcd(f, g).

1.6.4 Heuristic gcd

As both the modular and the Hensel lifting gcds are based on restricting the
mapping

−p : Z[X] �→ Zp[X]

to the suitable subset

S :=
{
n∑
i=0
ai X

i : − p
2

< ai ≤ p

2
, for all i

}
⊂ Z[X]

so that the restriction of−p to S is an isomorphism, the heuristic gcd is based
on the restriction of a different projection to a subset in order to make it
invertible.
Let us just consider, for eachξ ∈ Z, the evaluation map evξ : Z[X] �→ Z

defined by evξ (h) := h(ξ), for all h(X) ∈ Z[X].

Lemma 1.6.9. Let

S :=
{
h(X) =

n∑
i=0
ai X

i ∈ Z[X] : −ξ

2
< ai ≤ ξ

2
, for all i

}
⊂ Z[X].

Then the restriction ofevξ to S is an isomorphism between it
andZ.

It is clear how to compute ev−1ξ (γ) for each integerγ (cf. Fig. 1.5).

Theorem 1.6.10.Let f, g ∈ Z[X] and letr ∈ N be a bound for all the roots
of both f and g (cf. Fact 1.6.3).
Let ξ ∈ Z be such that|ξ | > 1 + r; let m := f (ξ), n := g(ξ), γ :=

gcd(m,n) and h(X) := ev−1ξ (γ).

1.6 Computing a gcd 19

Fig. 1.5. Computation of ev−1ξ

h := ev−1ξ (γ)

where
ξ ∈ Z,
γ ∈ Z,
h(X) ∈ S⊂ Z[X],
h(ξ) = γ

h := γ, h := 0, i := 0,
While h �= 0 do
Let a ∈ Z be the unique element such that
a ≡ h (mod ξ),
−ξ/2< a ≤ ξ/2

h := (h − a)/ξ, h := h+ aXi , i := i + 1

Then the following conditions are equivalent:

h(X) divides both f(X) and g(X);
h(X) = gcd(f, g).

Proof If h divides both f (X) andg(X) and therefore gcd(f, g), then there
existsH ∈ Z[X] such that gcd(f, g) = hH; then we have
h(ξ) = γ = gcd(m,n) = gcd(f (ξ), g(ξ)) ≥ gcd(f, g)(ξ) = h(ξ)H(ξ),

so thatH(ξ) = ±1.
Since, by the Fundamental Theorem of Algebra,H(X) = ∏

i (X − αi) for
suitableαi ∈ C, we can deduce that

∏
i (ξ − αi) = H(ξ) = ±1 and that there

is anα such that|ξ − α| ≤ 1, giving the contradiction

|ξ | > 1+ r ≥ 1+ |α| ≥ |ξ |.

This leads to the probabilistic algorithm presented in Figure 1.6.

Example 1.6.11.An example is

f (X) := X3 − 3X2 − X + 3 = (X − 1)(X + 1)(X − 3)
g(X) := X3 + X2 − 9X − 9 = (X + 1)(X − 3)(X + 3)
ξ := 10
m := 693 = 9 · 11 · 7
n := 1001 = 11 · 7 · 13
γ := 77 = 11 · 7
h(X) := X2 − 2X − 3 = (X + 1)(X − 3)

20 Euclid

Fig. 1.6. Heuristic GCD
h := HEUGCD(f, g)
where
f, g ∈ Z[X],
h(X) = gcd(f, g).

Choosee∈ R,e> 1
Chooseξ ∈ Z

Repeat
ξ := �ξe�
m := f (ξ),n := g(ξ),
γ := gcd(m,n)
h(X) := ev−1ξ (γ)

� h(X) := Prim(h)
until h divides bothf andg

Example 1.6.12.However, if you consider

f (X) := (X + 1)(X + 2)(X + 3) andg(X) := (X − 2)(X − 1)X

it is clear that gcd(f, g) = 1, andm ≡ 0 ≡ n(mod 6), for all ξ ∈ Z,
so thath(X) �= gcd(f, g), for all ξ ∈ Z,

and the algorithm cannot terminate.
However, whenξ > 12 and gcd(m,n) = 6, the algorithm returnsh(X) = 6

which is associate to gcd(f, g).

This suggests that we remove thecontentof h5 by adding the line marked
by � in Figure 1.6.
The correctness of this amended algorithm is given by

Theorem 1.6.13.Let f, g ∈ Z[X] and letr ∈ N be a bound for all the roots
of f and g.
Let ξ ∈ Z be such that

|ξ | ≥ 1+ 2r,

and let m := f (ξ), n := g(ξ), γ := gcd(m,n), h′(X) := ev−1ξ (γ), c :=
cont(h′), and h:= Prim(h′) = c−1h′.

5 We recall that for a polynomialh(X) := ∑
ai Xi , the content ofh is

cont(h) := c := gcd
i

(ai)

and we will denote Prim(h) := c−1h(X) (cf. Section 6.1).

1.6 Computing a gcd 21

Then the following conditions are equivalent:

h(X) divides both f(X) and g(X);
h(X) = gcd(f, g).

Proof If h divides both f (X) andg(X) and therefore gcd(f, g), then there
existsH ∈ Z[X] such that gcd(f, g) = hH; thus we have

ch(ξ) = h′(ξ) = γ = gcd(m,n) = gcd(f (ξ), g(ξ))

≥ gcd(f, g)(ξ) = h(ξ)H(ξ)

so thatH(ξ) ≤ ±c. Since each coefficient ofh′ is bounded byξ/2, we have
c < ξ/2.
therefore, by the same argument as in Theorem 1.6.10, there is anα such that

|ξ − α| ≤ c <
ξ

2
,

so that|α| ≥ ξ/2> r, which is a contradiction.

Lemma 1.6.14.Let f, g ∈ Z[X] be such thatgcd(f, g) = 1. Then there is
M ∈ N such that

∀ξ ∈ Z,gcd(f (ξ), g(ξ)) ≤ M.

Proof By assumption there area′(X),b′(X) ∈ Q[X] such thata′ f + b′g = 1;
eliminating denominators, we obtain polynomialsa(X),b(X) ∈ Z[X] and an
integerM ∈ N such that

a(X) f (X) + b(X)g(X) = M.

Therefore for allξ ∈ Z, a(ξ) f (ξ) + b(ξ)g(ξ) = M, from which the proof
follows.

Corollary 1.6.15. Let f, g ∈ Z[X], h(X) := gcd(f, g). Then there is M∈ N

such that

∀ξ ∈ Z,gcd(f (ξ), g(ξ)) ≤ Mh(ξ).

Proof Apply the above lemma to the polynomialsf/h andg/h.

Corollary 1.6.16. Let f, g ∈ Z[X] andξ > 2MB.
Let m := f (ξ), n := g(ξ), γ := gcd(m,n), h′(X) := ev−1ξ (γ), c :=

cont(h′), and h:= Prim(h′) = c−1h′.

22 Euclid

Then h(X) = gcd(f, g).

Proof Denotingh(X) := ∑
i ai X

i , we have

2M |ai | ≤ 2MB < ξ, for all i,

so that ev−1ξ (γ) = Mh(X).

Corollary 1.6.17. The algorithm of Figure 1.6 terminates.

