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And I saw when the Lamb opened one of the seals, and I heard, as it were the noise of
thunder, one of the four beasts saying, Come and see.

And I saw, and behold a white horse: and he that sat on him had a bow; and a crown
was given unto him: and he went forth conquering, and to conquer.
Revelations

The things depending from Saturn: bile, lead, onyx, asphodel, mole, hoopoe, eel.
E.C. Agrippa, De occulta phylosophia

Soon we will drink blood for wine.
Revolutionary of the Upper Rhine, Book of a hundred chapters
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1

Euclid

This preliminary chapter is just devoted to recalling the Euclidean Algorithms
over a univariate polynomial ring and its elementary applications: roughly
speaking they are essentially the obvious generalization of those over
integers.

The fundamental tool related to the Euclidean Algorithms and to solving
univariate polynomials is nothing more than the elementary Division Algo-
rithm (Section 1.1), whose iterative application produces the Euclidean Algo-
rithm (Section 1.2), which can be extended to prove and compute Bezout’s
Identity (Section 1.3).

The Division- and Euclidean Algorithms and theorems have many impor-
tant consequences for solving polynomial equations: they relate roots and lin-
ear factors of a polynomial (Section 1.4) allowing them, at least, to be counted,
and are the basis for the theory (not the practice) of polynomial factorization
(Section 1.5).

They also have another, more important, consequence which is a crucial tool
in solving: they allow a computational system to be developed within quotients
of polynomial rings; the discussion of this is postponed to Section 5.1.

A direct implementation of the Euclidean Algorithm provides an unexpected
phenomenon, the ‘coefficient explosion’: during the application of the Eu-
clidean Algorithm to two polynomials whose coefficients have small size, poly-
nomials are produced with huge coefficients, even if the final output is simply 1.
Finding efficient implementations of the Euclidean Algorithm was a crucial
subject of research in the early days of Computer Algebra; in Section 1.6
I will briefly discuss this phenomenon and present efficient solutions to this
problem.

3
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4 Euclid

1.1 The Division Algorithm

Throughout this chapter k will be a field and P := k[X ] the univariate polyno-
mial ring over k.

If f = ∑n
i=0 ai X

i ∈ P with an �= 0, denote by lc( f ) := an the leading
coefficient of f .

Theorem 1.1.1 (Division Theorem). Given A(X), B(X) ∈ P , B �= 0, there
are unique Q(X), R(X) ∈ P such that

(1) A(X) = Q(X)B(X) + R(X);
(2) R �= 0 �⇒ deg(R) < deg(B).

We call Q the quotient and R the remainder of A modulo B in P .

Proof Existence: The proof is by induction on deg(A).
If A = 0 or deg(A) < deg(B), then Q := 0 and R := A obviously satisfy the
thesis.
If deg(A) = n ≥ m = deg(B), we inductively assume that the theorem is true
for each polynomial A0 such that A0 = 0 or deg(A0) < n. We then have

A(X) = an X
n + A1(X), B(X) = bm X

m + B1(X),

with an �= 0, bm �= 0, A1 = 0 or deg(A1) < n, B1 = 0 or deg(B1) < m.
Let

A0(X) := A(X) − anb
−1
m Xn−mB(X),

which, if non-zero, has degree less than n; by the inductive assumption there
are then Q0, R0 such that

(1) A0(X) = Q0(X)B(X) + R0(X),

(2) R0 �= 0 �⇒ deg(R0) < deg(B),

so that

A(X) = (anb
−1
m Xn−m + Q0(X))B(X) + R0(X)

and therefore

Q(X) := anb
−1
m Xn−m + Q0(X), R(X) := R0(X)

satisfy the requirement.

Uniqueness: Assume that

(1) A(X) = Q1(X)B(X) + R1(X),

(2) A(X) = Q2(X)B(X) + R2(X),
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1.1 The Division Algorithm 5

(3) Ri �= 0 �⇒ deg(Ri ) < deg(B), 1 ≤ i ≤ 2,

so that

R1(X) − R2(X) = (Q2(X) − Q1(X)) B(X).

If R1 �= R2 then

deg(R1 − R2) < deg(B) ≤ deg(Q2 − Q1) + deg(B) = deg(R1 − R2)

giving a contradiction.
Therefore R1 − R2 = 0 and (since B �= 0) also Q2 − Q1 = 0.

Corollary 1.1.2. The ring P is a euclidean domain.

In further applications, denote

Q := Quot(A, B), R := Rem(A, B).

Because of their uniqueness in P , if K is a field such that K ⊇ k, the quotient
and the remainder of A modulo B in K [X ] are still Q and R.

Algorithm 1.1.3. An inductive proof can be transformed into a recursive algo-
rithm: If we assume k to be effective1 then the iterative algorithm in Figure 1.1
performs polynomial division.

1 The concept of effectiveness was first introduced as the notion of endlichvielen Schritten (finite
number of steps) by Grete Hermann in 1926 for polynomial ideals in the fundamental paper

G. Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math. Ann.
95 (1926) 736–788,

where she wrote:

Die Behauptung, eine Berechnung kann mit endlich vielen Schritten durchgeführt werden, soll
dabei bedeuten, es kann eine obere Schranke für die Anzahl der zur Berechnung notwendigen
Operationen angegeben werden. Es genügt also z. B. nicht, ein Verfahren anzugeben, von dem
man theoretisch nachweisen kann, daß es mit endlich vielen Operationen zum Ziele führt, wenn
für die Anzahl dieser Operationen keine obere Schranke bekannt ist.
The assertion that a computation can be carried through in a finite number of steps shall mean
that an upper bound for the number of operations needed for the computation can be given. Thus
it is not sufficient, for example, to give a procedure for which one can theoretically verify that it
leads to the desired result in a finite number of operations, so long as no upper bound is known
for the number of operations,

To this, van der Waerden in

B.L. van der Waerden, Eine Bemerkung über die Unzelegbarkeit von Polynomen,Math. Ann. 102
(1930), 738–739,
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6 Euclid

Fig. 1.1. Polynomial Division Algorithm
(Q,R) := PolynomialDivision(A,B)
where
A, B ∈ k[X ], B �= 0
Q, R ∈ k[X ] are such that

– A = QB + R
– R �= 0 �⇒ deg(R) < deg(B)

b := lc(B),m := deg(B)
A0 := A, Q := 0
While A0 �= 0 and deg(A0) ≥ deg(B) do
a := lc(A0), n := deg(A0)

Q := Q + ab−1Xn−m
A0 := A0 − ab−1Xn−mB

R := A0

1.2 Euclidean Algorithm

Let P0, P1 ∈ P , with P1 �= 0 (and, to dispose of the trivial cases, assume also
that P0 �= 0). Let P2 := Rem(P0, P1) and inductively, define

Pi+1 := Rem(Pi−1, Pi )

while Pi �= 0. It is clear that the sequence P0, P1, . . . , Pi , . . . (which is called
the polynomial remainder sequence (PRS) of P0, P1) is finite since, otherwise,

added the note

Ein Körper K soll explizite-bekann heißen, wenn seine Elemente Symbole aus einem bekannten
abzählbaren Vorrat von unterscheidbaren Symbolen sind, deren Addition, Multiplikation, Subtrak-
tion und Division sich in endlichvielen Schritten ausführen lassen.
A field K is called explicitly given when its elements are symbols from a known numerable set
of distinguishable symbols, whose addition, multiplication, subtraction and division can be per-
formed in a finite number of steps.

In this book I will happily drop Hermann’s requirement that an algorithm must be provided with
its complexity evaluation, and will mainly follow Macaulay’s opinion in

F.S. Macaulay, The Algebraic Theory of Modular Systems, Cambridge University Press (1916).

Macaulay considered the practical feasibility of an algorithm to be more crucial:

[The theory of polynomial ideals] might be regarded as in some measure complete if it were ad-
mitted that a problem is solved when its solution has been reduced to a finite number of feasible
operations. If, however, the operations are too numerous or too involved to be carried out in prac-
tice the solution is only a theoretical one.
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1.2 Euclidean Algorithm 7

each Pi must be non-zero which would give an infinite decreasing sequence of
natural numbers:

deg(P1) > deg(P2) > · · · > deg(Pi ) > · · · .
Let D(X) denote the last non-zero element Pr of the sequence, and note that
r ≤ min(deg(P0), deg(P1)). Also denote Qi := Quot(Pi−1, Pi ).

Proposition 1.2.1. D(X) = gcd(P0, P1).

Proof Since Pr−1 = Qr Pr , then Pr divides Pr−1. So let us assume that Pr
divides Pi for i > k and prove that it divides Pk : this is obvious from the
identity

Pk = Qk+1Pk+1 + Pk+2.

Therefore D = Pr is a common divisor of P0 and P1.
If S(X) divides both P0 and P1, then since

P2 = P0 − Q1P1,

it divides P2. Assuming that S divides Pi , for i < k, then by the identity

Pk = Pk−2 − Qk−1Pk−1,

it also divides Pk , therefore it divides Pr .

Greatest common divisors in P are obviously not unique, but they are asso-
ciate (cf. Definition 1.5.1).

Again if K is a field such that K ⊇ k, gcd(A, B) and the PRS of A and B
are the same in K [X ] as in P .

Algorithm 1.2.2. If k is effective, the algorithm in Figure 1.2 computes the gcd
of two polynomials; it actually computes the PRS of the two polynomials and
also computes all the intermediate quotients Q j .

Fig. 1.2. Euclidean Algorithm
D := GCD(A, B)
where

A, B ∈ P, A �= 0, B �= 0
D is a gcd(A, B)

D := A,U := B
While U �= 0 do

(Q, V ) := PolynomialDivision(D,U )
D := U,U := V
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8 Euclid

1.3 Bezout’s Identity and Extended Euclidean Algorithm

Proposition 1.3.1 (Bezout’s Identity). Let P0, P1 ∈ P \ k, and let us denote
D := gcd(P0, P1). Then there are S, T ∈ P \ {0} such that
(i) P0S + P1T = D
(ii) deg(S) < deg(P1), deg(T ) < deg(P0)

Proof Let P0, P1, . . . , Pi , . . . , Pr = D be the PRS of P0 and P1. Also, for
i = 0, . . . , r − 1, let Qi := Quot(Pi−1, Pi ). Inductively define:

S0 := 1, T0 := 0;
S1 := 0, T1 := 1;
S′
i := Si−2 − Qi−1Si−1, T ′

i := Ti−2 − Qi−1Ti−1, 2 ≤ i ≤ r;
Si := Rem(S′

i , P1), Ti := T ′
i + Quot(S′

i , P1)P0, 2 ≤ i ≤ r.

We claim that for i = 0, . . . , r :

(i) P0Si + P1Ti = Pi ;
(ii) deg(Si ) < deg(P1), deg(Ti ) < deg(P0).

In fact the claims are trivial for i = 0, 1, and so, inductively assuming them to
be true for i < k, and denoting Uk := Quot(S′

k, P1), so that

S′
k = Uk P1 + Sk, Tk = T ′

k +Uk P0,

we have

Pk = Pk−2 − Qk−1Pk−1

= P0Sk−2 + P1Tk−2 − Qk−1P0Sk−1 − Qk−1P1Tk−1

= P0 (Sk−2 − Qk−1Sk−1) + P1 (Tk−2 − Qk−1Tk−1)

= P0S
′
k + P1T

′
k

= P0Uk P1 + P0Sk + P1Tk − P1Uk P0

= P0Sk + P1Tk .

Clearly deg(Sk) < deg(P1) and therefore also deg(Tk) < deg(P0), otherwise

deg(P1Tk) ≥ deg(P1P0) > deg(Sk P0)

and deg(P1Tk) > deg(P1) ≥ deg(Pk) would lead to an obvious contradiction.

Corollary 1.3.2. The ring P is a principal ideal domain.
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1.4 Roots of Polynomials 9

Fig. 1.3. Extended Euclidean Algorithm
(D, S, T ) := ExtGCD(A, B)
where
A, B ∈ P, A �= 0, B �= 0
D is a gcd(A, B)
SA + BT = D
deg(S) < deg(B), deg(T ) < deg(A)

D := A,U := B
S0 := 1, S1 := 0
→ T0 := 0, T1 := 1
While U �= 0 do

(Q, V ) := PolynomialDivision(D,U )
D := U,U := V
S := S0 − QS1,
→ T := T0 − QT1
(Q, S) := PolynomialDivision(S, B)
→ T := T + QA
S0 := S1, S1 := S
→ T0 := T1, T1 := T

S := S0,
→ T := T0

Algorithm 1.3.3. Again, on an effective field, S and T can be computed by the
algorithm in Figure 1.3.

Algorithm 1.3.4. The so-called Half-extended Euclidean Algorithm allows us
to compute S, without having to compute T ; it simply involves removing the
lines marked by → in the algorithm in Figure 1.3. It is useful to compute
inverses of field elements (see Remark 5.1.4).

1.4 Roots of Polynomials

The Division Theorem also has an obvious but important consequence on the
solving of polynomial equations:

Corollary 1.4.1. For f (X) ∈ P , and α ∈ k we have:

f (α) = 0 ⇐⇒ (X − α) divides P(X).

Proof Let

Q(X) := Quot( f (X), X − α), R(X) := Rem( f (X), X − α);
since (X−α) is linear, either R(X) = 0 or deg(R) = 0, i.e. R(X) is a constant
r ∈ k.
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10 Euclid

Therefore,

f (X) = Q(X)(X − α) + r,

and evaluating in α obtains f (α) = r , from which the proof follows.

As a consequence a polynomial cannot have more roots than its degree.

1.5 Factorization of Polynomials

Definition 1.5.1. In a domain D:

(i) two elements a and b are called associate if there exists c ∈ D, with c
invertible, such that a = bc;

(ii) a non-zero and non-invertible element a is called irreducible if it is divisi-
ble only by invertible elements and by its associates, i.e.

a = bc, and b non-invertible �⇒ c is invertible and so b is associate to a.

Definition 1.5.2. A domain D is a unique factorization domain if for each
non-invertible a ∈ D \ {0}
(i) there is a factorization a = p1 . . . pr where each pi is irreducible;
(ii) the factorization is unique in the following sense:

if a = q1 . . . qs is another factorization with qi irreducible, then

• r = s,
• each pi is associate to some q j ,
• each q j is associate to some pi .

Lemma 1.5.3. If p(X) ∈ k[X ] is irreducible, p divides q1q2 and p does not
divide q2, then p divides q1.

Proof Since gcd(p, q2) divides p, it either is associate to p or is a unit; since
p does not divide q2, we can then conclude that gcd(p, q2) = 1.
By Bezout’s Identity, there are s, t ∈ k[X ], such that sp + tq2 = 1 and there-
fore spq1 + tq1q2 = q1, so that p divides q1.

Lemma 1.5.4. Let f ∈ k[X ]; Let f = p1 . . . pr , f = q1 . . . qs be two factor-
izations in irreducible factors. Then

(i) r = s,
(ii) each pi is associate to some q j ,
(iii) each q j is associate to some pi .
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