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Introduction

A discrete-optimization problem is a problem of maximizing a real-valued ob-
Jective function ¢ on a finite set of feasible solutions S. Often the set S naturally
arises as a subset of 2F (the set of all subsets of E), for some finite ground set E,
in which case we have a combinatorial-optimization problem. Of course, there
is no problem because we can just enumerate all feasible solutions — but we seek
to do better. Usually, the feasible solutions are described in some concise man-
ner, rather than being explicitly listed. The challenge is to develop algorithms
that are provably or practically better than enumerating all feasible solutions.

Applications of discrete-optimization problems arise in industry (e.g., man-
ufacturing and distribution, telecommunication-network design and routing,
airline crew scheduling) and in applied sciences (e.g., statistics, physics, and
chemistry).

Besides the applications, discrete optimization has aspects that connect it
with other areas of mathematics (e.g., algebra, analysis and continuous opti-
mization, geometry, logic, numerical analysis, topology, and, of course, other
subdisciplines of discrete mathematics such as graph theory, matroid theory,
and enumerative combinatorics) as well as computer science. Thus research in
discrete optimization is driven by mathematics as well as by applications.

It is almost always the case that the set of feasible solutions S is delivered to
us descriptively rather than by an explicit list. For example, S might be the set of
spanning trees of a connected graph. As a complete graph on n vertices has n”" 2
spanning trees (a nontrivial fact discovered by Cayley), it may come as quite
a surprise that finding a ‘maximum-weight’ spanning tree is about as difficult
as sorting the (;) = n(n — 1)/2 edge weights. As another example, S might be
the set of ‘traveling-salesperson’s tours’ through » points in some metric space.
There are (n — 1)!/2 (equivalence classes of ) such tours (as we may call any of
the n points the initial point of the tour, and we can reverse the ordering of the
points to obtain another tour of the same total length). The problem of finding
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2 Introduction

a shortest traveling-salesperson’s tour is a notoriously difficult problem; yet we
will touch on techniques that enable us to find good solutions for instances that
are significantly larger than brute-force enumeration would permit.

An algorithm is theoretically efficient for a class of problems if the number of
computational steps required for solving instances of the problem is bounded
by a polynomial in the number of bits required for encoding the problem (in
which integers are encoded in base 2). We encode a rational number by en-
coding its integer numerator and denominator. This model does not permit the
encoding of irrational numbers. To make all of this precise, we would need
to carefully specify a model of computation (e.g., the Turing machine). Then,
through notions of problem equivalence (e.g., polynomial-time reductions), we
would define complexity classes (e.g., the class NP) and the idea of “com-
pleteness” for a complexity class. We will hardly touch on such issues in what
follows, but a full appreciation of combinatorial optimization, from the point
of view of “theoretical efficiency,” requires such ideas.

The beacon of theoretical efficiency has its faults as an indicator of practical
performance: (1) It is an asymptotic theory, (2) it is a worst-case theory, and (3)
the order of the bounding polynomial may be quite high. Correspondingly, we
note that (1) practical problems have some limited size, (2) practical instances
may be quite different than worst-case instances, and (3) a high-order polyno-
mial may grow too quickly in the limited range of problem sizes that are of
practical concern. Still, this guiding light has shown the way to many practical
methods.

For combinatorial-optimization problems, it will often be enlightening, and
sometimes computationally effective, to embed our problem in R (real |E|-
dimensional space with coordinates indexed by E). The natural method is as
follows. We consider the convex hull Pgs of the set of characteristic vectors
of sets in S — that is, the smallest convex set that contains these characteristic
vectors. Next, we need to find a function & : [0, 1]% +— R such that, if x(S) is the
characteristic vector of a feasible set S, then ¢(x(S)) = ¢(S). The success of such
an approach depends, critically, on the form of the objective function. Concave
functions are relatively easy to maximize (provided we have a description of
‘Ps as the solution set of linear inequalities), as in this case a local maximum is
a global maximum. On the other hand, convex functions have the nice property
that they are maximized by extreme points of a polytope — these extreme points
are characteristic vectors of our feasible sets. For linear functions we have the
best of both worlds. A weight function ¢ : 2F +— R satisfies ¢(S) = Zees c(e),
V S C E [we take the liberty of writing c(e) for c({e})]. The weight function ¢
naturally leads to the linear function ¢ defined by ¢(x) = ZEE gcex,,Vxe
R%; note that c(S) = &(x(S)). Most of the combinatorial-optimization problems
that we will study involve optimizing weight functions. This does not mean
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Introduction 3

that we can easily solve all combinatorial-optimization problems involving the
optimization of weight functions. The challenge in the approach that has been
outlined is to find a useful description of Ps by means of linear inequalities.

Next, we look at a concrete example. To visualize the geometry of the exam-
ple, we are forced to use an instance with very few elements in the ground set.
Our ground set E := {1, 2, 3} corresponds to the set of edges of the following
graph:

1
2

We define our set S of feasible sets to consist of subsets of E that are acyclic
(i.e., contain no cycle). That is, S is the set of forests of the graph. Here

S =1{0, {1} {2}, {3}, {1, 3}, {2, 3}}

(the only sets containing cycles are {1, 2} and {1, 2, 3}).
We consider the characteristic vectors of sets in S, namely,

0,0, 0),
(1,0,0),
0, 1,0),
0,0, 1),
(1,0, 1),
O, 1, 1).

Next, we embed these points in RE, and we depict the convex hull Pg:

0,1, 1)
0,1,0)
(1,0, 1)

0,0,0) (1,0,0)
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4 Introduction

The polytope Ps is one-half of the unit cube. It is the solution set of the linear
inequalities
x1 >0,
x2 >0,
I >x3 >0,
x1+x<1.

If, for example, we maximize the linear function 5x; + 4x, + x3 over the
solutions to this inequality system, we get the optimal solution x = (1, 0, 1),
which is the characteristic vector of {1, 3}.

We may not be so fortunate if we model the points carelessly. For example,
the set of linear inequalities

1>x >0,

1>x >0,

1 >x3>0,

xi+x—x3 =<1,

Xy +x2+x3 <2,
has precisely the same 0/1 solutions as the inequality system that describes Pg.
It is easy to see that (1, 1, 0) (the characteristic vector of {1, 2}) is the only 0/1
vector excluded by x| + x, — x3 < 1. Also, (1, 1, 1) (the characteristic vector

of {1,2,3}) is the only 0/1 vector excluded by x; + x, + x3 < 2. However,
these inequalities describe a region that properly contains Pgs:

0, 1,1)

/>

(12, 1, 1/2)
(0, 1,0)
(1, 1/2, 1/2)

(1,0,1)

(0,0,0) (1,0,0)

The difficulty with this latter set of inequalities is that there are linear func-
tions having their unique maximum on the feasible region at a point with
fractional components. For example, 5x; 4 4x; + x3 (the objective function
that we used earlier) has its unique maximum at x = (1, 1/2, 1/2). So, if we
do not work with the inequalities that describe the convex hull, we cannot
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Introduction 5

rely on linear programming to identify an optimal solution to the underlying
combinatorial-optimization problem. Finally, we note that if we add 1/2 of each
of the inequalities

X +x—x3 =1,

X1+ x2 +x3 <2,
we get
X1+ x < 3/2.

Rounding down the right-hand-side constant, which we can do because the
left-hand side will only take on integer values on 0/1 solutions, we recover the
inequality

xp+x <1,

which is needed in the inequality description of Ps.

Even if we have a description of the convex hull using linear inequalities,
the situation is far more difficult for nonlinear maximization. For example, it
is not hard to see that the function 2x; + x, — 3x1x, + x3 is maximized on Pg
by the point x = (1, 0, 1). However, this function is not concave, so methods
of nonlinear optimization that would seek a local minimum on the convex set
‘Ps may fail to find the optimum. For example, the point x = (0,1, 1) is a
strict local minimizer on Ps. Therefore, it is hard to proceed from that point
to the optimum by use of local methods of nonlinear programming. We can
try to salvage something by transforming the objective function. The concave
function —3x12 — 3x§ — 3x1x2 + 5x1 + 4x, + x5 takes on the same values at
0/1 vectors as the original function (we are just using the identity sz. = x; when
xjis O or 1). This function has its unique maximum on Ps atx = (2/3,1/3, 1).
However, this point is not a characteristic vector. Therefore, even though it is
relatively easy to find this maximum by continuous local-search methods of
nonlinear programming (maximizing a strictly concave function on a concave
set is a situation in which finding a local maximizer is sufficient), the solution
does not solve the underlying combinatorial-optimization problem. Finally, if
we are clever enough to notice that the function 2x; + x, + x3 takes on the same
values at feasible 0/1 vectors as the original function 2x; + x, — 3xx; + X3,
then we can easily find x = (1, 0, 1) as the solution of a linear program.

The important point to draw from this example is that continuous model-
ing must be done very carefully when variables are used to represent discrete
choices in a combinatorial-optimization problem. This section closes with some
Exercise and Problems that further develop this point.
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6 Introduction

Exercise (Comparing relaxations). The following three systems of in-
equalities have the same set of integer-valued solutions.

x1+x <1 x>0
xp+x3 =<1 x>0
) X1 4+x4 <1 x3>0
X4+ x3 <1 x4 >0
X+ x4 <1
X1+x+x3<1
2X1 +2x0+x3+ x4 <2
X1+x+x4 <1
0<x <1
x>0
(I11) 0<x<1 (1)
x>0
0<x3<1
x3>0
0<x <1
X4_O

In fact, the solutions to each system are the characteristic vectors of the
“vertex packings” of the graph following — a vertex packing of G is just a
set of vertices S with no edges of G between elements of S:

Compare how closely the three systems of inequalities approximate the set
of integer-valued solutions in real space.

Problem (Uncapacitated facility location). The uncapacitated facility-
location problem involves production and distribution of a single commodity
at available facility locations, numbered 1, 2, ..., n. Customers, numbered
1,2, ..., m have demand for the commodity. A fixed-cost f; is incurred if
any (positive) production occurs at facility i. The profit (not accounting for
the fixed costs) for satisfying the fraction x;; of the demand of customer
J from facility i is ¢;;x;;. The goal is to maximize net profit, subject to
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Introduction 7

satisfying all customer demand exactly. We can formulate this problem as
the program

m m n
max — E fiyi+ E CijXij
i=1 i=1 j=1
subject to:

D xiy=1,forj=12..n

i=1

(%) —ny,-+Zx,-j§O, fori =1,2,...,m;
j=1
0<x;;<1, fori=1,2,...,mand
j=1,2,...,n;
0 <y; < linteger, fori =1,2,...,m.

Compare the strength of () and

(k%) —yi+x;; <0, fori =1,2,...,mand j =1,2,...,n.

Problem (Piecewise-linear functions). In practical instances of many op-
timization problems, key quantities, like costs, may not be well modeled
as linear functions. In many instances, however, a piecewise-linear func-
tion is adequate. Let x' < x> < --- < x" be real numbers. We consider
the piecewise-linear function f : [x!, x"] — R that we define by linearly
interpolating f between the x'. That is, if x = A;x’ 4+ A;;x'*!, for some
AisAipx1 >0 with A; + Aivl = 1, then f(x) := )»,'f(x") + )\i_;,_lf()CiJrl)Z

f(xi+1)
S0 = R fO) + Ky fxTT)

fGxh
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8 Introduction

The difficulty in formulating this with linear constraints is that the choice
of i depends on x. Still, with 0/1 variables, we can make the choice. We
employ the formulation

FE) =) nfx');
i=1

n n—1
Z)ui = 1; Zyl = 1;
i=1 i=1

A >0, fori =1,2,...,n; y; > 0integer,fori =1,2,...,n— 1,

(%) y; =1 = only A; and A,;;; may be positive.

a. Explain why (%) can be modeled by
A =n
(k%) A <yio1+y, fori =2,3,...,n—1.
)‘-n < Yn—1
b. Compare the strength of («x) and
j jtl
Yoy diforj=1,2...,n-2
i=1 i=1

n—1

n .
Soyi<Y hforj=23...n—1
i=j i=j

(5 % %)
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_0_

Polytopes and Linear Programming

In this chapter, we review many of the main ideas and results concerning poly-
topes and linear programming. These ideas and results are prerequisite to much
of combinatorial optimization.

0.1 Finite Systems of Linear Inequalities

Let x*, k € N, be a finite set of points in R”. Any point x € R" of the form
X = ZkeN Axk, with A, € R, is a linear combination of the x*. If, in addition,
we have all A; > 0, then the combination is conical. If Zke ~ A =1, then
the combination is affine. Combinations that are both conical and affine are
convex. The points xk e R" k € N, are linearly independent if Zke N Axk =0
implies Ay = 0V k € N.The points x* € R", k € N, are affinely independent if
Y ien Mxt =0,y A = Oimplies Ay = 0Vk € N.Equivalently, the points
x* € R", k € N, are affinely independent if the points (Xlk) eR™! ke N,are
linearly independent.

A set X C R" is a subspace/cone/affine set/convex set if it is closed un-
der (finite) linear/conical/affine/convex combinations. The linear span/conical
hull/affine span/convex hull of X, denoted sp(X)/cone(X)/aff(X)/conv(X), is
the set of all (finite) linear/conical/affine/convex combinations of points in X.
Equivalently, and this needs a proof, sp(X)/cone(X)/aff(X)/conv(X) is the
intersection of all subspaces/cones/affine sets/convex sets containing X.
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10 0 Polytopes and Linear Programming

In the following small example, X consists of two linearly independent points:

T

sp(X) cone(X) aff(X) conv(X)

A polytope is conv(X) for some finite set X C R". A polytope can also be
described as the solution set of a finite system of linear inequalities. This result
is called Weyl’s Theorem (for polytopes). A precise statement of the theorem
is made and its proof is provided, after a very useful elimination method is
described for linear inequalities.

Fourier—Motzkin Elimination is the analog of Gauss—Jordan Elimination, but
for linear inequalities. Consider the linear-inequality system

Zaijxj <b;, fori=1,2,...,m.
j=1
Select a variable x; for elimination. Partition {1, 2, ..., m} based on the signs
of the numbers a;;, namely,
Sy :={i : ay > 0},
S_:={i : ayx <0},
S() = {l L Qi =0}

The new inequality system consists of
n

Zaijxj < b; fori € Sy,

j=1
together with the inequalities

n n
—ay; <Zaijxj < bi) + a;; Zaljxj <b),
j=1 j=1

for all pairs of i € S, and/ € S_. It is easy to check that

1. the new system of linear inequalities does not involve x;
2. each inequality of the new system is a nonnegative linear combination of the
inequalities of the original system;
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