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The Boltzmann distribution law and
statistical thermodynamics

1.1 Nature and aims of statistical mechanics

Statistical mechanics is the theoretical apparatus with which one studies the
properties of macroscopic systems – systems made up of many atoms or
molecules – and relates those properties to the system’s microscopic consti-
tution. One branch of the subject, called statistical thermodynamics, is devoted
to calculating the thermodynamic functions of a system of given composi-
tion when the forces of interaction within and between the system’s constituent
molecules are given or are presumed known. This first chapter is directed toward
obtaining the most commonly used formulas of statistical thermodynamics and
much of the remainder of the book illustrates their application.

Because the systems to which the theory is applied consist of large numbers
of molecules, and are thus systems of a large number of mechanical degrees of
freedom, we are not interested in all the details of their underlying microscopic
dynamics (and could hardly hope to know them even if we were interested).
Instead, it is the systems’ macroscopic properties – among which are the ther-
modynamic functions – that we wish to understand or to calculate, and these
are gross averages over the detailed dynamical states. That is the reason for the
word “statistical” in the name of our subject.

A prominent feature in the landscape of statistical mechanics is the Boltzmann
distribution law, which tells us with what frequency the individual microscopic
states of a system of given temperature occur. An informal statement of that law
is given in the next section, where it is seen to be an obvious generalization of
two other well known distribution laws: the Maxwell velocity distribution and
the “barometric” distribution. We also remark there that the exponential form
of the Boltzmann distribution law is consistent with – indeed, is required by –
the rule that the probability of occurrence of independent events is the product
of the separate probabilities.
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2 1 Statistical thermodynamics

In §1.3 we shall find that the normalization constant that occurs in the
Boltzmann distribution is related to the system’s free energy. That is the key
to statistical thermodynamics. Together with a related but simpler observa-
tion about the connection between thermodynamic and mechanical energy, it
amounts to having found the microscopic interpretation of the first and second
laws of thermodynamics.

1.2 The Boltzmann distribution law

The Boltzmann distribution law says that if the energy associated with some
state or condition of a system is ε then the frequency with which that state or
condition occurs, or the probability of its occurrence, is proportional to

e−ε/kT , (1.1)

where T is the system’s absolute temperature and where k is the Boltzmann
constant, which the reader will already have encountered in the kinetic theory
of gases:

k = 1.38 × 10−23 J/K = 1.38 × 10−16 erg/K. (1.2)

Many of the most familiar laws of physical chemistry are obvious special
cases of the Boltzmann distribution law. An example is the Maxwell velocity
distribution. Let v be one of the components of the velocity (vx or vy or vz) of
a molecule in a fluid (ideal gas, imperfect gas, or liquid – it does not matter),
let m be the mass of the molecule, and let f (v)dv be the probability that v

will be found in the infinitesimal range v to v + dv. This f (v) is one of the
velocity distribution functions that play a prominent part in the kinetic theory
of gases. A graph of f (v) is shown in Fig. 1.1. Roughly speaking, it gives the
frequency of occurrence of the value v for that chosen velocity component.
More precisely, the probability f (v)dv (which is the area under the f (v) curve

0    υ  υ + dυ
υ

f(υ)

area f(υ)dυ

Fig. 1.1
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1.2 The Boltzmann distribution law 3

between v and v + dv; Fig. 1.1) is the fraction of the time, averaged over
long times, that any one molecule has for that one of its velocity components
a value in the range v to v + dv. (The velocities of the individual molecules
continually change with time because the molecules continually collide and
otherwise interact with each other.) Alternatively but equivalently, at any one
instant the infinitesimal fraction f (v)dv of all the molecules are molecules that
have for that component of their velocity a value in the range v to v + dv. The
velocity distribution function f (v) is

f (v) =
√

m

2πkT
e−mv2/2kT . (1.3)

The energy associated with that velocity component’s having the valuev (kinetic
energy in this instance) is ε = 1

2 mv2, so the Maxwell velocity distribution (1.3)
is obviously a special case of the Boltzmann distribution (1.1).

Another special case of the Boltzmann distribution (1.1) is the “barometric”
distribution, giving the number density ρ(h) (number of molecules per unit
volume) of an ideal gas of uniform temperature T as a function of height h
in the field of the earth’s gravity. (This could be the earth’s atmosphere, say,
with the temperature assumed not to vary too much with height – although that
is a questionable assumption for the atmosphere.) A column of such a gas of
arbitrary cross-sectional area A is depicted in Fig. 1.2. The volume of that part
(shown shaded in the figure) that is between h and h + dh is Adh and its mass
is then mρ(h) Adh with m again the mass of a molecule. With the gravitational
acceleration g acting downward, that infinitesimal element of the gas, because of
its weight, exerts a force mg ρ(h) Adh on the column of gas below it. The excess
pressure (force per unit area) at the height h over that at the height h + dh is then

ph − ph+dh = −dp = mg ρ(h)dh. (1.4)

This would be true no matter what fluid was in the column; but for an ideal gas
the pressure p and number density ρ are related by p = ρkT . [This follows

h + dh

h

g

Fig. 1.2
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4 1 Statistical thermodynamics

from the ideal-gas law pV = n RT , with n the number of moles and R the gas
constant, together with n = N/N0, where N is the number of molecules and
N0 is Avogadro’s number, with k = R/N0 (as identified in the kinetic theory
of the ideal gas), and with ρ = N/V .] Therefore (1.4) becomes a differential
equation for ρ(h),

dρ(h)/dh = −(mg/kT )ρ(h). (1.5)

The solution, as we may readily verify by differentiation with respect to h, is

ρ(h) = ρ(h0)e−mg(h−h0)/kT (1.6)

where h0 is an arbitrary fixed reference height. If the gas is a mixture of different
species with differing molecular masses m, each has its own distribution (1.6)
with its own m.

This is the barometric distribution. Since the probability of finding any spec-
ified molecule at the height h is proportional to the number density there, (1.6)
is equally well the probability distribution as a function of the height h. Then
(1.6) says that the probability of finding a specified molecule at h varies with
h as exp(−mgh/kT ). But we recognize mgh as the energy ε (potential energy
in this instance) associated with the molecule’s being in that state – i.e., at the
height h in the earth’s gravity. Thus, (1.6) is clearly another special case of the
Boltzmann distribution law (1.1).

Exercise (1.1). Spherical particles of diameter 0.5 µm and density 1.10 g/cm3

are suspended in water (density 1.00 g/cm3) at 20 ◦C. (Particles of such size
are called colloidal and a suspension of such particles is a colloid or a colloidal
suspension.) Find the effective mass m of the particles, corrected for buoyancy,
and then calculate the vertical distance over which the number density of sus-
pended particles decreases by the factor 1/e. (Historically, in experiments by
J. Perrin, who measured the distribution of such particles with height, this was
one of the methods by which Boltzmann’s constant k was determined – or,
equivalently, Avogadro’s number N0, since N0 = R/k and the gas constant R
is known from simple measurements on gases.)

Solution. The volume of each particle is (4π/3)(0.5/2)3 10−18 m3 = 0.065 ×
10−12 cm3, so the effective mass is m = (0.065 × 10−12)(1.10 − 1.00) g =
6.5 × 10−15 g. From the barometric distribution (1.6), the vertical distance
over which the number density decreases by the factor e is kT/mg, which, with
k = 1.38 × 10−16 erg/K, T = 293 K, m = 6.5 × 10−15 g, and acceleration due
to gravity, g = 981 cm s−2, is 6.3 × 10−3 cm.
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1.2 The Boltzmann distribution law 5

The exponential dependence of the probability on the energy in the distri-
bution law (1.1) is a reflection of the product law for the composition of probabil-
ities of independent events. Suppose ε1 is the energy associated with some state
or condition of the system and ε2 is that associated with some other condition,
and that the occurrences of these two states are independent. For example, we
might ask for the chance that one molecule in a fluid has its x-component
of velocity in the range v1 to v1 + dv1, for which the associated energy is
ε1 = 1

2 mv1
2, while another molecule has its x-component of velocity in the

range v2 to v2 + dv2, for which ε2 = 1
2 mv2

2; or v1 and v2 could be the x- and
y-components of velocity of the same molecule, these, too, being independent
of each other. Then, with the simultaneous occurrence of the two events viewed
as a single event, the energy associated with it is ε1 + ε2, while the probability of
its occurrence must be the product of the separate probabilities. The probability
must therefore be an exponential function of the energy ε, because the expo-
nential is the unique function F(ε) with the property F(ε1 + ε2) = F(ε1)F(ε2):

e−(ε1+ε2)/kT = e−ε1/kT e−ε2/kT . (1.7)

That the parameter determining how rapidly the exponential decreases with
increasing energy is the absolute temperature is a law of nature; we could not
have guessed that by mathematical reasoning alone.

For the purposes of developing statistical thermodynamics in the next section
we shall here apply the distribution law to tell us the frequency of occurrence
of the states i , of energy Ei , of a whole macroscopic system. For generality we
may suppose these to be the quantum states (although classical mechanics is
often an adequate approximation). We should understand, however, that there
may be tremendous complexity hidden in the simple symbol i . We may think
of it as a composite of, and symbolic for, some enormous number of quantum
numbers, as many as there are mechanical degrees of freedom in the whole
system, a number typically several times the number of molecules and thus
perhaps of the order of 1023 or 1024.

For such a macroscopic system in equilibrium at the temperature T , the
probability Pi of finding it in the particular state i is, according to the Boltzmann
distribution law (1.1),

Pi = e−Ei /kT∑
i

e−Ei /kT
. (1.8)

The denominator is the sum of exp(−Ei/kT ) over all states i (and so does
not depend on i , which is there just a dummy summation index), and is what
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6 1 Statistical thermodynamics

guarantees that Pi is properly normalized:∑
i

Pi = 1. (1.9)

That normalization denominator is called the partition function of the system,
and is the key to statistical thermodynamics.

1.3 The partition function and statistical thermodynamics

What we identify and measure as the thermodynamic energy U of a macro-
scopic system is the same as its total mechanical energy E : the sum total of all
the kinetic and potential energies of all the molecules that make up the system.
Is that obvious? If it now seems obvious it is only because we have given the
same name, energy, to both the thermodynamic and the mechanical quantities,
but historically they came to be called by the same name only after much exper-
imentation and speculation led to the realization that they are the same thing.

Two key observations led to our present understanding. The energy E of an
isolated mechanical system is a constant of the motion; although the coordi-
nates and velocities of its constituent parts may change with time, that function
of them that is the energy has a fixed value, E . That is at the mechanical level.
At the thermodynamic level, as one aspect of the first law of thermodynamics,
it was recognized that if a system is thermally and mechanically isolated from
its surroundings – thermally isolated so that no heat is exchanged (q = 0) and
mechanically isolated so that no work is done (w = 0) – then the function U
of its thermodynamic state does not change. That is one fundamental property
that the mechanical E and the thermodynamic U have in common. The second
is that if the mechanical system is not isolated, its energy E is not a constant of
the motion, but can change, and does so by an amount equal to the work done on
the system: 
E = w. Likewise, in thermodynamics, if a system remains ther-
mally insulated (q = 0), but is mechanically coupled to its environment, which
does work w on it, then its energy U changes by an amount equal to that work:

U = w. This coincidence of two such fundamental properties is what led to the
hypothesis that the thermodynamic function U in the first law of thermodynam-
ics is just the mechanical energy E of a system of some huge number of degrees
of freedom: the total of the kinetic and potential energies of the molecules.

If our system is not isolated but is in a thermostat that fixes its temperature T
and with which it can exchange energy, then the energy E is not strictly constant,
but can fluctuate. Such energy fluctuations in a system of fixed temperature,
while often interesting and sometimes important, are of no thermodynamic
consequence: the fluctuations in the energy are minute compared with the total
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1.3 The partition function and statistical thermodynamics 7

and are indiscernible at a macroscopic level. Therefore the thermodynamic
energy U in a system of fixed temperature T may be identified with the mean
mechanical energy Ē about which the system’s mechanical energy fluctuates.

That mean energy Ē of a system of given T is now readily calculable from
the Boltzmann distribution (1.8):

Ē =
∑

i
Ei e−Ei /kT

∑
i

e−Ei /kT
, (1.10)

and this is what we may now identify as the thermodynamic energy U at the
given T . To know the system’s energy levels Ei we must know its volume V and
also its chemical composition, i.e., the numbers of molecules N1, N2, . . . of each
chemical species 1, 2, . . . present in the system, for only then is the mechanical
system defined. The energy levels Ei are therefore themselves functions of
V , N1, N2, . . . , and the Ē (=U ) obtained from (1.10) is then a function of
these variables and of the temperature T . From the identity d ln x/dx = 1/x
and the chain rule for differentiation, we then see that (1.10) implies

U (T, V , N1, N2, . . .) = Ē = −
(

∂

∂ 1
kT

ln
∑

i

e−Ei /kT

)
V ,N1,N2,...

. (1.11)

The argument of the logarithm in (1.11) is just the normalization denominator
in the probability distribution Pi in (1.8). It is called the partition function,
as remarked at the end of §1.2. It is a function of temperature, volume, and
composition. We shall symbolize it by Z , so

Z (T, V , N1, N2, . . .) =
∑

i

e−Ei /kT . (1.12)

Equation (1.11) is then

U = −k[∂ ln Z/∂(1/T )]V ,N1,N2,.... (1.13)

Now compare this with the Gibbs–Helmholtz equation of thermodynamics,

U = [∂(A/T )/∂(1/T )]V ,N1,N2,... (1.14)

with A the Helmholtz free energy. We conclude that there is an intimate con-
nection between the free energy A and the partition function Z ,

A = −kT ln Z + T φ(V , N1, N2, . . .) (1.15)

where φ is some as yet unknown function of just those variables V , N1, N2, . . .

that are held fixed in the differentiations in (1.13) and (1.14). Because it is
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8 1 Statistical thermodynamics

independent of T , this φ does not contribute to those derivatives and thus, so
far, could be any function of volume and composition.

In the next chapter, §2.2, and in Chapter 3, §3.2, we shall see from what (1.15)
implies for an ideal gas that φ is in fact independent of V and is an arbitrary
linear function of N1, N2, . . . , associated with an arbitrary choice for the zero of
entropy. (Since A = U − T S with S the entropy, such an arbitrary additive term
in the entropy becomes an arbitrary additive multiple of the absolute temperature
T in the free energy, as in (1.15).) We shall then follow the universally accepted
convention of taking that arbitrary linear function of N1, N2, . . . to be 0. Thus,

A = −kT ln Z . (1.16)

In the meantime, since the energy scale also has an arbitrary zero, all the
energy levels Ei in the expression (1.12) for Z may be shifted by a common
arbitrary amountη, say. There is then an arbitrary factor of the form exp(−η/kT )
in Z , which, via (1.13), manifests itself as an arbitrary constant η in U, as
expected. The same η also appears as an arbitrary additive constant (in addition
to the arbitrary multiple of T ) in the free energy A in (1.15) (now associated
with the U in A = U − T S).

Calculating the partition function Z is the central problem of statistical ther-
modynamics, and much of the remainder of this book is devoted to calculating
it for specific systems. Once the system’s partition function has been calculated
its Helmholtz free energy A follows from (1.16). That free energy is thus ob-
tained as a function of the temperature, volume, and composition. As a function
of just those variables, A is a thermodynamic potential; i.e., all the other ther-
modynamic functions of the system are obtainable from A(T, V , N1, N2, . . .)
by differentiations alone, no integrations being required. For example, we have
the thermodynamic identities

S = −(∂ A/∂T )V ,N1,N2,... (1.17)

U = A + T S (1.18)

p = −(∂ A/∂V )T,N1,N2,... (1.19)

µ1 = (∂ A/∂ N1)T,V ,N2,N3,..., etc. (1.20)

in addition to the Gibbs–Helmholtz equation (1.14), yielding the entropy S,
energy U , pressure p, and chemical potentials µ1, µ2, . . . . (These are molec-
ular rather than molar chemical potentials; they differ from the ones usually
introduced in thermodynamics by a factor of Avogadro’s number. The molec-
ular chemical potential is the one more frequently used in statistical mechan-
ics, where chemical composition is usually given by numbers of molecules
N1, N2, . . . rather than numbers of moles n1, n2, . . . .)
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1.3 The partition function and statistical thermodynamics 9

E E + dE
E

E0

Fig. 1.3

For a macroscopic system, which consists of many, more or less strongly
interacting particles, the spacing of the energy levels Ei is usually very much
less than the typical thermal energy kT . On any reasonable scale the levels
would appear to be almost a continuum. If for no other reason, that would be
true because one component of each Ei is the total translational energy of all
the molecules, which is then the energy of a large number of particles in a box
of macroscopic volume V . But the spacing of particle-in-a-box energy levels
decreases with increasing size of the box, as one learns in quantum mechanics,
and so is very small when V is of macroscopic size. A consequence of this
close spacing of the energy levels Ei is that it is often more convenient and
more realistic to treat those levels as though they formed a continuum, and to
describe the distribution of the levels as a density of states, W (E), such that
W (E) dE is the number of states i with energies Ei in the infinitesimal range
E to E + dE . This is illustrated in Fig. 1.3, which shows, schematically, a near
continuum of energy levels starting from the ground state of energy E0. The
density of these levels at the energy E , that is, the number of states per unit
energy at that E , is W (E).

Since all the states in the infinitesimal energy range E to E + dE have
essentially the same energy E , that part of the summation over states i in (1.12)
that is over the states with energies in that range contributes to the partition
function Z just the common exp(−E/kT ) times the number, W (E) dE , of
those states; and the full sum over i is then the sum (integral) of all these
infinitesimal contributions exp(−E/kT )W (E) dE . Thus,

Z =
∫ ∞

E0

e−E/kT W (E) dE . (1.21)

The density of states, W(E), depends also on the volume and composition of
the system, so, expressed more fully, it is a function W (E, V , N1, N2, . . .).
Equation (1.21) then expresses Z (T, V , N1, N2, . . .) as an integral transform
(a so-called Laplace transform) of the density of states: multiplying W by
exp(−E/kT ) and integrating over all E transforms W (E) into Z (T ).
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10 1 Statistical thermodynamics

From this same point of view the Boltzmann distribution law, too, may be
written in terms of a continuous probability distribution Q(E) rather than in
terms of the discrete Pi . The probability Q(E) dE that the system will be found
in any of the states i with energies Ei in the range E to E + dE is found by
summing the Pi of (1.8) over just those states. Again, exp(−Ei/kT ) has the
nearly constant value exp(−E/kT ) for each term of the sum and there are
W (E) dE such terms, so from (1.8) and the definition of Z in (1.12), we have
Q(E) dE = Z−1 exp(−E/kT )W (E) dE , or

Q(E) = Z−1W (E)e−E/kT . (1.22)

This is the form taken by the Boltzmann distribution law when it is recognized
that the energies Ei of the states i of a macroscopic system are virtually a
continuum with some density W (E).

We have already remarked that when the temperature of a system is prescribed
its energy E fluctuates about its mean energy Ē but that the departures of E
from Ē are not great enough to be discernible at a macroscopic level, so that
the thermodynamic energy U may be identified with Ē . Since the probability
of finding the system’s energy in the range E to E + dE when the temperature
is prescribed is Q(E) dE , this means that the distribution function Q(E) must
be very strongly peaked about E = Ē , as in Fig. 1.4. The figure shows the
distribution to have some width, δE . The energy Ē (=U ), being an extensive
thermodynamic function, is proportional to the size of the system. We may
conveniently take the number of its molecules, or total number of its mechanical
degrees of freedom, to be a dimensionless measure of the system’s size. Call
this number N . It will typically be of the order of magnitude of Avogadro’s
number, say 1022 to 1024. Then the mean energy Ē will be of that order of
magnitude; i.e., it will be of order ε̄N , where the intensive ε̄ is the energy per
molecule or per degree of freedom. With such a measure N of the system size,
the typical energy fluctuations δE (Fig. 1.4) are only of order

√
N ; i.e., they

Q(E)

δE

E
E

Fig. 1.4
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