
1
Introduction

Hyperbolic systems of partial differential equations can be used to model a wide variety of
phenomena that involve wave motion or the advective transport of substances. This chapter
contains a brief introduction to some of the fundamental concepts and an overview of the
primary issues discussed in this book.
The problems we consider are generally time-dependent, so that the solution depends

on time as well as one or more spatial variables. In one space dimension, a homogeneous
first-order system of partial differential equations in x and t has the form

qt (x, t)+ Aqx (x, t) = 0 (1.1)

in the simplest constant-coefficient linear case. Here q :R × R → R
m is a vector with

m components representing the unknown functions (pressure, velocity, etc.) we wish to
determine, and A is a constantm×m real matrix. In order for this problem to be hyperbolic,
the matrix must satisfy certain properties discussed below. Note that subscripts are used to
denote partial derivatives with respect to t and x .
The simplest case is the constant-coefficient scalar problem, in which m= 1 and the

matrix A reduces to a scalar value. This problem is hyperbolic provided the scalar A is
real. Already this simple equation can model either advective transport or wave motion,
depending on the context.
Advective transport refers to a substance being carried along with fluid motion. For ex-

ample, consider a contaminant being advected downstreamwith some fluid flowing through
a one-dimensional pipe at constant velocity ū. Then the concentration or density q(x, t) of
the contaminant satisfies a scalar advection equation of the form

qt (x, t)+ ūqx (x, t) = 0, (1.2)

as derived in Chapter 2. It is easy to verify that this equation admits solutions of the form

q(x, t) = q̃(x − ūt) (1.3)

for any function q̃(ξ ). The concentration profile (or waveform) specified by q̃ simply prop-
agates with constant speed ū and unchanged shape. In this context the equation (1.2) is
generally called the advection equation.
The phenomenon of wave motion is observed in its most basic form if we model a sound

wave traveling down a tube of gas or through an elastic solid. In this case the molecules of
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2 1 Introduction

the gas or solid barely move, and yet a distinct wave can propagate through the material
with its shape essentially unchanged over long distances, and at a speed c (the speed of
sound in the material) that is much larger than the velocity of material particles. We will see
in Chapter 2 that a sound wave propagating in one direction (to the right with speed c > 0)
can be modeled by the equation

wt (x, t)+ cwx (x, t) = 0, (1.4)

wherew(x, t) is an appropriate combination of the pressure and particle velocity. This again
has the form of a scalar first-order hyperbolic equation. In this context the equation (1.4) is
sometimes called the one-way wave equation because it models waves propagating in one
particular direction.
Mathematically the advection equation (1.2) and the one-way wave equation (1.4) are

identical, which suggests that advective transport and wave phenomena can be handled by
similar mathematical and numerical techniques.
Tomodel acousticwaves propagating in both directions along a one-dimensionalmedium,

we must consider the full acoustic equations derived in Chapter 2,

pt (x, t)+ Kux (x, t) = 0,

ut (x, t)+ (1/ρ)px (x, t) = 0,
(1.5)

where p(x, t) is the pressure (or more properly the perturbation from some background
constant pressure), and u(x, t) is the particle velocity. These are the unknown functions to
be determined. The material is described by the constants K (the bulk modulus of com-
pressibility) and ρ (the density). The system (1.5) can be written as the first-order system
qt + Aqx = 0, where

q =
[
p
u

]
, A =

[
0 K
1/ρ 0

]
. (1.6)

To connect this with the one-way wave equation (1.4), let

w1(x, t) = p(x, t)+ ρcu(x, t),

where c = √
K/ρ. Then it is easy to check that w1(x, t) satisfies the equation

w1
t + cw1

x = 0

and so we see that c can be identified as the speed of sound. On the other hand, the function

w2(x, t) = p(x, t)− ρcu(x, t)

satisfies the equation

w2
t − cw2

x = 0.

This is also a one-way wave equation, but with propagation speed −c. This equation has
solutions of the form q2(x, t) = q̃(x + ct) and models acoustic waves propagating to the
left at the speed of sound, rather than to the right.
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1.1 Conservation Laws 3

The system (1.5) of two equations can thus be decomposed into two scalar equations
modeling the two distinct acoustic waves moving in different directions. This is a funda-
mental theme of hyperbolic equations and crucial to the methods developed in this book.
We will see that this type of decomposition is possible more generally for hyperbolic sys-
tems, and in fact the definition of “hyperbolic” is directly connected to this. We say that
the constant-coefficient system (1.1) is hyperbolic if the matrix A has real eigenvalues and
a corresponding set of m linearly independent eigenvectors. This means that any vector in
R
m can be uniquely decomposed as a linear combination of these eigenvectors. As we will

see in Chapter 3, this provides the decomposition into distinct waves. The corresponding
eigenvalues of A give the wave speeds at which each wave propagates. For example, the
acoustics matrix A of (1.6) has eigenvalues−c and+c, the speeds at which acoustic waves
can travel in this one-dimensional medium.
For simple acoustic waves, some readers may be more familiar with the second-order

wave equation

ptt = c2 pxx . (1.7)

This equation for the pressure can be obtained from the system (1.5) by differentiating the
first equation with respect to t and the second with respect to x , and then eliminating the
uxt terms. The equation (1.7) is also called a hyperbolic equation according to the stan-
dard classification of second-order linear equations into hyperbolic, parabolic, and elliptic
equations (see [234], for example). In this book we only consider first-order hyperbolic
systems as described above. This form is more fundamental physically than the derived
second-order equation, and is more amenable to the development of high-resolution finite
volume methods.
In practical problems there is often a coupling of advective transport and wave motion.

For example, we will see that the speed of sound in a gas generally depends on the density
and pressure of the gas. If these properties of the gas vary in space and the gas is flowing, then
these variations will be advected with the flow. This will have an effect on any sound waves
propagating through the gas. Moreover, these variations will typically cause acceleration
of the gas and have a direct effect on the fluid motion itself, which can also be modeled as
wave-propagation phenomena. This coupling leads to nonlinearity in the equations.

1.1 Conservation Laws

Much of this book is concerned with an important class of homogeneous hyperbolic equa-
tions called conservation laws. The simplest example of a one-dimensional conservation
law is the partial differential equation (PDE)

qt (x, t)+ f (q(x, t))x = 0, (1.8)

where f (q) is the flux function. Rewriting this in the quasilinear form

qt + f ′(q)qx = 0 (1.9)

suggests that the equation is hyperbolic if the flux Jacobian matrix f ′(q) satisfies the con-
ditions previously given for the matrix A. In fact the linear problem (1.1) is a conservation
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4 1 Introduction

law with the linear flux function f (q)= Aq . Many physical problems give rise to nonli-
near conservation laws in which f (q) is a nonlinear function of q, a vector of conserved
quantities.

1.1.1 Integral Form

Conservation laws typically arise most naturally from physical laws in an integral form as
developed in Chapter 2, stating that for any two points x1 and x2,

d

dt

∫ x2

x1

q(x, t) dx = f (q(x1, t))− f (q(x2, t)). (1.10)

Each component of q measures the density of some conserved quantity, and the equation
(1.10) simply states that the “total mass” of this quantity between any two points can change
only due to the flux past the endpoints. Such conservation laws naturally hold for many
fundamental physical quantities. For example, the advection equation (1.2) for the density
of a contaminant is derived from the fact that the total mass of the contaminant is conserved
as it flows down the pipe and the flux function is f (q) = ūq. If the total mass of contaminant
is not conserved, because of chemical reactions taking place, for example, then the con-
servation law must also contain source terms as described in Section 2.5, Chapter 17, and
elsewhere.
The constant-coefficient linear acoustics equations (1.5) can be viewed as conservation

laws for pressure and velocity. Physically, however, these are not conserved quantities
except approximately in the case of very small amplitude disturbances in uniformmedia. In
Section 2.7 the acoustics equations are derived from the Euler equations of gas dynamics,
the nonlinear conservation laws thatmodelmore general disturbances in a compressible gas.
These equations model the conservation of mass, momentum, and energy, and the laws of
physics determine the flux functions. See Section 2.6 and Chapter 14 for these derivations.
These equations have been intensively studied and used in countless computations because
of their importance in aerodynamics and elsewhere.
There are many other systems of conservation laws that are important in various appli-

cations, and several are used in this book as examples. However, the Euler equations play a
special role in the historical development of the techniques discussed in this book. Much of
the mathematical theory of nonlinear conservation laws was developed with these equations
in mind, and many numerical methods were developed specifically for this system. So, al-
though the theory and methods are applicable much more widely, a good knowledge of the
Euler equations is required in order to read much of the available literature and benefit from
these developments. A brief introduction is given in Chapter 14. It is a good idea to become
familiar with these equations even if your primary interest is far from gas dynamics.

1.1.2 Discontinuous Solutions

The differential equation (1.8) can be derived from the integral equation (1.10) by simple
manipulations (see Chapter 2) provided that q and f (q) are sufficiently smooth.This proviso
is important because in practice many interesting solutions are not smooth, but contain
discontinuities such as shock waves. A fundamental feature of nonlinear conservation laws
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1.2 Finite Volume Methods 5

is that these discontinuities can easily develop spontaneously even from smooth initial data,
and so they must be dealt with both mathematically and computationally.
At a discontinuity in q , the partial differential equation (1.8) does not hold in the classical

sense and it is important to remember that the integral conservation law (1.10) is the more
fundamental equation which does continue to hold. A rich mathematical theory of shock-
wave solutions to conservation laws has been developed. This theory is introduced starting
in Chapter 11.

1.2 Finite Volume Methods

Discontinuities lead to computational difficulties and the main subject of this book is the
accurate approximation of such solutions. Classical finite difference methods, in which
derivatives are approximated by finite differences, can be expected to break down near
discontinuities in the solution where the differential equation does not hold. This book
concerns finite volume methods, which are based on the integral form (1.10) instead of
the differential equation. Rather than pointwise approximations at grid points, we break
the domain into grid cells and approximate the total integral of q over each grid cell, or
actually the cell average of q , which is this integral divided by the volume of the cell. These
values are modified in each time step by the flux through the edges of the grid cells, and the
primary problem is to determine good numerical flux functions that approximate the correct
fluxes reasonably well, based on the approximate cell averages, the only data available. We
will concentrate primarily on one class of high-resolution finite volume methods that have
proved to be very effective for computing discontinuous solutions. See Section 6.3 for an
introduction to the properties of these methods.
Other classes of methods have also been applied to hyperbolic equations, such as finite

element methods and spectral methods. These are not discussed directly in this book,
although much of the material presented here is good background for understanding high-
resolution versions.

1.2.1 Riemann Problems

A fundamental tool in the development of finite volume methods is the Riemann problem,
which is simply the hyperbolic equation together with special initial data. The data is
piecewise constant with a single jump discontinuity at some point, say x = 0,

q(x, 0) =
{
ql if x < 0,

qr if x > 0.
(1.11)

If Qi−1 and Qi are the cell averages in twoneighboring grid cells on afinite volumegrid, then
by solving the Riemann problem with ql = Qi−1 and qr = Qi , we can obtain information
that can be used to compute a numerical flux and update the cell averages over a time
step. For hyperbolic problems the solution to the Riemann problem is typically a similarity
solution, a function of x/t alone, and consists of a finite set of waves that propagate away
from the origin with constant wave speeds. For linear hyperbolic systems the Riemann
problem is easily solved in terms of the eigenvalues and eigenvectors of the matrix A, as
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6 1 Introduction

developed in Chapter 3. This simple structure also holds for nonlinear systems of equations
and the exact solution (or arbitrarily good approximations) to the Riemann problem can be
constructed even for nonlinear systems such as the Euler equations. The theory of nonlinear
Riemann solutions for scalar problems is developed in Chapter 11 and extended to systems
in Chapter 13.
Computationally, the exact Riemann solution is often too expensive to compute for non-

linear problems and approximate Riemann solvers are used in implementing numerical
methods. These techniques are developed in Section 15.3.

1.2.2 Shock Capturing vs. Tracking

Since the PDEs continue to hold away from discontinuities, one possible approach is to
combine a standard finite difference or finite volume method in smooth regions with some
explicit procedure for tracking the location of discontinuities. This is the numerical analogue
of the mathematical approach in which the PDEs are supplemented by jump conditions
across discontinuities. This approach is often called shock tracking or front tracking. Inmore
than one space dimension, discontinuities typically lie along curves (in two dimensions) or
surfaces (in three dimensions), and such algorithms typically become quite complicated.
Moreover, in realistic problems theremay bemany such surfaces that interact in complicated
ways as time evolves. This approach will not be discussed further in this book. For some
examples and discussion, see [41], [66], [103], [153], [154], [171], [207], [289], [290],
[321], [322], [371], [372].
Instead we concentrate here on shock-capturing methods, where the goal is to capture

discontinuities in the solution automatically, without explicitly tracking them. Discontinu-
ities must then be smeared over one or more grid cells. Success requires that the method
implicitly incorporate the correct jump conditions, reduce smearing to a minimum, and not
introduce nonphysical oscillations near the discontinuities. High-resolution finite volume
methods based onRiemann solutions often performwell and aremuch simpler to implement
than shock-tracking methods.

1.3 Multidimensional Problems

The Riemann problem is inherently one-dimensional, but is extensively used also in the
solution of multidimensional hyperbolic problems. A two-dimensional finite volume grid
typically consists of polygonal grid cells; quadrilaterals or triangles are most commonly
used. ARiemann problem normal to each edge of the cell can be solved in order to determine
the flux across that edge. In three dimensions each face of a finite volume cell can be
approximated by a plane, and a Riemann problem normal to this plane solved in order
to compute the flux. Multidimensional problems are discussed in the Part III of the book,
starting with an introduction to the mathematical theory in Chapter 18.
If the finite volume grid is rectangular, or at least logically rectangular, then the simplest

way to extend one-dimensional high-resolution methods to more dimensions is to use di-
mensional splitting, a fractional-step approach in which one-dimensional problems along
each coordinate direction are solved in turn. This approach, which is often surprisingly ef-
fective in practice, is discussed in Section 19.5. In some cases amore fullymultidimensional
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1.4 Linear Waves and Discontinuous Media 7

method is required, and one approach is developed starting in Chapter 20, which again relies
heavily on our ability to solve one-dimensional Riemann problems.

1.4 Linear Waves and Discontinuous Media

High-resolution methods were originally developed for nonlinear problems in order to ac-
curately capture discontinuous solutions such as shock waves. Linear hyperbolic equations
often arise from studying small-amplitude waves, where the physical nonlinearities of the
true equations can be safely ignored. Such waves are often smooth, since shock waves can
only appear from nonlinear phenomena. The acoustic waves we are most familiar with arise
from oscillations of materials at the molecular level and are typically well approximated
by linear combinations of sinusoidal waves at various frequencies. Similarly, most familiar
electromagnetic waves, such as visible light, are governed by the linear Maxwell equations
(another hyperbolic system) and again consist of smooth sinusoidal oscillations.
Formany problems in acoustics or optics the primary computational difficulty arises from

the fact that the domain of interest is many orders of magnitude larger than the wavelengths
of interest, and so it is important to use a method that can resolve smooth solutions with a
very high order of accuracy in order to keep the number of grid points required manageable.
For problems of this type, themethods developed in this bookmay not be appropriate. These
finite volume high-resolution methods are typically at best second-order accurate, resulting
in the need for many points per wavelength for good accuracy. Moreover they have a
high cost per grid cell relative to simpler finite difference methods, because of the need to
solve Riemann problems for each pair of grid cells every time step. The combination can
be disastrous if we need to compute over a domain that spans thousands of wavelengths.
Instead methods with a higher order of accuracy are typically used, e.g., fourth-order finite
difference methods or spectral methods. For some problems it is hopeless to try to resolve
individual wavelengths, and instead ray-tracing methods such as geometrical optics are
used to determine how rays travel without discretizing the hyperbolic equations directly.
However, there are some situations in which high-resolution methods based on Riemann

solutionsmay have distinct advantages even for linear problems. Inmany applicationswave-
propagation problems must be solved in materials that are not homogeneous and isotropic.
The heterogeneity may be smoothly varying (e.g., acoustics in the ocean, where the sound
speed varies with density, which may vary smoothly with changes in salinity, for example).
In this case high-order methods may still be applicable. In many cases, however, there are
sharp interfaces between different materials. If we wish to solve for acoustic or seismic
waves in the earth, for example, the material parameters typically have jump discontinuities
where soilmeets rock or at the boundaries between different types of rock.Ultrasoundwaves
in the human body also pass throughmany interfaces, between different organs or tissue and
bone. Even in ocean acoustics there may be distinct layers of water with different salinity,
and hence jump discontinuities in the sound speed, as well as the interface at the ocean floor
where waves pass between water and earth. With wave-tracing methods it may be possible
to use reflection and transmission coefficients and Snell’s law to trace rays and reflected
rays at interfaces, but for problems with many interfaces this can be unwieldy. If we wish
to model the wave motion directly by solving the hyperbolic equations, many high-order
methods can have difficulties near interfaces, where the solution is typically not smooth.
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8 1 Introduction

For these problems, high-resolution finite volume methods based on solving Riemann
problems can be an attractive alternative. Finite volume methods are a natural choice for
heterogeneous media, since each grid cell can be assigned different material properties via
an appropriate averaging of the material parameters over the volume enclosed by the cell.
The idea of a Riemann problem is easily extended to the case where there is a discontinuity
in the medium at x = 0 as well as a discontinuity in the initial data. Solving the Riemann
problem at the interface between two cells then gives a decomposition of the data into waves
moving into each cell, including the effects of reflection and transmission as waves move
between different materials. Indeed, the classical reflection and transmission coefficients
for various problems are easily derived and understood in terms of particular Riemann
solutions. Variable-coefficient linear problems are discussed in Chapter 9 and Section 21.5.
Hyperbolic equations with variable coefficients may not be in conservation form, and

so the methods are developed here in a form that applies more generally. These wave-
propagation methods are based directly on the waves arising from the solution of the
Riemann problem rather than on numerical fluxes at cell interfaces. When applied to con-
servation laws, there is a natural connection between these methods and more standard
flux-differencing methods, which will be elucidated as we go along. But many of the
shock-capturing ideas that have been developed in the context of conservation laws are
valuable more broadly, and one of my goals in writing this book is to present these meth-
ods in a more general framework than is available elsewhere, and with more attention to
applications where they have not traditionally been applied in the past.
This book is organized in such a way that all of the ideas required to apply the methods

on linear problems are introduced first, before discussing the more complicated nonlinear
theory. Readerswhose primary interest is in linearwaves should be able to skip the nonlinear
parts entirely by first studying Chapters 2 through 9 (on linear problems in one dimension)
and then the preliminary parts of Chapters 18 through 23 (on multidimensional problems).
For readers whose primary interest is in nonlinear problems, I believe that this orga-

nization is still sensible, since many of the fundamental ideas (both mathematical and
algorithmic) arise already with linear problems and are most easily understood in this con-
text. Additional issues arise in the nonlinear case, but these are most easily understood if
one already has a firm foundation in the linear theory.

1.5 CLAWPACK Software

The CLAWPACK software (“conservation-laws package”) implements the various wave-
propagation methods discussed in this book (in Fortran). This software was originally
developed as a teaching tool and is intended to be used in conjunction with this book.
The use of this software is briefly described in Chapter 5, and additional documentation is
available online, from the webpage

http://www.amath.washington.edu/~claw

Virtually all of the computational examples presented in the book were created using
CLAWPACK, and the source code used is generally available via the website

http://www.amath.washington.edu/~claw/book.html
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1.6 References 9

A parenthetical remark in the text or figure captions of the form

[claw/book/chapN/examplename]

is an indication that accompanying material is available at

http://www.amath.washington.edu/~claw/book/chapN/examplename/www

often including an animation of time-dependent solutions. From this webpage it is generally
possible to download a CLAWPACK directory of the source code for the example. Down-
loading the tarfile and unpacking it in your claw directory results in a subdirectory called
claw/book/chapN/examplename. (You must first obtain the basic CLAWPACK routines as
described in Chapter 5.)
You are encouraged to use this software actively, both to develop an intuition for the

behavior of solutions to hyperbolic equations and also to develop direct experience with
these numerical methods. It should be easy to modify the examples to experiment with
different parameters or initial conditions, or with the use of different methods on the same
problem.
These examples can also serve as templates for developing codes for other problems.

In addition, many problems not discussed in this book have already been solved using
CLAWPACK and are often available online. Some pointers can be found on the webpages for
the book, and others are collected within the CLAWPACK software in the applications
subdirectory; see

http://www.amath.washington.edu/~claw/apps.html

1.6 References

Some references for particular applications and methods are given in the text. There are
thousands of papers on these topics, and I have not attempted to give an exhaustive survey
of the literature by any means. The references cited have been chosen because they are
particularly relevant to the discussion here or provide a good entrance point to the broader
literature. Listed below are a few books that may be of general interest in understanding
this material, again only a small subset of those available.
An earlier version of this book appeared as a set of lecture notes [281]. This contains

a different presentation of some of the same material and may still be of interest. My
contribution to [287] also has some overlap with this book, but is directed specifically
towards astrophysical flows and also contains some description of hyperbolic problems
arising in magnetohydrodynamics and relativistic flow, which are not discussed here.
The basic theory of hyperbolic equations can be found in many texts, for example John

[229], Kevorkian [234]. The basic theory of nonlinear conservation laws is neatly presented
in the monograph of Lax [263]. Introductions to this material can also be found in many
other books, such as Liu [311], Whitham [486], or Chorin & Marsden [68]. The book of
Courant & Friedrichs [92] deals almost entirely with gas dynamics and the Euler equations,
but includes much of the general theory of conservation laws in this context and is very
useful. The books by Bressan [46], Dafermos [98], Majda [319], Serre [402], Smoller
[420], and Zhang & Hsiao [499] present many more details on the mathematical theory of
nonlinear conservation laws.
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10 1 Introduction

For general background on numerical methods for PDEs, the books of Iserles [211],
Morton & Mayers [333], Strikwerda [427], or Tveito & Winther [461] are recommended.
The book of Gustafsson, Kreiss &Oliger [174] is aimed particularly at hyperbolic problems
and contains more advanced material on well-posedness and stability of both initial- and
initial–boundary-value problems. The classic book of Richtmyer&Morton [369] contains a
good description of many of the mathematical techniques used to study numerical methods,
particularly for linear equations. It also includes a large section on methods for nonlinear
applications including fluid dynamics, but is out of date by now and does not discuss many
of the methods we will study.
A number of books have appeared recently on numerical methods for conservation laws

that cover some of the same techniques discussed here, e.g., Godlewski & Raviart [156],
Kröner [245], and Toro [450]. Several other books on computational fluid dynamics are also
useful supplements, including Durran [117], Fletcher [137], Hirsch [198], Laney [256],
Oran & Boris [348], Peyret & Taylor [359], and Tannehill, Anderson & Pletcher [445].
These books discuss the fluid dynamics in more detail, generally with emphasis on specific
applications.
For an excellent collection of photographs illustrating a wide variety of interesting fluid

dynamics, including shock waves, Van Dyke’s Album of Fluid Motion [463] is highly re-
commended.
Many more references on these topics can easily be found these days by searching on the

web. In addition to using standard web search engines, there are preprint servers that contain
collections of preprints on various topics. In the field of conservation laws, the Norwegian
preprint server at

http://www.math.ntnu.no/conservation/

is of particular note.Online citation indices and bibliographic databases are extremely useful
in searching the literature, and students should be encouraged to learn to use them. Some
useful links can be found on the webpage [claw/book/chap1/].

1.7 Notation

Some nonstandard notation is used in this book that may require explanation. In general I
use q to denote the solution to the partial differential equation under study. In the literature
the symbol u is commonly used, so that a general one-dimensional conservation law has
the form ut + f (u)x = 0, for example. However, most of the specific problems we will
study involve a velocity (as in the acoustics equations (1.5)), and it is very convenient
to use u for this quantity (or as the x-component of the velocity vector 	u= (u, v) in two
dimensions).
The symbol Qni (in one dimension) or Q

n
i j (in two dimensions) is used to denote the

numerical approximation to the solution q . Subscripts on Q denote spatial locations (e.g.,
the i th grid cell), and superscript n denotes time level tn . Often the temporal index is
suppressed, since we primarily consider one-step methods where the solution at time tn+1 is
determined entirely by data at time tn .When Q or other numerical quantities lack a temporal
superscript it is generally clear that the current time level tn is intended.
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