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1
An Introduction to Social Choice Theory

1.1 Some Intuitions, Terminology, and an Example

In a capitalist democracy there are, according to Nobel Laureate Kenneth J.
Arrow (Arrow, 1950), “essentially two ways by which social choices can be
made: voting, typically used to make ‘political’ decisions, and the market mech-
anism, typically used to make ‘economic’ decisions.” Our concern here is ex-
clusively with the former.

Thus, for us, democratic theory is, in the words of Peter C. Fishburn
(Fishburn, 1973, p. 3), “based on the premise that the resolution of a mat-
ter of social policy, group choice, or collective action should be based on the
preferences of the individuals in the society, group, or collective.” And social
choice theory is, as William H. Riker put it (Riker, 1986, p. xi), “the description
and analysis of the way that the preferences of individual members of a group
are amalgamated into a decision of the group as a whole.” Arrow, by the way,
is an economist, Fishburn a mathematician, and Riker a political scientist.

Let’s start with a very simple example. Suppose we have an academic de-
partment with ten faculty members, one of whom is serving as chair. They are
in the process of filling a position in the department and have interviewed five
finalists for the job. Needless to say, the different department members disagree
on the ranking of the five, and what is needed is some procedure for passing
from the preferences of the individuals in the department to the “preferences,”
if you will, of the group.

First, let’s ask what the ballots could look like. If we were to opt for sim-
plicity, a ballot would have just a single name on it, representing (we presume,
perhaps naı̈vely) the candidate who is that department member’s top choice.
Or, we could allow a ballot to contain several names, intuitively represent-
ing either a group that this department member feels is tied for the top, or
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4 1 An Introduction to Social Choice Theory

those candidates that the department member finds acceptable (“approves of”
in the parlance of the voting system called approval voting, which we discuss
later).

But none of these ballot types is very expressive, and, in voting situations
such as we are describing, one tends to use ballots that allow each depart-
ment member to rank-order the candidates from best to worst, in his or her
opinion, perhaps allowing ties (representing indifference) in the individual
ballots and perhaps not.1 Intuitively, this description of a ballot is fine, but
some of what we do in this book requires a bit more precision. So let us
momentarily set this example to one side and introduce some notation and
terminology.

We make use of the universal quantifier “∀” meaning “for all” and the ex-
istential quantifier “∃” meaning “there exists.” We do not, however, display
or abbreviate the phrase “such that,” although it is almost always required in
reading an expression such as

∀x ∈ A ∃y ∈ A xPy.

We also use the standard abbreviation “iff” for “if and only if.”
Set-theoretically, |A| denotes the number of elements in the finite set A, and

℘(A) is collection of all subsets of A. If n is a positive integer, then [A]n =
{X ∈ ℘(A): |A| = n}. Any subset R of A × A is a binary relation on A, and in
this case we write “aRb” or we say “aRb holds” to indicate that (a, b) ∈ R, and
we write “¬(aRb)” or say “aRb fails” to indicate that (a, b) /∈ R. Finally, if R
is a binary relation on A and v ⊆ A, then the restriction of R to v, denoted R|v,
is the binary relation on v given by R|v = R ∩ (v × v).

The binary relations we are most concerned with satisfy one or more of the
following properties.

1 Most readers will assume that the picture we are painting is one in which the notion of
indifference is transitive, and we will, in fact, be adopting that convention. Fishburn (1973,
pp. 5 and 6), on the other hand, spends considerable time with the case in which indifference is
intransitive, and justifiably so. As an example of intransitive indifference in our present context,
suppose that Applicant B might receive (and bring along) a large research grant for which he or
she has applied, and that we in the department will not know whether or not this grant
application is successful before the job offer will be made. We could handle this by pretending
to have six applicants instead of five, with Applicant B split into “Applicant B without research
support” and “Applicant B with research support.” It is now easy to imagine a situation in
which a department member might be indifferent between Applicant C and either of these
choices. But of course, anyone would (presumably) prefer Applicant B with research support to
Applicant B without research support.
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1.1 Some Intuitions, Terminology, and an Example 5

Definition 1.1.1. A binary relation R on a set A is:

reflexive if ∀ x ∈ A, xRx
irreflexive if ∀ x ∈ A, ¬(xRx)
symmetric if ∀ x, y ∈ A, if xRy, then yRx
asymmetric if ∀ x, y ∈ A, if xRy, then ¬(yRx)
antisymmetric if ∀ x, y ∈ A, if xRy and yRx, then x = y
transitive if ∀ x, y, z ∈ A, if xRy and yRz, then xRz
complete if ∀ x, y ∈ A, either xRy or yRx

Definition 1.1.2. A binary relation R on a set A is a weak ordering (of A) if it is
transitive and complete and a linear ordering (of A) if it is also antisymmetric.

If R is a weak ordering of A, then the completeness of R implies (letting
x = y) that R is also reflexive. Intuitively, a weak ordering corresponds to a list
with ties, with xRy being thought of as asserting that x is at least as good as y. A
linear ordering corresponds to a list without ties, with xRy now being thought
of as asserting that either x = y or x is strictly better than y.

Associated to each weak ordering R of A, there are two so-called derived
relations P and I.

Definition 1.1.3. If R is a weak ordering of A, then the derived relations of
strict preference P and indifference I are arrived at by asserting that xPy iff
¬(yRx) and xIy iff xRy and yRx.

If R is a linear ordering of A, then the derived relation I is just equality, and
the derived relation P is referred to as a strict linear ordering of A. Exercise 1
asks for verification that if R is a weak ordering, then the derived relation P of
strict preference is transitive and asymmetric (and thus irreflexive), while the
derived relation I of indifference is reflexive, symmetric, and transitive. Thus, I
is an equivalence relation, and P is a strict linear ordering of the I-equivalence
classes.

The following definition uses the concepts of weak and linear orderings to
formalize some election-theoretic terminology.

Definition 1.1.4. If A is a finite non-empty set (which we think of as the set
of alternatives from which the voters are choosing), then an A-ballot is a weak
ordering of A. If, additionally, n is a positive integer (where we think of N =
{1, . . . , n} as being the set of voters), then an (A, n)-profile is an n-tuple of
A-ballots. Similarly, a linear A-ballot is a linear ordering of A, and a linear
(A, n)-profile is an n-tuple of linear A-ballots.
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6 1 An Introduction to Social Choice Theory

When the set A of alternatives and the integer n are clear from the context, we
will use “ballot” in place of “A-ballot” and “profile” in place of “(A, n)-profile.”
Similarly, we will often use a phrase like “If P is a profile” as an abbreviation for
the phrase “If P is an (A, n)-profile for some set A and some positive integer n.”
This latter remark is illustrated in the next paragraph.

If P is a profile, then Ri denotes its ith component (that is, the ballot of the
ith voter), with Pi and Ii denoting the corresponding derived relations of strict
preference and indifference for the ith voter. When we have several profiles
under consideration at the same time, we use names such as P, P′, and P′′, with
the understanding that their components and the derived relations also carry the
prime, double prime, etc.

If P = <R1, . . . , Rn> is an (A, n)-profile and X ⊆ A, then the restriction of
P to X, denoted P|X, is the profile <R1|X, . . . , Rn|X>. If i ∈ N, then P|N − {i}
is the profile <R1, . . . , Ri−1, Ri+1, . . . , Rn>. This dual use of the vertical bar
should cause no confusion.

The following definition collects some additional ballot-theoretic notation
we will need.

Definition 1.1.5. Suppose P is a linear (A, n)-profile, X is a set of alternatives
(that is, X ⊆ A), and i is a voter (that is, i ∈ N). Then:

topi (P) = x iff ∀y ∈ A xRiy
maxi (X, P) = x iff x ∈ X and ∀y ∈ X xRiy
mini (X, P) = x iff x ∈ X and ∀y ∈ X yRix

Thus, maxi (X, P) is the element of X that voter i has most highly ranked on
his or her ballot in P, and mini (X, P) is the one ranked lowest. Topi (P) is the
alternative that voter i has at the top of his or her ballot in P. Hence, topi (P) =
maxi (A, P) and maxi (X, P) = topi (P|X).

Once we have decided what the ballots will look like, it might well seem
natural to ask what we do with these ballots to find a winner. That, however,
is somewhat getting ahead of ourselves. What we really need to decide first is
what kind of outcome our balloting should yield.

For example, should the outcome in the departmental hiring example that
we considered earlier be a single winner with the understanding that the chair
will call that candidate with the offer, and if he or she refuses, then the
chair will reconvene the department and start the balloting process all over
again? Or do we allow ties in the outcome of the balloting, with the under-
standing, perhaps, that either the chair or the dean will be allowed to break
the tie?
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1.1 Some Intuitions, Terminology, and an Example 7

From the chair’s point of view, perhaps the most desirable outcome is neither
of these, but instead a list without ties – a linear ordering – that gives the
department’s “overall ranking” (an intuitive phrase, at best) of the candidates.
The chair can then begin at the top, and make the calls one by one until the
position is accepted. Similarly, if the outcome is a list with ties – a weak
ordering – then we could once again agree to give either the chair or the dean
tie-breaking power.

But suppose we are in a situation wherein we proceed to individually rank-
order all the candidates, and then, while the chair is handling the accompanying
administrative tasks involving the dean and the college affirmative action officer,
several candidates notify the department that they have accepted other offers
and no longer wish to be considered. To handle such contingencies, we might
want the outcome of the election to be a “choice function” that selects one or
more “winners” from each non-empty subset of candidates.

This last possibility is an interesting one, and later in this chapter we say
something about the historical perspective from the field of economics that
apparently played a role in the prominence of so-called choice functions in the
formalism. But for now, we conclude the present section with precise definitions
of the different kinds of “social choice procedures” alluded to earlier.2

Definition 1.1.6. Suppose that A is a non-empty set, n is a positive integer,
and V is a function whose domain is the collection of all (A, n)-profiles.3

Then V is:

(1) a resolute voting rule for (A, n) if, for every (A, n)-profile P, the election
outcome V(P) is a single element of A,

2 There is, unfortunately, no common terminology in the literature for the concepts in Definition
1.1.6. Our use of “voting rule” and “social welfare function” is quite common and used, for
example, in Moulin (2003). Our use of “social choice function” for a voting rule with a variable
agenda is also not without precedent, but one also sees variants of this with, for example,
“decision” used in place of “choice” and/or “procedure” used in place of “function.” Our use of
“resolute” to mean “without ties” would not, however, be considered standard, although it has
appeared in the work of Duggan and Schwartz (1993, 2000) and goes back at least to
Gärdenfors (1976).

3 We are building into our formalism a condition known in the literature as “unrestricted scope.”
Intuitively, this asserts that no voter should be prohibited from submitting any ballot. There is
something to be gained (e.g., conceptual simplicity) by burying certain assumptions within the
formalism, but there is also a loss. For example, our choice to build in unrestricted scope leads
to an omission of a number of important results related to the following question: What
conditions can one impose on a profile that will ensure that “bad things” (e.g., opportunities for
manipulation or cycles wherein a majority of voters prefer a to b, a majority prefers b to c, and
yet a majority also prefers c to a) don’t happen? One answer to this, by the way, involves
“single-peaked preferences” – see Black (1958), Sen (1966), Fishburn (1973), Taylor (1995),
and Shepsle and Bonchek (1997).
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8 1 An Introduction to Social Choice Theory

(2) a voting rule for (A, n) if, for every (A, n)-profile P, the election outcome
V(P) is a non-empty4 subset of A,

(3) a social choice function for (A, n) if, for every (A, n)-profile P, the election
outcome V(P) is a “choice function” C that picks out a non-empty subset
C(v) of v for each non-empty subset v of A,

(4) a resolute social choice function for (A, n) if, for every (A, n)-profile P, the
election outcome V(P) is a choice function C that picks out a single element
C(v) from v for each non-empty subset v of A,

(5) a social welfare function for (A, n) if, for every (A, n)-profile P, the election
outcome V(P) is a weak ordering of A, and

(6) a resolute social welfare function for (A, n) if, for every (A, n)-profile P,
the election outcome V(P) is a linear ordering of A.

The set v of alternatives occurring in (3) and (4) is called an agenda.5

In general, V is called an aggregation procedure if it is any one of (1)–
(6). As before, we suppress the reference to the pair (A, n) whenever
possible.

In point of fact, our primary concern is with the first three aggregation
procedures given in Definition 1.1.6:

(1) resolute voting rules (Chapter 3 and 7)
(2) (non-resolute) voting rules (Chapters 4 and 8)
(3) social choice functions (Chapters 5 and 8).

With each kind of aggregation procedure, there are two contexts in which we
work: the one in which only linear ballots are considered and the other in which
we allow ties in the ballots.

But before we press on with any additional notation and terminology, let
us pause to give a quick historical overview of the field of social choice
theory. This will, at the same time, provide an informal introduction to a
number of aggregation procedures, most of which are rigorously defined in
Section 1.4.

4 By saying “non-empty” we are disallowing the possibility of an election resulting in no
alternative being chosen. Fishburn (1973, p. 3) justifies this by the observation that one can
always include alternatives such as “delay the decision to a later time” or “maintain the status
quo.”

5 There are at least three different ways the term “agenda” is used in voting-theoretic contexts:
(1) as the set of alternatives from which a choice is to be made (our use here), (2) as an ordering
in which alternatives will be pitted against each other in one-one-one contests based on the
ballots cast, and (3) as an ordering in which alternatives will be pitted against the status quo
until one defeats the status quo.
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1.2 A Little History 9

1.2 A Little History

Jean Charles Chevalier de Borda (1733–99) was, according to Duncan Black
(1958, p. 156), “the first thinker to develop a mathematical theory of elections.”
In Borda’s 1781 paper (apparently the only one of his that we now possess) he
introduced the aggregation procedure that is known today as the Borda count.
It selects a winner (or winners) from among k alternatives by assigning each
alternative k-1 points for each ballot on which it appears first, k-2 points for
each ballot on which it occurs second, and so on. The points are then summed,
with the winner (or winners) being the alternative with the most points. If ties
in the ballots are allowed, the procedure can be suitably modified. These so-
called Borda scores can also be used to produce a list, perhaps with ties, as the
outcome of an election. Interestingly, recent historical work by McLean and
Urken (1993) and Pukelsheim (unpublished) reveals that Borda’s system had
been explicitly described in 1433 by Nicholas of Cusa (1401–64), a Renaissance
scholar interested in the question of how German kings should be elected.

In that same 1781 paper, Borda pointed out a very nice equivalent version
of the Borda count, not often referred to today, that goes as follows: Each
alternative is pitted one-on-one against each of the other alternatives, based
on the ballots cast. Having done this, one doesn’t just look for the alternative
that defeats the most other alternatives – this would be quite a different social
choice procedure, one known today as Copeland’s function and introduced in
an unpublished 1951 note by A. H. Copeland (Fishburn, 1973, p. 170). Instead,
one looks for the alternative with the greatest total score from these one-on-one
contests. For example, if one of four alternatives defeats two others by scores
of 4–3 and 5–2, but loses to the third by a score of 6–1, then that alternative’s
total score is 4 + 5 + 1 = 10.

In fact, this latter characterization of the Borda count gives rise to an easy way
to hand-calculate Borda scores given a sequence of ballots: Given an alternative
a, one simply counts the total number of occurrences of other alternatives below
a, proceeding ballot-by-ballot (Taylor, 1995). It is easy to see that this is the
same as Borda’s equivalent, the difference being that what we are suggesting
here is a ballot-by-ballot enumeration instead of an alternative-by-alternative
enumeration.

But Borda was not alone in his election-theoretic ponderings, as a systematic
theory of elections was, as Black (1958, p. 156) again informs us, “part of the
general uprush of thought in France in the second half of the eighteenth century.”
For example, Borda’s “method of marks” arose again in 1795 in the writings of
Pierre-Simon, Marquis de Laplace (1749–1827), who derived the method via
some probabilistic considerations.
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10 1 An Introduction to Social Choice Theory

However, no one’s contributions at that time were more important than the
observations of Marie Jean Antoine Nicolas Caritat, Marquis de Condorcet
(1743–94). In a 1785 publication (Condorcet, 1785) he explicitly discussed
what we now call the “Condorcet voting paradox” wherein we find that if a
group of voters is broken into three equal-size groups with preferences for
three alternatives as shown below, then a majority prefers a to b, a majority
prefers b to c, but (somewhat paradoxically) a majority also prefers c to a.

Group #1 Group #2 Group #3

a b c
b c a
c a b

The Condorcet Voting Paradox

For a given sequence of ballots, a candidate that would defeat each of the
other candidates in a one-on-one contest – based on the ballots – is called a Con-
dorcet winner for that election. For example, if we regard the U.S. presidential
race of 2000 in the state of Florida as one with four candidates (Bush, Gore,
Nader, and Buchanan), then it is almost certainly true that Gore was the Con-
dorcet winner. Of course, Bush won using what is known as plurality voting,
wherein one simply looks for the alternative with the most first-place votes.

The name “Condorcet’s method” is often applied to the voting procedure
in which the Condorcet winner, if there is one, is the unique winner of the
election and there is no winner otherwise. Like Borda, Condorcet was antici-
pated by several centuries. Indeed, very recent research by Pukelsheim et al.
(unpublished) shows that Condorcet’s method can be traced back at least to
Ramon Llull (1232–1316), a Catalan philosopher and missionary who was in-
volved in devising election schemes for selecting the abbess of a convent. (See
Pukelsheim’s amusing “Spotlight” on page 418 of COMAP, 2003.)

Condorcet knew of Borda’s work and Condorcet pointed out in his writings
that Borda’s method of marks, like plurality voting, can result in a Condorcet
winner not being elected. Nevertheless, even Condorcet would probably have
been surprised that this “defect” would one day determine a presidential elec-
tion, as it did in the United States in the year 2000.

The nineteenth century saw a few small election-theoretic results from peo-
ple like Issac Todhunter (1820–84), M. W. Crofton (1826–1915), E. J. Nanson
(1850–1936), and Francis Galton (1822–1911). But it was the Reverend
Charles Lutwidge Dodgson (1832–98) – better known by the pseudonym Lewis
Carroll – who made the most significant contributions at the time, beginning
with his rediscovery in 1874 of the Condorcet voting paradox. Dodgson was the
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1.2 A Little History 11

Mathematical Lecturer at Christ Church, and he even published a monograph
entitled Elementary Treatise on Determinants between the appearance of Alice’s
Adventures in Wonderland (1865) and Through the Looking Glass, and What
Alice Found There (1872). The mathematical biographer E. T. Bell spoke of
Dodgson as having in him “the stuff of a great mathematical logician” (Black,
1958, p. 195), and Duncan Black characterized Dodgson’s understanding of
the theory of elections and committees as “second only to that of Condorcet”
(Black, 1958, p. 212).

In an 1873 pamphlet entitled “A Discussion of the Various Methods of Proce-
dure in Conducting Elections” (Black, 1958, p. 214), Dodgson proposes – with-
out claiming to have discovered them himself – several “Methods of Procedure”
for the case where an election is necessary. The description of each that follows is
taken verbatim from that pamphlet, although we do not reproduce his examples
showing why he finds fault with each. Our own comments are added in brackets.

(1) The Method of a Simple Majority: In this Method, each elector names the one
candidate he prefers, and he who gets the greatest number of votes is taken as
the winner. [This is known today as plurality voting.]

(2) The Method of an Absolute Majority: In this Method, each elector names the one
candidate he prefers; and if there be an absolute majority for any one candidate,
he is the winner. [Dodgson offers no provision for the case where no one has
more than half the votes.]

(3) The Method of Elimination, where the names are voted on by two at a time: In
this Method, two names are chosen at random and proposed for voting, the loser
is struck out from further competition, and the winner taken along with some
other candidate, and so on, til there is only one candidate left. [This procedure
is essentially what Straffin (1980) calls “sequential pairwise voting with a fixed
agenda” (see also Taylor, 1995). Here, “agenda” refers to an ordering of the
alternatives.]

(4) The Method of Elimination, where the names are voted on all at once: In this
Method, each elector names the one candidate he prefers: the one who gets the
fewest votes is excluded from further competition, and the process is repeated.
[This is the procedure introduced in 1861 by Thomas Hare, and known today
by various names including the “Hare system” and the “single transferable vote
system.” In 1862, John Stuart Mill (Mill, 1862) spoke of it as being “among
the greatest improvements yet made in the theory and practice of government.”
It is currently used to elect public officials in Australia, Malta, the Republic of
Ireland, and Northern Ireland. The Hare system was essentially the method used
to choose Sydney, Australia, as the site of the 2000 Summer Olympics. In this
election, Beijing would have been the plurality winner, but after Istanbul, Berlin,
and Manchester were eliminated (in that order), Sydney defeated Beijing by a
vote of 45 to 43.]

(5) The Method of Marks: In this Method, a certain number of marks is fixed, which
each elector shall have at his disposal; he may assign them all to one candidate,
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