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Plane curves

1.0 Introduction

Sir Christopher Wren

Went to dine with some men.
‘If anyone calls,

Say I’'m designing St Paul’s!’

St Paul’s Cathedral was designed following the Great Fire of London
in 1666. Six years earlier Wren, a mathematician as well as architect,
was one of the founder members of the Royal Society. At that time one
of the men that he might well have been dining with was the great
Dutch Scientist, Christiaan Huygens (natus 1629, denatus 1695, as a
late picture of him has it! (Figure 1.1)). At the time we are speaking of
Newton (natus 1642) and Leibniz (natus 1646) were still teenagers, and
the Calculus had yet to be invented. Indeed the first elementary calculus
textbook was published only in 1696, the year after Huygens’ death.
This purported to be written by an aristocratic friend of the Bernoulli
family, the Marquis de 1’Hopital, and was entitled Analyse des infiniment
petits, Pour ['intelligence des lignes courbes. Central to this first work
on differential geometry are the ideas developed by Huygens and his
associates thirty-five or more years previously. Curiously, de 1’Hopital
did not put his name to the first edition of the work, it being added in
ink in many copies (Figure 1.2). The work is in fact a fairly direct
translation from the original Latin of Jean Bernoulli, which came to
light many years later, neither the translator nor the writer of the
unsigned preface being de I’Hopital! For an account of this ancient
scandal see Truesdell (1958).

Our aim here is to give a fresh account of these ideas which remain
the basis of the whole subject.

Consider as a first example the parabola in the real plane with
equation y = x2. An engineer wishing to cut this curve accurately out of
some sheet of material has to use a cutting tool, necessarily of finite
size, whose centre has to be programmed to follow some curve offset
the right distance from the parabola to be cut. Hasty thinking might
suggest that this offset is another parabola, but this is not so — compare
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2 1 Plane curves
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Figure 1.1

Figures 1.3 and 1.4. If one examines offsets at greater and greater
distances from the original curve (on the ‘inner’ side) one discovers that
before long these are no longer regular curves but acquire sharp points
or cusps, where the direction of the curve reverses. Moreover these
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1 Plane curves

cusps lie along a new curve which itself sports a cusp, pointing towards
the lowest point of the original parabola — see Figure 1.5.

It is a pleasant thought to think of the parabola in another way as the

shoreline of a bay in which one has gone out for a swim, swimming out
normally, that is at right angles, to the shore — Figure 1.6. One’s first
intuition probably is that, no matter how far one swims, one’s starting
point * remains locally the nearest point of the shore. We say ‘locally’
here because if one goes far enough then clearly some point on the
farther shore may well be nearer. But our local intuition is wrong, as
Figures 1.7 and 1.8 illustrate. These display the same new cuspidal
curve that we saw before, its tangents all being normal to the parabola.

Figure 1.3
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Figure 1.5

Figure 1.4
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1.0 Introduction 5

Figure 1.6

A
Figure 1.7

Figure 1.8

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521810401
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-81040-1 - Geometric Differentiation: For the intelligence of Curves and Surfaces:
Second Edition

I. R. Porteous

Excerpt

More information

6 1 Plane curves

Initially one can draw only one normal to the shore from one’s position
* in the bay, namely the path along which one has just swum, but after
crossing the curve of cusps two new normals can be drawn, the three
shore points %, A and B then being successively a local minimum at x,
a local maximum at 4 and a local minimum at B, of the distance from
one’s position in the bay to the shoreline — Figure 1.7. As one swims
on, the points 4 and B move round the shore in opposite directions, and
as one reaches the point of tangency of the normal with the curve of
cusps A comes right round to coincide with *. At any more distant point
x is a local maximum of distance — Figure 1.8!

The curve of cusps that falsifies both these intuitions is known as the
evolute or focal curve of the original curve. In Figure 1.9 it is exhibited
as the envelope of the family of the family of normals to the parabola.
The offsets are also said to be the parallels or equidistants to the
parabola.

It was Huygens who made the remarkable discovery that one can
recover the original parabola from its evolute by unwinding an
inextensible string laid partially along the evolute, or equivalently by
rolling the tangent line to the evolute along the evolute. A bob on the
string, or point of the rolling line, then describes part either of the
parabola itself or, according to the position of the bob, one of the
offsets to the parabola. Indeed all the offsets can be obtained in this
way if one makes appropriate conventions about the unwinding process,
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Figure 1.9
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1.0 Introduction 7

especially at a cusp of the evolute. These mutually parallel curves are
known as the involutes or evolvents of the evolute.

There is nothing special about the parabola in all this. Indeed a
favourite curve of Huygens, and of Wren too, is the curve which
features as the solution to the following take-home problem (Figure
1.10) faced by several thousand Merseyside twelve-year olds in the
Spring of 1982 (Giblin and Porteous, 1990).

The curve is the cycloid, consisting of a series of arches supported on
a series of cusps (Figure 1.11). As we shall verify later, this curve has
the remarkable property that its evolute is a congruent cycloid, whose
cusps this time point away from and not towards the original curve. If
we turn all this upside down (Figure 1.12) and arrange for a pendulum
of suitable length to be swung from one of the jaws of the evolute
cycloid one obtains the Huygens cycloidal pendulum, whose period,
remarkably, turns out to be independent of the amplitude.

Arc Light

There was a young glow worm called Glim,
Who went for a ride on the rim

Of a wheel that went round

As it rolled on the ground.
Please draw me the arc traced by him!

Figure 1.10

Figure 1.12
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8 1 Plane curves

Yet a third way of regarding the evolute is as the locus of centres of
curvature of the original curve. This is illustrated in Figure 1.13 where
the circle with centre at the point of tangency of a normal to the
original curve with the evolute, and passing through the base of the
normal, is seen to hug the curve so closely there that it is known as the
osculating circle, or circle of curvature of the curve at that point. In
general, as in this example, it shares a tangent line with the original
curve, but crosses the curve there. An exception to this occurs at the
lowest point of the parabola, when the centre of the osculating circle
lies at the cusp of the evolute and the circle lies entirely above the
parabola. At this point the radius of the osculating circle, the radius of
curvature of the curve, has a local minimum — indeed in this example
an absolute minimum. In fact cusps on the evolute correspond to critical
points of the radius of curvature, the cusps on the evolute pointing
towards the curve at local minima and away from the curve at local
maxima.

The reciprocal of the radius of curvature is known simply as the
curvature of the curve. At a point of inflection of the curve the
curvature is zero and the radius of curvature infinite, the role of
osculating circle being then played by the inflectional tangent. We shall
prove that the evolute of a regular plane curve does not have any points
of inflection. Of course, as de 1’Hopital (or was it Jean Bernoulli?) first
remarked, there is nothing to stop one swinging a pendulum from a
curve with an inflection. The resulting family of non-regular involutes
(see Figure 1.21) has an intimate relationship with the group of

Figure 1.13
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1.1 Regular plane curves and their evolutes 9

symmetries of an icosahedron — a deep and mysterious fact only
recently noted by the Russian school of singularity theorists under the
leadership of V.I. Arnold (Arnol’d, 1983, 1990b).

As we are going to be concerned in what follows with applications of
the calculus to geometry we ought logically to start with reviewing the
calculus. Since almost all that is required for the study of curves should
already be familiar to the reader we defer this review to Chapter 4,
preceded in Chapter 2 with a review of some basic frequently used facts
of linear and projective geometry. For the moment it is enough to
remark that the standard n-dimensional real vector space equipped with
the standard Euclidean scalar product will be denoted by R”, the product
being denoted by a dot above the line -. The length of a vector v € R”
is |[v]=+/(v-v). A map f:R"— R” is said to be smooth if
everywhere sufficiently many' of its derivatives exist and are continuous,
the (non-standard) forked tail on the arrow indicating that the domain of
definition is an open subset of R” but not necessarily the whole of R”.

1.1 Regular plane curves and their evolutes

Curves in the plane may be presented in many different ways, for
example as the zero sets of functions R> — R, locally at least as the
graphs of functions R-— R, or parametrically as the images of
maps R — R?. For example the circle of radius 1 with centre the
origin, the unit circle, is the zero set of the function R?— R;
(x, V) —x*+3»*>—1, and also the image of the map R — R?;
0 — (cos 6, sin0). It is not globally the graph of a function from either
axis to the other, but locally it is. For simplicity we begin by
concentrating almost entirely on curves presented parametrically, with
domains open intervals of R. The image space will be an explicit copy
of R? but we occasionally will allow ourselves the luxury of choosing a
fresh origin for this space, perhaps at some special point of interest of
the curve, and also choosing fresh mutually orthogonal axes through this
new origin. Such a change of view will, however, preserve the metric of
the plane, the distance between points remaining unaltered despite the
change of frame of reference.
A smooth parametric curve in R? is a smooth map

r:R— R% t—r(2),

f This usage of the word ‘smooth’ is slovenly but convenient. If one prefers it, take
‘smooth’ to mean ‘infinitely differentiable’, that is C*°.
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10 1 Plane curves

with domain an open interval of R, that is an open connected subset of
R. It is regular (or immersive) at t if its first derivative ri(f) is non-
zero (we defy convention by using subscripts instead of ds or dots or
dashes to denote differentiation with respect to the parameter). At a
regular point ¢ the vector ri(t), which may be regarded as the velocity
of the curve r at time ¢, generates the tangent vector line to r at ¢. The
tangent line to r at ¢t is then the line

u — r(t) + ury(1).

A smooth curve may be straight! But this puts strong conditions on
the higher derivatives of the curve. For suppose that the image of the
curve r : ¢+ r(f) is the line in R? with equation ax + by = k, or part
of that line. Then, for every ¢t € R, ¢-r(¢f) = k, where ¢ = (a, b), and
for every i = 1 we have c-r;(¢) = 0, implying that each of the derived
vectors is a multiple of the first non-zero one.

It is, of course, exceptional for any of the higher derivatives r;(f) of a
regular smooth curve r at a point ¢ to be a multiple of ri(#). We say
that a smooth curve r is linear at t if it is regular there and its
acceleration ry(t) is a multiple of ri(#). It will be said to be Ai-linear
at ¢ if it is regular there and r;(f) is a multiple of ri(¢) for 1 <j =<k,
but ry.;(¢) is not a multiple of r(#). According to this definition r is
not linear at an A;-linear point, but just regular there. An A,-linear
point is an ordinary inflection of r and an Aj-linear point an ordinary
undulation of r.

Example 1.1 The curve t+ (¢, t*) (Figure 1.14) has an ordinary
inflection at =0, while the curve ¢+ (z, t*) (Figure 1.15) has an
ordinary undulation at ¢ = 0. O

The somewhat odd term ‘undulation’ derives from thinking of the curve
t— (t, t*) as being the curve given by the value ¢ = 0 in the family of
curves t — (t, et? 4 t*), such a curve having no inflection for £ >0, but
acquiring two and a consequent wiggle when & becomes negative.

These examples are typical:

Proposition 1.2 By suitably choosing a new origin and new mutually
orthogonal axes in R? the parametric equations of a smooth curve v in
the neighbourhood of an ordinary inflection at t =0 may be taken to
be of the form

r()y=(at+...,bt> +...), where a0 and b+ 0,
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