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Preface

This book has grown out of printed notes which accompanied lectures
given by ourselves and our colleagues over many years to undergraduate
mathematicians at Oxford. During those years the contents and the
arrangement of the lectures have changed substantially, and this book
has a wider scope than is currently taught. It contains mathematics
which, in an ideal world, would be part of the equipment of any well-
educated mathematician.

Numerical analysis is the branch of mathematics concerned with the
theoretical foundations of numerical algorithms for the solution of prob-
lems arising in scientific applications. The subject addresses a variety of
questions ranging from the approximation of functions and integrals to
the approximate solution of algebraic, transcendental, differential and
integral equations, with particular emphasis on the stability, accuracy,
efficiency and reliability of numerical algorithms. The purpose of this
book is to provide an elementary introduction into this active and ex-
citing field, and is aimed at students in the second year of a university
mathematics course.

The book addresses a wide range of numerical problems in algebra
and analysis. Chapter 2 deals with the solution of systems of linear
equations, a process which can be completed in a finite number of arith-
metical operations. In the rest of the book the solution of a problem
is sought as the limit of an infinite sequence; in that sense the output
of the numerical algorithm is an ‘approximate’ solution. This need not,
however, mean any relaxation of the usual standards of rigorous anal-
ysis. The idea of convergence of a sequence of real numbers (xn) to a
real number ξ is very familiar: given any positive value of ε there exists
a positive integer N0 such that |xn − ξ| < ε for all n such that n > N0.
In such a situation one can obtain as accurate an approximation to ξ as

vii
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viii Preface

required by calculating sufficiently many members of the sequence, or
just one member, sufficiently far along. A ‘pure mathematician’ would
prefer the exact answer, ξ, but the sorts of guaranteed accurate approxi-
mations which will be discussed here are entirely satisfactory in real-life
applications.

Numerical analysis brings two new ideas to the usual discussion of
convergence of sequences. First, we need, not just the existence of N0,
but a good estimate of how large it is; and it may be too large for
practical calculations. Second, rather than being asked for the limit of
a given sequence, we are usually given the existence of the limit ξ (or
its approximate location on the real line) and then have to construct a
sequence which converges to it. If the rate of convergence is slow, so
that the value of N0 is large, we must then try to construct a better
sequence, one that converges to ξ more rapidly. These ideas have direct
applications in the solution of a single nonlinear equation in Chapter
1, the solution of systems of nonlinear equations in Chapter 4 and the
calculation of the eigenvalues and eigenvectors of a matrix in Chapter 5.

The next six chapters are concerned with polynomial approximation,
and show how, in various ways, we can construct a polynomial which
approximates, as accurately as required, a given continuous function.
These ideas have an obvious application in the evaluation of integrals,
where we calculate the integral of the approximating polynomial instead
of the integral of the given function.

Finally, Chapters 12 to 14 deal with the numerical solution of ordinary
differential equations, with Chapter 14 presenting the fundamentals of
the finite element method. The results of Chapter 14 can be readily
extended to linear second-order partial differential equations.

We have tried to make the coverage as complete as is consistent with
remaining quite elementary. The limitations of size are most obvious
in Chapter 12 on the solution of initial value problems for ordinary
differential equations. This is an area where a number of excellent books
are available, at least one of which is published in two weighty volumes.
Chapter 12 does not describe or analyse anything approaching all the
available methods, but we hope we have included some of those in most
common use.

There is a selection of Exercises at the end of each chapter. All these
exercises are theoretical; students are urged to apply all the methods
described to some simple examples to see what happens. A few of the
exercises will be found to require some heavy algebraic manipulation;
these have been included because we assume that readers will have ac-
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Preface ix

cess to some computer algebra system such as Maple or Mathematica,
which then make the algebraic work almost trivial. Those involved in
teaching courses based on this book may obtain copies of LATEX files con-
taining solutions to these exercises by applying to the publisher by email
(solutions@cambridge.org). Although the material presented in this
book does not presuppose the reader’s acquaintance with mathematical
software packages, the importance of these cannot be overemphasised.
In Appendix B, a brief set of pointers is provided to relevant software
repositories.

Our treatment is intended to maintain a reasonably high standard of
rigour, with many theorems and formal proofs. The main prerequisite
is therefore some familiarity with elementary real analysis. Appendix A
lists the standard theorems (labelledTheoremA.1,A.2, . . . ,A7) which
are used in the book, together with proofs of one or two of them which
might be less familiar. Some knowledge of basic matrix algebra is as-
sumed. We have also used some elementary ideas from the theory of
normed linear spaces in a number of places; complete definitions and ex-
amples are given. Some prior knowledge of these areas would be helpful,
although not essential.

The chart below indicates how the chapters of the book are inter-
related. They show, in particular, how Chapters 1 to 5 form a largely
self-contained unit, as do Chapters 6 to 10.

Roadmap of the book

Chapter 1

⇓
Chapter 4 ⇐= Chapter 2

⇓
Chapter 3 =⇒ Chapter 11 ⇐= Chapter 6

⇓ ⇓ ⇓
Chapter 5 ⇓ Chapter 7

⇓ ⇓
Chapter 13 =⇒ Chapter 14 Chapter 8

⇓ ⇑ ⇓
=⇒ Chapter 12 ⇐= Chapter 10 ⇐= Chapter 9
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x Preface

We have included some historical notes throughout the book. As well
as hoping to stimulate an interest in the development of the subject,
these notes show how wide a historical range even this elementary book
covers. Many of the methods were developed by the great mathemati-
cians of the seventeenth and eighteenth centuries, including Newton,
Euler and Gauss, but what is usually known as Gaussian elimination for
the solution of systems of linear equations was known to the Chinese two
thousand years ago. At the other end of the historical scale, the analy-
sis of the eigenvalue problem, and the numerical solution of differential
equations, are much more recent, and are due to mathematicians who
are still very much alive. Many of our historical notes are based on the
excellent biographical database at the history of mathematics website

http://www-history.mcs.st-andrews.ac.uk/history/

We have tried to eradicate as many typographical errors from the text
as possible; however, we are mindful that some may have escaped our
attention. We plan to post any typos reported to us on

http://web.comlab.ox.ac.uk/oucl/work/endre.suli/index.html

We wish to express our gratitude to Professor Bill Morton for setting
us off on this tour de force, to David Tranah at Cambridge University
Press for encouraging us to persist with the project, and to the staff
of the Press for not only improving the appearance of the book and
eliminating a number of typographical errors, but also for correcting
and improving some of our mathematics. We also wish to thank our
colleagues at the Oxford University Computing Laboratory, particularly
Nick Trefethen, Mike Giles and Andy Wathen, for keeping our spirits up,
and to Paul Houston at the Department of Mathematics and Computer
Science of the University of Leicester for his help with the final example
in the book.

Above all, we are grateful to our families for their patience, support
and understanding: this book is dedicated to them.

ES & DFM Oxford, September 2002.
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