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1

Atomic structure of crystals

Solids exhibit an extremely wide range of properties, which is what makes them
so useful and indispensable to mankind. While our familiarity with many different
types of solids makes this fact seem unimpressive, it is indeed extraordinary when
we consider its origin. The origin of all the properties of solids is nothing more
than the interaction between electrons in the outer shells of the atoms, the so called
valenceelectrons. These electrons interact among themselves and with the nuclei
of the constituent atoms. In this first chapter we will give a general description of
these interactions and their relation to the structure and the properties of solids.
The extremely wide range of the properties of solids is surprising because

most of them are made up from a relatively small subset of the elements in the
Periodic Table: about 20 or 30 elements, out of more than 100 total, are encoun-
tered in most common solids. Moreover, most solids contain only very few of
these elements, from one to half a dozen or so. Despite this relative simplicity
in composition, solids exhibit a huge variety of properties over ranges that differ by
many orders of magnitude. It is quite extraordinary that even among solids which
are composed of single elements, physical properties can differ by many orders of
magnitude.
One example is the ability of solids to conduct electricity, which is measured by

their electrical resistivity. Some typical single-element metallic solids (such as Ag,
Cu, Al), have room-temperature resistivities of 1–5µ�·cm, while some metallic
alloys (like nichrome) have resistivities of 102µ�·cm. All these solids are con-
sidered good conductors of electrical current. Certain single-element solids (like
C, Si, Ge) have room-temperature resistivities ranging from 3.5× 103µ�·cm (for
graphitic C) to 2.3× 1011µ�·cm (for Si), and they are considered semimetals or
semiconductors. Finally, certain common solids like wood (with a rather com-
plex structure and chemical composition) or quartz (with a rather simple structure
and composed of two elements, Si and O), have room-temperature resistivities
of 1016–1019µ�·cm (for wood) to 1025µ�·cm (for quartz). These solids are

4



1.1 Building crystals from atoms 5

considered insulators. The range of electrical resistivities covers an astonishing
25 orders of magnitude!
Another example has to do with the mechanical properties of solids. Solids are

classified as ductile when they yield plastically when stressed, or brittle when they
do not yield easily, but instead breakwhen stressed. A useful measure of this behav-
ior is the yield stressσY, which is the stress up to which the solid behaves as a linear
elasticmediumwhen stressed, that is, it returns to its original statewhen the external
stress is removed. Yield stresses in solids, measured in units of MPa, range from 40
in Al, a rather soft and ductile metal, to 5× 104 in diamond, the hardest material,
a brittle insulator. The yield stresses of common steels range from 200–2000 MPa.
Again we see an impressive range of more than three orders of magnitude in how
a solid responds to an external agent, in this case a mechanical stress.
Naively, one might expect that the origin of the widely different properties of

solids is related to great differences in the concentration of atoms, and correspond-
ingly that of electrons. This is far from the truth. Concentrations of atoms in a solid
range from 1022 cm−3 in Cs, a representative alkali metal, to 17× 1022 cm−3 in C,
a representative covalently bonded solid. Anywhere from one to a dozen valence
electrons per atomparticipate actively in determining the properties of solids. These
considerations give a range of atomic concentrations of roughly 20, and of electron
concentrations1 of roughly 100. These ranges are nowhere close to the ranges of
yield stresses and electrical resistivities mentioned above. Rather, the variation of
the properties of solids has to do with the specific ways in which the valence elec-
trons of the constituent atoms interact when these atoms are brought together at
distances of a few angstroms (1Å= 10−10m = 10−1 nm). Typical distances between
nearest neighbor atoms in solids range from1.5 to 3Å. Theway inwhich the valence
electrons interact determines the atomic structure, and this in turn determines all
the other properties of the solid, including mechanical, electrical, optical, thermal
and magnetic properties.

1.1 Building crystals from atoms

The structure of crystals can be understood to some extent by taking a close look at
the properties of the atoms from which they are composed. We can identify several
broad categories of atoms, depending on the nature of electrons that participate
actively in the formation of the solid. The electrons in the outermost shells of the
isolatedatomare theones that interact stronglywith similar electrons inneighboring
atoms; as already mentioned these are called valence electrons. The remaining
electrons of the atomare tightly bound to the nucleus, their wavefunctions (orbitals)

1 The highest concentration of atoms does not correspond to the highest number of valence electrons per atom.



6 1 Atomic structure of crystals

do not extend far from the position of the nucleus, and they are very little affected
when the atom is surrounded by its neighbors in the solid. These are called the core
electrons. Formost purposes it is quite reasonable to neglect the presence of the core
electrons as far as the solid is concerned, and consider how the valence electrons
behave. We will discuss below the crystal structure of various solids based on the
properties of electronic states of the constituent atoms. We are only concerned here
with the basic features of the crystal structures that the various atoms form, such
as number of nearest neighbors, without paying close attention to details; these
will come later. Finally, we will only concern ourselves with the low-temperature
structures, which correspond to the lowest energy static configuration; dynamical
effects, which can produce a different structure at higher temperatures, will not
be considered [1]. We begin our discussion with those solids formed by atoms of
one element only, called elemental solids, and then proceed to more complicated
structures involving several types of atoms. Some basic properties of the elemental
solids are collected in the Periodic Table (pp. 8, 9), where we list:

� The crystal structure of the most common phase. The acronyms for the crystal structures
that appear in the Table stand for: BCC=body-centered cubic, FCC= face-centered
cubic, HCP=hexagonal-close-packed, GRA=graphite, TET= tetragonal, DIA=dia-
mond, CUB= cubic, MCL=monoclinic, ORC=orthorhombic, RHL= rhombohedral.
Selected shapes of the corresponding crystal unit cells are shown in Fig. 1.1.
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Figure 1.1. Shapes of the unit cells in some lattices that appear in Periodic Table.Top
row: cubic, tetragonal, orthorhombic.Bottom row: rhombohedral, monoclinic, triclinic.
The corners in thin lines indicate right angles between edges.
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� The covalent radius in units of angstroms, Å, which is a measure of the typical distance
of an atom to its neighbors; specifically, the sum of covalent radii of two nearest neighbor
atoms give their preferred distance in the solid.

� The melting temperature in millielectronvolts (1 meV=10−3 eV=11.604 K). The melt-
ing temperature provides a measure of how much kinetic energy is required to break the
rigid structure of the solid. This unconventional choice of units for the melting temper-
ature ismeant to facilitate the discussion of cohesion and stability of solids. Typical values
of the cohesive energy of solids are in the range of a few electronvolts (see Tables 5.4 and
5.5), which means that the melting temperature is only a small fraction of the cohesive
energy, typically a few percent.

� The atomic concentration of the most common crystal phase in 1022 cm−3.
� The electrical resistivity in units of micro-ohm-centimeters,µ�·cm; for most elemental
solids the resistivity is of order 1–100 in these units, except for some good insulators
which have resistivities 103(k), 106(M) or 109(G) times higher.

The natural units for various physical quantities in the context of the structure of
solids and the names of unit multiples are collected in two tables at the end of the
book (see Appendix I).
The columns of the Periodic Table correspond to different valence electron

configurations, which follow a smooth progression as thes, p,d and f shells are
being filled. There are a few exceptions in this progression, which are indicated by
asterisks denoting that the higher angular momentum level is filled in preference to
the lower one (for example, the valence electronic configuration of Cu, marked by
one asterisk, iss1d10 instead ofs2d9; that of Pd, marked by two asterisks, iss0d10

instead ofs2d8, etc.).

1.1.1 Atoms with no valence electrons

The first category consists of thoseelementswhich haveno valenceelectrons. These
are the atoms with all their electronic shells completely filled, which in gaseous
formare very inert chemically, i.e. the noble elementsHe,Ne,Ar, Kr andXe. When
these atoms are brought together to form solids they interact very weakly. Their
outer electrons are not disturbedmuch since they are essentially core electrons, and
theweak interaction is the result of slight polarizationof theelectronicwavefunction
in one atomdue to the presence of other atoms around it. Fortunately, the interaction
is attractive. This interaction is referred to as “fluctuating dipole” or van der Waals
interaction. Since the interaction isweak, the solids are not very stable and they have
very low melting temperatures, well below room temperature. The main concern
of the atoms in forming such solids is to have as many neighbors as possible, in
order to maximize the cohesion since all interactions are attractive. The crystal
structure that corresponds to this atomic arrangement is one of the close-packing
geometries, that is, arrangements which allow the closest packing of hard spheres.
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7

The particular crystal structure that noble-element atoms assume in solid form is
called face-centered cubic (FCC). Each atom has 12 equidistant nearest neighbors
in this structure, which is shown in Fig. 1.2.
Thus, in the simplest case, atoms that have no valence electrons at all behave like

hard spheres which attract each other with weak forces, but are not deformed. They
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formweakly bonded solids in the FCC structure, in which the attractive interactions
are optimized by maximizing the number of nearest neighbors in a close packing
arrangement. Theonly exception to this rule isHe, inwhich theattractive interaction
between atoms is so weak that it is overwhelmed by the zero-point motion of the
atoms. Unless we apply external pressure to enhance this attractive interaction,
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Figure 1.2.Left: one atom and its 12 neighbors in the face-centered cubic (FCC) lattice;
the size of the spheres representing atoms is chosen so as to make the neighbors and their
distances apparent.Right: a portion of the three-dimensional FCC lattice; the size of the
spheres is chosen so as to indicate the close-packing nature of this lattice.

He remains a liquid. This is also an indication that in some cases it will prove
unavoidable to treat the nuclei as quantum particles (see also the discussion below
about hydrogen).
The other close-packing arrangement of hard spheres is the hexagonal structure

(HCP for hexagonal-close-packed), with 12 neighbors which are separated into
two groups of six atoms each: the first group forms a planar six-member ring sur-
rounding an atom at the center, while the second group consists of two equilateral
triangles, one above and one below the six-member ring, with the central atom sit-
uated above or below the geometrical center of each equilateral triangle, as shown
in Fig. 1.3. The HCP structure bears a certain relation to FCC: we can view both
structures as planes of spheres closely packed in two dimensions, which gives a
hexagonal lattice; for close packing in three dimensions the successive planes must
be situated so that a sphere in oneplane sits at the center of a triangle formedby three
spheres in the previous plane. There are two ways to form such a stacking of hexag-
onal close-packed planes:...ABCABC..., and ...ABABAB..., whereA, B,C
represent the three possible relative positions of spheres in successive planes
according to the rules of close packing, as illustrated in Fig. 1.4. The first sequence
corresponds to the FCC lattice, the second to the HCP lattice.
An interesting variation of the close-packing theme of the FCC and HCP lattices

is the following: consider two interpenetrating such lattices, that is, two FCC or two
HCP lattices, arranged so that in the resulting crystal the atoms in each sublattice
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Figure 1.3.Left: one atom and its 12 neighbors in the hexagonal-close-packed (HCP)
lattice; the size of the spheres representing atoms is chosen so as to make the neighbors and
their distances apparent.Right: a portion of the three-dimensional HCP lattice; the size of
the spheres is chosen so as toindicate the close-packing nature of this lattice.

AA
B
C

B

A

Figure 1.4. The two possible close packings of spheres:Left: the...ABCABC... stacking
corresponding to the FCC crystal.Right: the ...ABABAB... stacking corresponding to
the HCP crystal. The lattices are viewed along the direction of stacking of the hexagonal-
close-packed planes.

have as nearest equidistant neighbors atoms belonging to the other sublattice. These
arrangements give rise to the diamond lattice or the zincblende lattice (when the two
original lattices are FCC) and to the wurtzite lattice (when the two original lattices
are HCP). This is illustrated in Fig. 1.5. Interestingly, in both cases each atom finds
itself at the center of a tetrahedron with exactly four nearest neighbors. Since the
nearest neighbors are exactly the same, these two types of lattices differ only in
the relative positions of second (or farther) neighbors. It should be evident that
the combination of two close-packed lattices cannot produce another close-packed
lattice.Consequently, thediamond, zincblendeandwurtzite latticesareencountered
in covalent or ionic structures in which four-fold coordination is preferred. For ex-
ample: tetravalent group IV elements such as C, Si, Ge form the diamond lattice;
combinations of two different group IV elements or complementary elements
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C

A

B

A

B

Figure 1.5.Top: illustration of two interpenetratingFCC (left) or HCP (right) lattices;
these correspond to the diamond (or zincblende)and the wurtzite lattices, respectively. The
lattices are viewed from the side, with the vertical direction corresponding to the direction
along which close-packed planes of the FCC or HCP lattices would be stacked (see Fig.
1.4). The two original lattices are denoted by sets of white and shaded circles. All the circles
of medium size would lie on the plane of the paper, while the circles of slightly smaller and
slightly larger size (which are superimposed in this view) lie on planes behind and in front
of the plane of the paper. Lines joining the circles indicate covalent bonds between nearest
neighbor atoms.Bottom: a perspective view of a portion of the diamond (or zincblende)
lattice, showing the tetrahedral coordination of all the atoms; this is the area enclosed by
the dashed rectangle in the top panel, left side (a corresponding area can also be identified
in the wurtzite lattice, upon reflection).

(such as group III–group V, group II–group VI, group I–group VII) form the
zincblende lattice; certain combinations of group III–group V elements form
the wurtzite lattice. These structures are discussed inmore detail below. A variation
of the wurtzite lattice is also encountered in ice and is due to hydrogen bonding.
Yet another version of the close-packing arrangement is the icosahedral structure.

In this case an atom again has 12 equidistant neighbors, which are at the apexes
of an icosahedron. The icosahedron is one of the Platonic solids in which all the
faces are perfect planar shapes; in the case of the icosahedron, the faces are 20
equilateral triangles.The icosahedronhas12apexesarranged in five-fold symmetric
rings,2 as shown in Fig. 1.6. In fact, it turns out that the icosahedral arrangement is
optimal for close packing of a small number of atoms, but it is not possible to fill

2 An n-fold symmetry means that rotation by 2π/n around an axis leaves the structure invariant.
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Figure 1.6.Left: one atom and its 12 neighbors in the icosahedral structure; the size of
the spheres representing atoms is chosen so as to make the neighbors and their distances
apparent.Right: a rendition of the icosahedronthat illustrates its close-packing nature; this
structure cannot be extended to form a periodic solid in three-dimensional space.

three-dimensional space in a periodic fashion with icosahedral symmetry. This fact
is a simple geometrical consequence (see also chapter 3 on crystal symmetries).
Based on this observation it was thought that crystals with perfect five-fold (or
ten-fold) symmetry could not exist, unless defects were introduced to allow for
deviations from the perfect symmetry [2–4]. The discovery of solids that exhibited
five-fold or ten-fold symmetry in their diffraction patterns, in the mid 1980s [5],
caused quite a sensation. These solids were named “quasicrystals”, and their study
created a new exciting subfield in condensed matter physics. They are discussed in
more detail in chapter 12.

1.1.2 Atoms withsvalence electrons

The second category consists of atoms that have onlysvalence electrons. These are
Li, Na, K, Rb andCs (the alkalis) with one valence electron, and Be,Mg, Ca, Sr and
Ba with two valence electrons. The wavefunctions of valence electrons of all these
elements extend far from the nucleus. In solids, the valence electron wavefunctions
at one site have significant overlap with those at the nearest neighbor sites. Since
thes states are spherically symmetric, the wavefunctions of valence electrons do
not exhibit any particular preference for orientation of the nearest neighbors in
space. For the atoms with one and twos valence electrons a simplified picture
consists of all the valence electrons overlapping strongly, and thus being shared by
all the atoms in the solid forming a “sea” of negative charge. The nuclei with their
core electrons form ions, which are immersed in this sea of valence electrons. The
ions have charge+1 for the alkalis and+2 for the atomswith twosvalenceelectrons.
The resulting crystal structure is the onewhich optimizes the electrostatic repulsion
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Figure 1.7.Left: one atomand its eight neighbors in the body-centered cubic (BCC) lattice;
the size of the spheres representing atoms is chosen so as to make the neighbors and their
distances apparent.Right: a portion of the three-dimensional BCClattice; the size of the
spheres is chosen so as to indicate the almost close-packing nature of this lattice.

of the positively charged ionswith their attraction by the sea of electrons. The actual
structures are body-centered cubic (BCC) for all the alkalis, andFCCorHCP for the
two-s-valence-electron atoms, except Ba, which prefers the BCC structure. In the
BCC structure each atom has eight equidistant nearest neighbors as shown in Fig.
1.7, which is the second highest number of nearest neighbors in a simple crystalline
structure, after FCC and HCP.
One point deserves further clarification: wementioned that the valence electrons

have significant overlap with the electrons in neighboring atoms, and thus they are
shared by all atoms in the solid, forming a sea of electrons. It may seem somewhat
puzzling that we can jump from one statement – the overlap of electron orbitals in
nearby atoms – to the other – the sharing of valence electrons by all atoms in the
solid. The physical symmetry which allows us to make this jump is the periodicity
of the crystalline lattice. This symmetry is the main feature of the external potential
that the valence electrons feel in the bulk of a crystal: they are subjected to a periodic
potential in space, in all three dimensions, which for all practical purposes extends
to infinity – an idealized situation we discussed earlier. Just like in any quantum
mechanical system, the electronic wavefunctions must obey the symmetry of the
external potential, whichmeans that thewavefunctions themselvesmust be periodic
up to a phase. The mathematical formulation of this statement is called Bloch’s
theorem and will be considered in detail later. A periodic wavefunction implies that
if two atoms in the crystal share an electronic state due to overlap between atomic
orbitals, then all equivalent atoms of the crystal share the same state equally, that
is, the electronic state is delocalized over the entire solid. This behavior is central



1.1 Building crystals from atoms 15

to the physics of solids, and represents a feature that is qualitatively different from
what happens in atoms andmolecules, where electronic states are localized (except
in certain large molecules that possess symmetries akin to lattice periodicity).

1.1.3 Atoms withsandp valence electrons

The next level of complexity in crystal structure arises from atoms that have boths
andp valence electrons. The individualp states are not spherically symmetric so
they can form linear combinations with thes states that have directional character:
a singlep state has two lobes of opposite sign pointing in diametrically opposite
directions. Thes and p states, illustrated in Fig. 1.8, can then serve as the new
basis for representing electron wavefunctions, and their overlap with neighboring
wavefunctions of the same type can lead to interesting ways of arranging the atoms
into a stable crystalline lattice (see Appendix B on the character of atomic orbitals).
In the following we will use the symbolss(r ), pl (r ),dm(r ), to denote atomic

orbitals as they would exist in an isolated atom, which are functions ofr . When
they are related to an atomA at positionRA, these become functions ofr − RA

and are denoted bysA(r ), pAl (r ),d
A
m(r ).We useφ

A
i (r )(i = 1,2, . . .) to denote linear

combinations of the atomic orbitals at siteA, andψn(r )(n = a,b) for combinations
of φX

i (r )’s (X = A, B, . . . ; i = 1,2, . . .) which are appropriate for the description
of electronic states in the crystal.
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Figure 1.8. Representation of the character ofs, p,d atomic orbitals. The lobes of opposite
sign in thepx, py, pz anddx2−y2,dxy orbitals are shownshadedblack andwhite. Thedyz,dzx
orbitals are similar to thedxy orbital, but lie on theyzandzx planes.
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The possibility of combining these atomic orbitals to form covalent bonds in
a crystal is illustrated by the following two-dimensional example. For an atom,
labeledA, with statessA, pAx , pAy , pAz which are orthonormal, we consider first
the linear combinations which constitute a new orthonormal basis of atomic
orbitals:

φA
1 = 1√

3
sA +

√
2√
3
pAx

φA
2 = 1√

3
sA − 1√

6
pAx + 1√

2
pAy

φA
3 = 1√

3
sA − 1√

6
pAx − 1√

2
pAy

φA
4 = pAz (1.1)

The first three orbitals,φA
1 , φA

2 , φA
3 point along three directions on thexy plane

separated by 120°, while the last one,φA
4 , points in a direction perpendicular to

the xy plane, as shown in Fig. 1.9. It is easy to show that, if the atomic orbitals
are orthonormal, and the statessA, pAi (i = x, y, z) have energiesεs andεp, then
the statesφk(k = 1,2,3) have energy (εs + 2εp)/3; these states, since they are
composed of ones and twop atomic orbitals, are calledsp2 orbitals. Imagine now
a second identical atom, which we labelB, with the following linear combinations:

φB
1 = 1√

3
sB −

√
2√
3
pBx

φB
2 = 1√

3
sB + 1√

6
pBx − 1√

2
pBy

φB
3 = 1√

3
sB + 1√

6
pBx + 1√

2
pBy

φB
4 = pBz (1.2)

The orbitalsφB
1 , φB

2 , φB
3 also point along three directions on thexyplane separated

by 120°, but in the opposite sense (rotated by 180°) from those of atomA. For
example,φA

1 points along the+x̂ direction, whileφB
1 points along the−x̂ direction.

Now imagine that we place atomsA andB next to each other along thex axis, first
atomAand to its right atomB, at a distancea. We arrange the distance so that there
is significant overlap between orbitalsφA

1 andφ
B
1 , which are pointing toward each

other, therebymaximizing the interaction between these two orbitals. Let us assume
that in the neutral isolated state of the atom we can occupy each of these orbitals
by one electron; note that this isnot the ground state of the atom. We can form two
linear combinations,ψb

1 = 1
2(φ

A
1 + φB

1 ) andψa
1 = 1

2(φ
A
1 − φB

1 ) of which the first



1.1 Building crystals from atoms 17

π2  /3

π2  /3

φ2
φ3

φ1

φ4x x x x

z

y

yyy

A’

A

A’’

B

1ψa ψ2
a ψ3

a

ψ4
a

ψb
3ψb

21ψb

ψb
4

s

φB
1 φB

2 φB
3 φ1

A φ2
A φ3

A

φ4
AφB

4p
x

p
y

p
z

s

p
x

p
y

p
z

B B B A A A

B A

Figure 1.9. Illustration of covalent bonding in graphite.Top: thesp2 linear combinations
of s and p atomic orbitals (defined in Eq. (1.1)).Middle: the arrangement of atoms on
a plane withB at the center of an equilateral triangle formed byA, A′, A′′ (the arrows
connect equivalent atoms); the energy level diagram for thes, p atomic states, theirsp2

linear combinations (φA
i andφB

i ) and the bonding (ψ
b
i ) and antibonding (ψ

a
i ) states (up–

down arrows indicate electrons spins).Bottom: the graphitic plane (honeycomb lattice)
and the C60 molecule.
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maximizes the overlap and the second has a node at the midpoint between atoms
A andB. As usual, we expect the symmetric linear combination of single-particle
orbitals (called the bonding state) to have lower energy than the antisymmetric
one (called the antibonding state) in the system of the two atoms; this is a general
feature of how combinations of single-particle orbitals behave (see Problem 2).
The exact energy of the bonding and antibonding states will depend on the overlap
of the orbitalsφA

1 , φB
1 . We can place two electrons, one from each atomic orbital,

in the symmetric linear combination because of their spin degree of freedom;
this is based on the assumption that the spin wavefunction of the two electrons is
antisymmetric (a spin singlet), so that the total wavefunction, the product of the
spatial and spin parts, is antisymmetric upon exchange of their coordinates, as it
should be due to their fermionic nature. Through this exercise we have managed
to lower the energy of the system, since the energy ofψb is lower than the energy
of φA

1 or φ
B
1 . This is the essence of the chemical bond between two atoms, which

in this case is called a covalentσ bond.
Imagine next that we repeat this exercise: we take another atom with the

same linear combinations of orbitals asA, which we will call A′, and place it
in the direction of the vector12x̂−

√
3
2 ŷ relative to the position of atomB, and at the

same distancea as atomA from B. Due to our choice of orbitals,φB
2 andφA′

2

will be pointing toward each other. We can form symmetric and antisymmetric
combinations from them, occupy the symmetric (lower energy) one with two elec-
trons as before and create a secondσ bond between atomsB andA′. Finally we
repeat this procedure with a third atomA′′ placed along the direction of the vector
1
2x̂+

√
3
2 ŷ relative to the position of atomB, and at the same distancea as the previ-

ous twoneighbors. Through thesameprocedurewecan forma thirdσ bondbetween
atomsB andA′′, by forming the symmetric and antisymmetric linear combinations
of the orbitalsφB

3 andφ
A′′
3 . Now, as far as atomB is concerned, its three neighbors

are exactly equivalent, so we consider the vectors that connect them as the repeat
vectors at which equivalent atoms in the crystal should exist. If we place atoms of
type A at all the possible integer multiples of these vectors, we form a lattice. To
complete the lattice we have to place atoms of typeB also at all the possible integer
multiples of the same vectors, relative to the position of the original atomB. The re-
sulting lattice is called the honeycomb lattice. Each atomof typeA is surrounded by
three atoms of typeB and vice versa, as illustrated in Fig. 1.9. Though this example
may seem oversimplified, it actually corresponds to the structure of graphite, one of
the most stable crystalline solids. In graphite, planes of C atoms in the honeycomb
lattice are placed on top of each other to form a three-dimensional solid, but the
interaction between planes is rather weak (similar to the van derWaals interaction).
An indication of this weak bonding between planes compared to the in-plane bonds
is that the distance between nearest neighbor atoms on a plane is 1.42Å, whereas
the distance between successive planes is 3.35Å, a factor of 2.36 larger.
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What about the orbitalspz (orφ4), which so far have not been used? If each atom
had only three valence electrons, then these orbitals would be left empty since they
have higher energy than the orbitalsφ1, φ2, φ3, which are linear combinations ofs
andp orbitals (the originalsatomic orbitals have lower energy thanp). In the case
ofC, eachatomhas four valenceelectrons so there is oneelectron left per atomwhen
all theσ bonds have been formed. These electrons remain in thepz orbitals, which
are perpendicular to thexy plane and thus parallel to each other. Symmetric and
antisymmetric combinations of neighboringpAz andp

B
z orbitals can also be formed

(the statesψb
4 , ψ

a
4 , respectively), and the energy can be lowered by occupying the

symmetric combination. In this case the overlap between neighboringpz orbitals is
significantly smaller and the corresponding gain in energy significantly less than in
σ bonds. This is referred to as aπ bond, which is generally weaker than aσ bond.
Carbon is a special case, in which theπ bonds are almost as strong as theσ bonds.
An intriguing variation of this theme is a structure that contains pentagonal

rings as well as the regular hexagons of the honeycomb lattice, while maintaining
the three-fold coordination and bonding of the graphitic plane. The presence of
pentagons introduces curvature in the structure, and the right combination of
pentagonal and hexagonal rings produces the almost perfect sphere, shown in
Fig. 1.9. This structure actually exists in nature! It was discovered in 1985 and
it has revolutionized carbon chemistry and physics – its discoverers, R. F. Curl,
H.W. Kroto and R. E. Smalley, received the 1996 Nobel prize for Chemistry. Many
more interesting variations of this structure have also been produced, including
“onions” – spheres within spheres – and “tubes” – cylindrical arrangements of
three-fold coordinated carbon atoms. The tubes in particular seem promising for
applications in technologically and biologically relevant systems. These structures
have been nicknamed after Buckminster Fuller, an American scientist and practical
inventor of the early 20th century, who designed architectural domes based on
pentagons and hexagons; the nicknames are buckminsterfullerene or bucky-ball
for C60, bucky-onions, and bucky-tubes. The physics of these structures will be
discussed in detail in chapter 13.
There is a different way of forming bonds between C atoms: consider the fol-

lowing linear combinations of thes andp atomic orbitals for atomA:

φA
1 = 1

2
[sA − pAx − pAy − pAz ]

φA
2 = 1

2
[sA + pAx − pAy + pAz ]

φA
3 = 1

2
[sA + pAx + pAy − pAz ]

φA
4 = 1

2
[sA − pAx + pAy + pAz ] (1.3)
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Figure 1.10. Illustration of covalent bonding in diamond.Top panel: representation of the
sp3 linear combinations ofs and p atomic orbitals appropriate for the diamond structure,
as defined in Eq. (1.3), using the same convention as in Fig. 1.8.Bottom panel: on the left
side, the arrangement of atoms in the three-dimensional diamond lattice;an atomA is at the
center of a regular tetrahedron (dashed lines) formed by equivalentB, B′, B′′, B′′′ atoms;
the three arrows are the vectors that connect equivalent atoms. On theright side, the energy
level diagram for thes, p atomic states, theirsp3 linear combinations (φA

i andφB
i ) and

the bonding (ψb
i ) and antibonding (ψ

a
i ) states. The up–down arrows indicate occupation

by electrons in the two possible spin states. For a perspective view of the diamond lattice,
see Fig. 1.5.

It is easy to show that the energy of these states, which are degenerate, is equal to
(εs + 3εp)/4, whereεs, εp are the energies of the originals andp atomic orbitals;
the new states, which are composed of ones and threep orbitals, are calledsp3

orbitals. These orbitals point along the directions from the center to the corners of
a regular tetrahedron, as illustrated in Fig. 1.10. We can now imagine placing
atomsB, B′, B′′, B′′′ at the corners of the tetrahedron, with which we associate
linear combinations ofs and p orbitals just like those for atomA, but having all
the signs of thep orbitals reversed:

φB
1 = 1

2
[sB + pBx + pBy + pBz ]

φB
2 = 1

2
[sB − pBx + pBy − pBz ]

φB
3 = 1

2
[sB − pBx − pBy + pBz ]

φB
4 = 1

2
[sB + pBx − pBy − pBz ] (1.4)
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Thenwewill have a situation where theφ orbitals on neighboringAandB atoms
will be pointing toward each other, and we can form symmetric and antisymmetric
combinations of those,ψb, ψa, respectively, to create fourσ bonds around atom
A. The exact energy of theψ orbitals will depend on the overlap between theφA

andφB orbitals; for sufficiently strong overlap, we can expect the energy of theψb

states to be lower than the originalsatomic orbitals and those of theψa states to be
higher than the originalp atomic orbitals, as shown schematically in Fig. 1.10. The
vectors connecting the equivalentB, B′, B′′, B′′′ atoms define the repeat vectors at
which atomsmust be placed to form an infinite crystal. By placing bothA-type and
B-type atoms at all the possible integer multiples of these vectors we create the
diamond lattice, shown in Fig. 1.10. This is the other stable form of bulk C. Since C
has four valence electrons and each atom at the center of a tetrahedron forms four
σ bonds with its neighbors, all electrons are taken up by the bonding states. This
results in a very stable and strong three-dimensional crystal. Surprisingly, graphite
has a somewhat lower internal energy than diamond, that is, the thermodynamically
stable solid form of carbon is the soft, black, cheap graphite rather than the very
strong, brilliant and very expensive diamond crystal!
The diamond lattice, with four neighbors per atom, is relatively open compared

to the close-packed lattices. Its stability comes from the very strong covalent
bonds formed between the atoms. Two other elements with four valences and p
electrons, namely Si and Ge, also crystallize in the diamond, but not the graphite,
lattice. There are two more elements with four valences and p electrons in the
Periodic Table, Sn and Pb. Sn forms crystal structures that are distorted variants
of the diamond lattice, since itsσ bonds are not as strong as those of the other
group-IV-A elements, and it can gain some energy by increasing the number of
neighbors (from four to six) at the expense of perfect tetrahedralσ bonds. Pb,
on the other hand, behaves more like a metal, preferring to optimize the number
of neighbors, and forms the FCC crystal (see also below). Interestingly, elements
with only three valencesandp electrons, like B, Al, Ga, In and Tl, do not form the
graphite structure, as alluded above. They instead formmore complex structures in
which they try to optimize bonding given their relatively small number of valence
electrons per atom. Some examples: the common structural unit for B is the
icosahedron, shown in Fig. 1.6, and such units are close packed to form the solid;
Al forms the FCC crystal and is the representative metal withsandp electrons and
a close-packed structure; Ga forms quite complicated crystal structures with six or
seven near neighbors (not all of them at the same distance); In forms a distorted
version of the cubic close packing in which the 12 neighbors are split into a group
of four and another group of eight equidistant atoms. None of these structures can
be easily described in terms of the notions introduced above to handles and p
valence electrons, demonstrating the limitations of this simple approach.
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Of the other elements in the Periodic Table withsandp valence electrons, those
with five electrons, N, P, As, Sb and Bi, tend to form complex structures where
atoms have threeσ bonds to their neighbors but not in a planar configuration. A
characteristic structure is one in which the threep valence electrons participate
in covalent bonding while the twos electrons form a filled state which does not
contribute much to the cohesion of the solid; this filled state is called the “lone
pair” state. If the covalent bonds were composed of purelyp orbitals the bond
angles between nearest neighbors would be 90°; instead, the covalent bonds in
these structures are a combination ofsandporbitals with predominantp character,
and the bond angles are somewhere between 120◦ (sp2 bonding) and 90◦ (purep
bonding), as illustrated in Fig. 1.11. The structure of solid P is represented by this
kind of atomic arrangement. In this structure, the covalent bonds are arranged in
puckered hexagons which form planes, and the planes are stacked on top of each
other to form the solid. The interaction between planes is much weaker than that
between atoms on a single plane: an indication of this difference in bonding is the
fact that the distance between nearest neighbors in a plane is 2.17Åwhile the closest
distance between atoms on successive planes is 3.87Å, almost a factor of 2 larger.
The structures of As, Sb and Bi follow the same general pattern with three-fold
bonded atoms, but in those solids there exist additional covalent bonds between the
planes of puckered atoms so that the structure is not clearly planar as is the case
for P. An exception to this general tendency is nitrogen, the lightest element with
five valence electrons which forms a crystal composed of nitrogen molecules; the
N2 unit is particularly stable.
The elements with sixs and p valence electrons, O, S, Se, Te and Po, tend to

form molecular-like ring or chain structures with two nearest neighbors per atom,
which are then packed to form three-dimensional crystals. These rings or chains
are puckered and form bonds at angles that try to satisfy bonding requirements
analogous to those described for the solids with fours and p valence electrons.
Examples of such units are shown in Fig. 1.12. Since these elements have a va-
lence of 6, they tend to keep four of their electrons in one filleds and one filled
p orbital and form covalent bonds to two neighbors with their other twop or-
bitals. This picture is somewhat oversimplified, since significant hybridization takes
place betweens andp orbitals that participate in bonding, so that the preferred an-
gle between the bonding orbitals is not 90°, as purep bonding would imply, but
ranges between 102° and 108°. Typical distances between nearest neighbor atoms
in the rings or the chains are 2.06Å for S, 2.32Å for Se and 2.86Å for Te, while
typical distances between atoms in successive units are 3.50Å for S, 3.46Å for Se
and 3.74Å for Te; that is, the ratio of distances between atoms within a bonding
unit and across bonding units is 1.7 for S, 1.5 for Se and 1.3 for Te. An exception
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Figure 1.11. The layers of buckled atoms that correspond to the structure of group-V
elements: all atoms are three-fold coordinated as in a graphitic plane, but the bond angles
between nearest neighbors are not 120° and hence the atoms do not lie on the plane. For
illustration two levels of buckling are shown: in the first structure the bond angles are 108°,
in the second 95°. The planes are stacked on top of each other as in graphite to form the 3D
solids.

Figure 1.12. Characteristic units that appear in the solid forms of S, Se and Te: six-fold
rings (S),eight-fold rings (Se) and one-dimensional chains (Se and Te). The solids are
formed by close packing of these units.

to this general tendency is oxygen, the lightest element with six valence electrons
which forms a crystal composed of oxygen molecules; the O2 unit is particularly
stable. The theme of diatomic molecules as the basic unit of the crystal, already
mentioned for nitrogen and oxygen, is common in elements with sevens and p
valence electrons also: chlorine, bromine and iodine form solids by close packing
of diatomic molecules.




