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1 General introduction

1.1. Electromagnetic spectrum

Molecular spectroscopy involves the study of the absorption or emission of electromag-
netic radiation by matter; the radiation may be detected directly, or indirectly through
its effects on other molecular properties. The primary purpose of spectroscopic studies
is to understand the nature of the nuclear and electronic motions within a molecule.

The different branches of spectroscopy may be classified either in terms of the
wavelength, or frequency, of the electromagnetic radiation, or in terms of the type
of intramolecular dynamic motion primarily involved. Historically the first method
has been the most common, with different regions of the electromagnetic spectrum
classified as shown in figure 1.1. In the figure we show four different ways of describing
these regions. They may be classified according to the wavelength, in ångström units
(1A

� = 10−8 cm), or the frequency in Hz; wavelength (λ) and frequency (ν) are related
by the equation,

ν = c/λ, (1.1)

where c is the speed of light. Very often the wavenumber unit, cm−1, is used; we denote
this by the symbol ν̃. Clearly the wavelength and wavenumber are related in the simple
way

ν̃ = 1/λ, (1.2)

with λ expressed in cm. Although offensive to the purist, the wavenumber is often taken
as a unit of energy, according to the Planck relationship

E = hν = hcν̃, (1.3)

where h is Planck’s constant. From the values of the fundamental constants given in
General Appendix A, we find that 1 cm−1 corresponds to 1.986 445 × 10−23 J
molecule−1. A further unit of energy which is often used, and which will appear in this
book, is the electronvolt, eV; this is the kinetic energy of an electron which has been
accelerated through a potential difference of 1 V; 1 eV is equal to 8065.545 cm−1.

In the classical theory of electrodynamics, electromagnetic radiation is
emittedwhen an electronmoves in its orbit but, according to theBohr theory of the atom,
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−1 −1 −1 −1 −1 −1

λ

ν

ν
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Figure 1.1. The electromagnetic spectrum, classified according to frequency (ν), wavelength (λ), and wavenumber units
(ν̃). There is no established convention for the division of the spectrum into different regions; we show our convention.
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emission of radiation occurs only when an electron goes from a higher energy orbit
E2 to an orbit of lower energy E1. The emitted energy is a photon of energy hν,
given by

hν = E2 − E1, (1.4)

an equation known as the Bohr frequency condition. The reverse process, a transi-
tion from E1 to E2, requires the absorption of a quantum of energy hν. The range of
frequencies (or energies) which constitutes the electromagnetic spectrum is shown in
figure 1.1. Molecular spectroscopy covers a nominal energy range from 0.0001 cm−1

to 100 000 cm−1, that is, nine decades in energy, frequency or wavelength. The spec-
troscopy described in this book, which we term rotational spectroscopy for reasons to
be given later, is concerned with the range 0.0001 cm−1 to 100 cm−1. Surprisingly,
therefore, it covers six of the nine decades shown in figure 1.1, very much the ma-
jor portion of the molecular spectrum! Indeed our low frequency cut-off at 3 MHz is
somewhat arbitrary, since molecular beam magnetic resonance studies at even lower
frequencies have been described. As we shall see, the experimental techniques em-
ployed over the full range given in figure 1.1 vary a great deal. We also note here
that the spectroscopy discussed in this book is concerned solely with molecules in the
gas phase. Again the reasons for this discrimination will become apparent later in this
chapter.

So far as the classification of the type of spectroscopy performed is concerned,
the characterisation of the dynamical motions of the nuclei and electrons within a
molecule is more important than the region of the electromagnetic spectrum in which
the corresponding transitions occur. However, before we come to this in more detail, a
brief discussion of the nature of electromagnetic radiation is necessary. This is actually
a huge subject which, if tackled properly, takes us deeply into the details of classical
and semiclassical electromagnetism, and even further into quantum electrodynamics.
The basic foundations of the subject are Maxwell’s equations, which we describe in
appendix 1.1. We will make use of the results of these equations in the next section,
referring the reader to the appendix if more detail is required.

1.2. Electromagnetic radiation

Electromagnetic radiation consists of both an electric and amagnetic component,which
for plane-polarised (or linearly-polarised) radiation, travelling along the Y axis, may be
represented as shown in figure 1.2. Each of the three diagrams represents the electric
and magnetic fields at different instants of time as indicated. The electric field (E)
is in the Y Z plane parallel to the Z axis, and the magnetic field (B) is everywhere
perpendicular to the electric field, and therefore in the XY plane. Consideration of
Maxwell’s equations [1] shows that, as time progresses, the entire field pattern shifts
to the right along the Y axis, with a velocity c. The wavelength of the radiation, λ,
shown in the figure, is related to the frequency ν by the simple expression ν = c/λ. At
every point in the wave at any instant of time, the electric and magnetic field strengths
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t � π/2ν

t � 0

t � π/ν

Figure 1.2. Schematic representation of plane-polarised radiation projected along the Y axis at
three different instants of time. The solid arrows denote the amplitude of the electric field (E),
and the dashed arrows denote the perpendicular magnetic field (B).

are equal; this means that, in cgs units, if the electric field strength is 10 V cm−1 the
magnetic field strength is 10 G.

Although it is simplest to describe and represent graphically the example of plane
polarised radiation, it is also instructive to consider the more general case [2]. For
propagation of the radiation along the Y axis, the electric field E can be decomposed
into components along the Z and X axes. The electric field vector in the X Z plane is
then given by

E = i ′EX + k′EZ (1.5)

where i ′ and k′ are unit vectors along the X and Z axes. The components in
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equation (1.5) are given by

EX = E0
X cos(k∗Y − ωt + αX ),

EZ = E0
Z cos(k∗Y − ωt + αZ ), (1.6)

α = αX − αZ .

Here ω = 2πν, ω is the angular frequency in units of rad s−1, ν is the frequency
in Hz, and k∗ is called the propagation vector with units of inverse length. In a
vacuum k∗ has a magnitude equal to 2π/λ0 where λ0 is the vacuum wavelength of
the radiation. Finally, α is the difference in phase between the X and Z components
of E.

Plane-polarised radiation is obtained when the phase factor α is equal to 0 or π and
E0

X = E0
Z . When α = 0, EX and EZ are in phase, whilst for α = π they are out-of-phase

by π. The special case illustrated in figure 1.2 corresponds to E0
X = 0. Other forms of

polarisation can be obtained from equations (1.6). For elliptically-polarised radiation
we set α = ±π/2 so that equations (1.6) become

EX = E0
X cos(k∗Y − ωt),

EZ = E0
Z cos(k∗Y − ωt ± π/2) = ±E0

Z sin(k∗Y − ωt),

E± = i ′EX ± k′EZ

= i ′E0
X cos(k∗Y − ωt) ± k′E0

Z sin(k∗Y − ωt). (1.7)

If E0
X = E0

Z = � for α = ±π/2, we have circularly-polarised radiation given by the
expression

E± = �[i ′ cos(k∗Y − ωt) ± k′ sin(k∗Y − ωt)]. (1.8)

When viewed looking back along the Y axis towards the radiation source, the field
rotates clockwise or counter clockwise about the Y axis. When α = +π/2 which cor-
responds to E+, the field appears to rotate counter clockwise about Y .

Conventional sources of electromagnetic radiation are incoherent, which means
that the waves associated with any two photons of the same wavelength are, in gen-
eral, out-of-phase and have a random phase relation with each other. Laser radiation,
however, has both spatial and temporal coherence, which gives it special importance
for many applications.

1.3. Intramolecular nuclear and electronic dynamics

In order to understand molecular energy levels, it is helpful to partition the kinetic
energies of the nuclei and electrons in amolecule into partswhich, if possible, separately
represent the electronic, vibrational and rotational motions of the molecule. The details
of the processes by which this partitioning is achieved are presented in chapter 2. Here
we give a summary of the main procedures and results.
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We start by writing a general expression which represents the kinetic energies of
the nuclei (α) and electrons (i) in a molecule:

T =
∑

α

1

2Mα

P2
α +

∑
i

1

2m
P2
i , (1.9)

where Mα and m are the masses of the nuclei and electrons respectively. The momenta
Pα and P i are vector quantities, which are defined by

P i = −ih-
∂

∂Ri
,

(1.10)

Pα = −ih-
∂

∂Rα

,

expressed in a space-fixed axis system (X , Y , Z ) of arbitrary origin. Rα gives the
position of nucleus α within this coordinate system. The partial derivative (∂/∂Rα) is
a shorthand notation for the three components of the gradient operator,

∂

∂Rα

≡
(

∂

∂RX

)
α

i ′ +
(

∂

∂RY

)
α

j ′ +
(

∂

∂RZ

)
α

k′, (1.11)

where i ′, j ′, k′ are unit vectors along the space-fixed axes X , Y , Z .
It is by no means obvious that (1.9) contains the vibrational and rotational motion

of the nuclei, as well as the electron kinetic energies, but a series of origin and axis
transformations shows that this is the case. First, we transform from the arbitrary origin
to an origin at the centre of mass of the molecule, and then to the centre of mass of the
nuclei. As we show in chapter 2, these transformations convert (1.9) into the expression

T = 1

2M
P2

O + 1

2µ
P2

R + 1

2m

∑
i

P ′′2
i + 1

2(M1 + M2)

∑
i, j

P ′′
i · P ′′

j . (1.12)

The first term in (1.12) represents the kinetic energy due to translation of the whole
molecule through space; this motion can be separated off rigorously in the absence of
external fields. In the second term, µ is the reduced nuclear mass, M1M2/(M1 + M2),
and this term represents the kinetic energy of the nuclei. The third term describes
the kinetic energy of the electrons and the last term is a correction term, known as
the mass polarisation term. The transformation is described in detail in chapter 2 and
appendix 2.1. An alternative expression equivalent to (1.12) is obtained by writing the
momentum operators in terms of the Laplace operators,

T = − h-2

2M
∇2 − h-2

2µ
∇2

R − h-2

2m

∑
i

∇′′2
i − h-2

2(M1 + M2)

∑
i, j

∇′′
i · ∇′′

j . (1.13)

The next step is to add terms representing the potential energy, the electron spin
interactions and the nuclear spin interactions. The total Hamiltonian HT can then be
subdivided into electronic and nuclear Hamiltonians,

HT = Hel + Hnucl, (1.14)
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where

Hel = − h-2

2m

∑
i

∇2
i − h-2

2MN

∑
i, j

∇i · ∇ j +
∑
i< j

e2

4πε0Ri j
−

∑
α,i

Zαe2

4πε0Riα

+ H(Si ) + H(Iα), (1.15)

Hnucl = − h-2

2µ
∇2

R +
∑
α,β

ZαZβe2

4πε0R
. (1.16)

The third and fourth terms in (1.15) represent the potential energy contributions (in SI
units, see General Appendix E) arising from the electron–electron and electron–nuclear
interactions, whilst the second term in (1.16) describes the nuclear repulsion term
between nuclei with charges Zαe and Zβe. The electron and nuclear spin Hamiltonians
introduced into (1.15) are described in detail later.

The total nuclear kinetic energy is contained within the first term in equation (1.16)
and we now introduce a further transformation from the axes translating with the
molecule but with fixed orientation to molecule-fixed axes gyrating with the nuclei. In
chapter 2 the two axis systems are related by Euler angles, φ, θ and χ , although for
diatomic molecules the angle χ is redundant. We may use a simpler transformation to
spherical polar coordinates R, θ , φ as defined in figure 1.3. With this transformation
the space-fixed coordinates are given by

X = R sin θ cos φ,

Y = R sin θ sin φ, (1.17)

Z = R cos θ.

θ

φ

Figure 1.3. Transformation from space-fixed axes X , Y , Z to molecule-fixed axes using the
spherical polar coordinates R, θ , φ, defined in the figure.
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We proceed to show, in chapter 2, that this transformation of the axes leads to the
nuclear kinetic energy term being converted into a new expression:

1

2µ
P2

R = − h-2

2µ
∇2

R

= − h-2

2µ

{
1

R2

∂

∂R

(
R2 ∂

∂R

)
+ 1

R2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

R2 sin2 θ

∂2

∂φ2

}
.

(1.18)

This is a very important result because the first term describes the vibrational kinetic
energy of the nuclei, whilst the second and third terms represent the rotational kinetic
energy. The transformation is straightforward provided one takes proper note of the
non-commutation of the operator products which arise.

The transformation of terms representing the kinetic energies of all the particles
into terms representing, separately, the electronic, vibrational and rotational kinetic
energies is clearly very important. The nuclear kinetic energy Hamiltonian, (1.18),
is relatively simple when the spherical polar coordinate transformation (1.17) is used.
When the Euler angle transformation is used, it is a little more complicated, containing
terms which include the third angle χ :

Hnucl = − h-2

2µR2

{
∂

∂R

(
R2 ∂

∂R

)
+ cosec θ

∂

∂θ

(
sin θ

∂

∂θ

)

+ cosec2θ

[
∂2

∂φ2
+ ∂2

∂χ2
− 2 cos θ

∂2

∂φ∂χ

]}
+ Vnucl(R). (1.19)

We show in chapter 2 that when the transformation of the electronic coordinates,
including electron spin, into the rotating molecule-fixed axes system is taken into
account, equation (1.19) takes the much simpler form

Hnucl = − h-2

2µR2

∂

∂R

(
R2 ∂

∂R

)
+ h-2

2µR2
(J − P)2 + Vnucl(R), (1.20)

where J is the total angularmomentumand P is the total electronic angularmomentum,
equal to L + S. Hence although the electronic Hamiltonian is free of terms involving
the motion of the nuclei, the nuclear Hamiltonian (1.20) contains terms involving the
operators Px , Py and Pz which operate on the electronic part of the total wave function.
The Schrödinger equation for the total wave function is written as

(Hel + Hnucl)Ψrve = ErveΨrve, (1.21)

and, as we show in chapter 2, the Born approximation allows us to assume total wave
functions of the form

Ψ0
rve = ψn

e (r i )φ
n
rv(R, φ, θ). (1.22)

The matrix elements of the nuclear Hamiltonian that mix different electronic states
are then neglected; the electronic wave function is taken to be dependent upon nuclear
coordinates, but not nuclear momenta. If the first-order contributions of the nuclear
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kinetic energy are taken into account, we have the Born adiabatic approximation; if
they are neglected,wehave theBorn–Oppenheimer approximation.This approximation
occupies a central position in molecular quantum mechanics; in most situations it is a
good approximation, and allows us to proceed with concepts like the potential energy
curve or surface, molecular shapes and geometry, etc. Those special cases, usually
involving electronic orbital degeneracy, where the Born–Oppenheimer approximation
breaks down, can often be treated by perturbation methods.

In chapter 2 we show how a separation of the vibrational and rotational wave
functions can be achieved by using the product functions

φn
rv = χn(R)eiMJφΘn(θ )eikχ , (1.23)

where MJ and k are constants taking integral or half-odd values. We show that in the
Born approximation, the wave equation for the nuclear wave functions can be expressed
in terms of two equations describing the vibrational and rotational motion separately.
Ultimately we obtain the wave equation of the vibrating rotator,

h-2

2µR2

∂

∂R
R2 ∂χn(R)

∂R
+

{
Erve − V − h-2

2µR2
J (J + 1)

}
χn(R) = 0. (1.24)

The main problem with this equation is the description of the potential energy term (V ).
As we shall see, insertion of a restricted form of the potential allows one to express data
on the ro-vibrational levels in terms of semi-empirical constants. If the Morse potential
is used, the ro-vibrational energies are given by the expression

Ev,J = ωe(v + 1/2) − ωexe(v + 1/2)2 + Be J (J + 1) − De J
2(J + 1)2

− αe(v + 1/2)J (J + 1). (1.25)

The first two terms describe the vibrational energy, the next two the rotational energy,
and the final term describes the vibration–rotation interaction.

1.4. Rotational levels

This book is concerned primarily with the rotational levels of diatomic molecules. The
spectroscopic transitions described arise either from transitions between different ro-
tational levels, usually adjacent rotational levels, or from transitions between the fine
or hyperfine components of a single rotational level. The electronic and vibrational
quantum numbers play a different role. In the majority of cases the rotational levels
studied belong to the lowest vibrational level of the ground electronic state. The de-
tailed nature of the rotational levels, and the transitions between them, depends critically
upon the type of electronic state involved. Consequently we will be deeply concerned
with the many different types of electronic state which arise for diatomic molecules,
and the molecular interactions which determine the nature and structure of the rota-
tional levels. We will not, in general, be concerned with transitions between different
electronic states, except for the double resonance studies described in the final chapter.
The vibrational states of diatomic molecules are, in a sense, relatively uninteresting.
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The detailed rotational structure and sub-structure does not usually depend upon the
vibrational quantum number, except for the magnitudes of the molecular parameters.
Furthermore, we will not be concerned with transitions between different vibrational
levels.

Rotational level spacings, and hence the frequencies of transitions between rota-
tional levels, depend upon the values of the rotational constant, Bv , and the rotational
quantum number J , according to equation (1.25). The largest known rotational con-
stant, for the lightest molecule (H2), is about 60 cm−1, so that rotational transitions
in this and similar molecules will occur in the far-infrared region of the spectrum. As
the molecular mass increases, rotational transition frequencies decrease, and rotational
spectroscopy for most molecules occurs in the millimetre wave and microwave regions
of the electromagnetic spectrum.

The fine and hyperfine splittings within a rotational level, and the transition fre-
quencies between components, depend largely on whether the molecular species has a
closed or open shell electronic structure. We will discuss these matters in more detail
in section 1.6. For a closed shell molecule, that is, one in a 1�+ state, intramolecular
interactions are in general very small. They depend almost entirely on the presence
of nuclei with spin magnetic moments, or with electric quadrupole moments. If both
nuclei in a diatomic molecule have spin magnetic moments, there will be a magnetic
interaction between them which leads to splitting of a rotational level. The interaction
may occur as a through-space dipolar interaction, or it may arise through an isotropic
scalar coupling brought about by the electrons. Dipolar interactions are much larger
than the scalar spin–spin couplings, but even so only produce splittings of a few kHz
in the most favourable cases. A molecule also possesses a magnetic moment by virtue
of its rotational motion, which can interact with any nuclear spin magnetic moments
present in the molecule. Nuclear and rotational magnetic moments interact with an
applied magnetic field, and these interactions are at the heart of the molecular beam
magnetic resonance studies described in chapter 8. The pioneering experiments in this
field were carried out in the period 1935 to 1955; they are capable of exceptionally high
spectroscopic resolution, with line widths sometimes only a fraction of a kHz, and they
form the foundations of what came to be known as nuclear magnetic resonance [3].
Nuclear electric quadrupole moments, where present, interact with the electric field
gradient caused by the other charges (nuclei and electrons) in a molecule and the result-
ing interaction, called the nuclear electric quadrupole interaction, can in certain cases
be quite large (i.e. several GHz). This interaction may be studied through molecular
beam magnetic resonance experiments, but it can also be important in conventional
microwave absorption studies, as we describe in chapter 10. Magnetic resonance stud-
ies require the presence of a magnetic moment, but in the closely related technique of
molecular beam electric resonance, the interaction between a molecular electric dipole
moment and an applied electric field is used. These experiments are also described in
detail in chapter 8. The magnetic resonance studies of closed shell molecules almost
always involve transitions between components of a rotational level, and usually oc-
cur in the radiofrequency region of the spectrum. Electric resonance experiments, on
the other hand, often deal with electric dipole transitions between rotational levels,
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and occur in the millimetre wave and microwave regions of the spectrum. Molecular
beam electric resonance experiments are closely related to conventional absorption
experiments.

Molecules with open shell electronic states, which are often highly reactive tran-
sient species called free radicals, introduce a range of new intramolecular interactions.
The largest of these, which occurs in molecules with both spin and orbital angular
momentum, is spin–orbit coupling. Spin–orbit interactions range from a few cm−1 to
several thousand cm−1 and determine the overall pattern of the rotational levels and
their associated spectroscopy. Molecules in 2� states are particularly important and
will appear frequently in this book; the OH and CH radicals, in particular, are principal
players who will make many appearances. If orbital angular momentum is not present,
spin–orbit coupling is less important (though not completely absent). However, the
magnetic moment due to electron spin is large and will interact with nuclear spin mag-
neticmoments, to give nuclear hyperfine structure, and alsowith the rotationalmagnetic
moment, giving rise to the so-called spin–rotation interaction. As important, however,
is the strong interaction which occurs with an applied magnetic field. This interaction
leads to magnetic resonance studies with bulk samples, performed at frequencies in
the microwave region, or even in the far-infrared. The Zeeman interaction is used to
tune spectroscopic transitions into resonance with fixed-frequency radiation; these ex-
periments are described in detail in chapter 9. For various reasons they are capable of
exceptionally high sensitivity, and consequently have been extremely important in the
study of short-lived free radicals. It is, perhaps, important at this point to appreciate
the difference between the molecular beam magnetic resonance experiments described
in chapter 8, and the bulk studies described in chapter 9. In most of the molecular
beam experiments the Zeeman interactions are used to control the molecular trajecto-
ries through the apparatus, and to produce state selectivity. Spectroscopic transitions,
which may or may not involve Zeeman components, are detected through their effects
on detected beam intensities. No attempt is made to detect the absorption or emission
of electromagnetic radiation directly. Conversely, in the bulk magnetic resonance ex-
periments, direct detection of the radiation is involved and the Zeeman effect is used to
tune spectroscopic transitions into resonance with the radiation. Later in this chapter
we will give a little more detail about electron spin and hyperfine interactions, as well
as the Zeeman effect in open shell systems.

The final, but very important, point to be made in this section is that all of the
experiments described and discussed in this book involve molecules in the gas phase.
Moreover the gas pressures involved are sufficiently low that the molecular rotational
motion is conserved. Just as importantly, quantised electronic orbital motion is not
quenched by molecular collisions, as it would be at higher pressures. Of course, con-
densed phase studies are important in their own right, but they are different in a number
of fundamental ways. In condensed phases rotational motion and electronic orbital an-
gular momentum are both quenched. Anisotropic interactions, such as the dipolar
interactions involving electron or nuclear spins, or both, can be studied in regularly
oriented solids like single crystals, but are averaged in randomly oriented solids, like
glasses. In isotropic liquids they drive time-dependent relaxation processes through a
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combination of the anisotropy and the tumbling Brownian motion of the molecules.
It should also be remembered that the strong intermolecular interactions that occur in
solids can substantially change the magnitudes of the intramolecular interactions, like
hyperfine interactions.

1.5. Historical perspectives

A major reference point in the history of diatomic molecule spectroscopy was the
publication of a classic book by Herzberg in 1950 [4]; this book was, in fact, an
extensively revised and enlarged version of one published earlier in 1939. Herzberg’s
book was entitled Spectra of Diatomic Molecules, and it deals almost entirely with
electronic spectroscopy. In the years leading up to and beyond 1950, spectrographic
techniques using photographic plates were almost universally employed. They covered
a wide wavelength range, from the far-ultraviolet to the near-infrared, and at their best
presented a comprehensive view of the complete rovibronic band system of one or more
electronic transitions. In Herzberg’s hands these techniques were indeed presented at
their best, and his book gives masterly descriptions of the methods used to obtain and
analyse these beautiful spectra. For both diatomic and polyatomic molecules, most
of what we now know and understand about molecular shapes, geometry, structure,
dynamics, and electronic structure, has come from spectrographic studies of the type
described by Herzberg. One could not improve on his exposition of the rules leading
to our comprehension of these spectra, and there is no need to attempt to do so. It is,
however, a rather sad fact that the classic spectrographic techniques seem now to be
regarded as obsolete; most of the magnificent instruments which were used have been
scrapped. The main thrust now is to use lasers to probe intimate details with much
greater sensitivity, specificity and resolution, but such studies would not be possible
without the foundations provided by the classic techniques. Perhaps one day they will,
of necessity, return.

Almost all of the spectroscopy described in our book involves techniques which
have been developed since the publication of Herzberg’s book. Rotational energy lev-
els were very well understood in 1950, and the analysis of rotational structure in
electronic spectra was a major part of the subject. The major disadvantage of the ex-
perimental methods used was, however, the fact that the resolution was limited by
Doppler broadening. The Doppler line width depends upon the spectroscopic wave-
length, the molecular mass, the effective translational temperature, and other fac-
tors. However, a ballpark figure for the Doppler line width of 0.1 cm−1 would not
be far out in most cases. Concealed within that 0.1 cm−1 are many subtle and fas-
cinating details of molecular structure which are major parts of the subject of this
book.

In 1950, microwave and molecular beam methods were just beginning to be de-
veloped, and they are mentioned briefly by Herzberg in his book. Microwave spec-
troscopy was given a boost by war-time research on radar, with the development
of suitable radiation sources and transmission components; an early review of the
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subject was given by Gordy [5], one of its pioneers. Cooley and Rohrbaugh [6] ob-
served the first three rotational transitions ofHI in 1945,whilstWeidner [7] andTownes,
Merritt and Wright [8] observed microwave transitions of the ICl molecule. Because
of the much reduced Doppler width at the long wavelengths in the microwave re-
gion, nuclear hyperfine effects were observed. Such effects were already known in
atomic spectroscopy, but not in molecular electronic spectra apart from some observa-
tions on HgH. Microwave transitions in the O2 molecule were observed by Beringer
[9] in 1946, and Beringer and Castle [10] in 1949 observed transitions between the
Zeeman components of the rotational levels in O2 and NO, the first examples of mag-
netic resonance in open shell molecules. Chapter 9 in this book is devoted to the
now large and important subject of magnetic resonance spectroscopy in bulk gaseous
samples.

The molecular beam radiofrequency magnetic resonance spectrum of H2 was first
observed by Kellogg, Rabi, Ramsey and Zacharias [11] in 1939, and was further devel-
oped in the post-war years. An analogous radiofrequency electric resonance spectrum
of CsF was described by Hughes [12] in 1947, and again the technique underwent
extensive development in the next thirty years. These molecular beam experiments,
which had important precursors in atomic beam spectroscopy, are very different from
the traditional spectroscopic experiments described by Herzberg in his book. They
are capable of very high spectroscopic resolution, partly because they usually involve
radio- or microwave frequencies, partly because of the absence of collisional effects,
and partly because residual Doppler effects can be removed by appropriate relative spa-
tial alignment of the molecular beam and the electromagnetic radiation. All of these
matters are discussed in great detail in chapter 8. Finally in this brief review of the
techniques that were developed after Herzberg’s book, we should mention the laser,
which now dominates electronic spectroscopy, and much of vibrational spectroscopy
as well. Laser spectroscopy as such is not an important part of this book, apart from far-
infrared magnetic resonance studies, but the use of lasers, both visible and infrared, in
double resonance experiments is an important aspect of chapter 11. Lasers have made
it possible to apply the techniques of radiofrequency and microwave spectroscopy to
excited electronic states, an aspect of the subject which is likely to be developed much
further.

Herzberg’s book was therefore perfectly timed. The electronic spectroscopy of
diatomic molecules was well developed and understood, and continues to be important
[13]. Hopefully our book is also well timed; the molecular beam magnetic and electric
resonance experiments are becoming less common, and may now almost be regarded as
classic techniques!Magnetic resonance experiments on bulk gaseous samples are likely
to continue to be important in the studyof free radicals, particularly because of their very
high sensitivity. Double resonance is important, in the study of excited states, but also
in the route it provides towards the study of much heavier molecules where sensitivity
considerations become increasingly important. Finally, pure rotational spectroscopy
has assumed even greater importance because of its relationship with radioastronomy
and the study of interstellar molecules, and because of its applications in the study of
atmospheric chemistry.
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1.6. Fine structure and hyperfine structure of rotational levels

1.6.1. Introduction

We outlined in section 1.4 the coordinate transformations which enable us to sepa-
rate the rotational motion of a diatomic molecule from the electronic and vibrational
motions. We pointed out that the spectroscopy described in this book involves either
transitions between different rotational levels, or transitions between the various sub-
components within a single rotational level; additional effects arising from applied
electric or magnetic fields may or may not be present. We now outline very briefly the
origin and nature of the sub-structure which is possible for a single rotational level in
different electronic states. All of the topics mentioned in this section will be developed
in considerable depth elsewhere in the book, but we hope that an elementary intro-
duction will be useful, especially for the reader approaching the subject for the first
time. As we will see, the detailed sub-structure of a rotational level depends upon the
nature of the electronic state being considered. We can divide the electronic states into
three different types, namely, closed shell states without electronic angular momentum,
open shell states with electron spin angular momentum, and open shell states with both
orbital and spin angular momentum. There is also a small number of cases where an
electronic state has orbital but not spin angular momentum.

We will present the effective Hamiltonian terms which describe the interactions
considered, sometimes using cartesianmethods butmainly using spherical tensormeth-
ods for describing the components. These subjects are discussed extensively in chap-
ters 5 and 7, and at this stage we merely quote important results without justification.
We will use the symbol T to denote a spherical tensor, with the particular operator in-
volved shown in brackets. The rank of the tensor is indicated as a post-superscript, and
the component as a post-subscript. For example, the electron spin vector S is a first-rank
tensor, T1(S), and its three spherical components are related to cartesian components
in the following way:

T1
0(S ) = Sz,

T1
1(S ) = −(1/

√
2)(Sx + iSy), (1.26)

T1
−1(S ) = (1/

√
2)(Sx − iSy).

The componentsmay be expressed in either a space-fixed axis system ( p) or amolecule-
fixed system (q). The early literature used cartesian coordinate systems, but for the
past fifty years spherical tensors have become increasingly common. They have many
advantages, chief of which is that they make maximum use of molecular symmetry. As
we shall see, the rotational eigenfunctions are essentially spherical harmonics; we will
also find that transformations between space- and molecule-fixed axes systems, which
arise when external fields are involved, are very much simpler using rotation matrices
rather than direction cosines involving cartesian components.
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1.6.2. 1�+ states

In a diatomic, or linear polyatomic molecule, the energies of the rotational levels within
a vibrational level v are given by

E(v, J ) = Bv J (J + 1) − Dv J
2(J + 1)2 + Hv J

3(J + 1)3 + · · · , (1.27)

where the rotational quantum number, J , takes integral values 0, 1, 2, etc. Provided
the molecule is heteronuclear, with an electric dipole moment, rotational transitions
between adjacent rotational levels (�J = ±1) are electric-dipole allowed. The extent
of the spectrum depends upon how many rotational levels are populated in the gaseous
sample, which is determined by the Boltzman distribution law for a system in thermal
equilibrium. The rotational transition frequencies increase as J increases, as (1.27)
shows.

Any additional complications depend entirely on the nature of the nuclei involved.
General Appendix B presents a list of the naturally occurring isotopes, with their
spins, magnetic moments and electric quadrupole moments. Magnetic and electric in-
teractions involving these moments can and will occur, the most important in a 1�

state being the electric quadrupole interaction between the nuclear quadrupole mo-
ment and an electric field gradient at the nucleus. Nuclei possessing a quadrupole
moment must also have a spin I equal to 1 or more, and the extent of the quadrupole
splitting of a rotational level depends upon the value of the nuclear spin. One of the
most important quadrupolar nuclei is the deuteron, and quadrupole effects were prob-
ably first observed and analysed in the molecular beam magnetic resonance spectra
of HD and D2. In describing the energy levels we will often use a hyperfine-coupled
representation, written as a ket |η, J, I, F〉, where the symbol η represents all other
quantum numbers not specified, particularly those describing the electronic and vibra-
tional state. For any given rotational level J , the total angular momentum F takes all
values J + I, J + I − 1, . . . , |J − I |, so that there can be splitting into a maximum
of 2I + 1 hyperfine levels for a single quadrupolar nucleus provided J ≥ I . Such a
case is shown schematically in figure 1.4 for the AlF molecule [14]; the 27Al nucleus
has a spin I of 5/2 and a large quadrupole moment. The J = 0 rotational level has
no quadrupole splitting but J = 1 is split into three components as shown. An electric
dipole J = 1 ← 0 rotational transition between adjacent rotational levels will exhibit
a quadrupole splitting, as indicated. Alternatively, a spectrum arising from transitions
within a single rotational level is possible, as indicated for CsF in figure 1.5. In this case
[12] the 133Cs nucleus has a spin of 7/2, and there is also an additional doublet splitting
from the 19F nucleus, arising from its magnetic dipole moment, which we will discuss
shortly. There are other subtle aspects of this spectrum, one of them being that if the
spectrum is recorded in the presence of a weak electric field, the transitions shown,
which would be expected to have magnetic dipole intensity only, acquire electric dipole
intensity. The full details are given in chapter 8.

The essential features of the electric quadrupole interaction can, hopefully, be
appreciated with the aid of figure 1.6. The Z direction defines the direction of the
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Figure 1.4. Splitting of the J = 1 rotational level of 27Al19F arising from the 27Al quadrupole
interaction with spin I = 5/2, and the resulting hyperfine splitting of the rotational transition.
The magnetic interactions involving the 19F nucleus are too small to be observed in this case.

electric field gradient, produced mainly by the electrons in the molecule. The total
charge distribution of the nucleus may be decomposed into the sum of monopole,
quadrupole, hexadecapole moments; the quadrupole distribution may be represented
as a cigar-shaped distribution of charge having cylindrical symmetry about a principal
axis fixed in the nucleus, which we define as the nuclear z axis. The quadrupolar
charge distribution may be appreciated by considering the nuclear charge distribution
at symmetrically disposed points on the+z,−z,+x ,−x axes.Aswe see fromfigure 1.6.
the nuclear charge is δ− at the ± x points and δ+ at the ± z points.

For a nucleus of spin I = 1 there are three allowed spatial orientations of the
spin; in figure 1.6 these three orientations may be identified with those in which the
nuclear z axis is coincident with Z , perpendicular to Z , and antiparallel to Z . These
three orientations correspond to projection quantum numbers MI = +1, 0 and −1
respectively, and it is clear from the figure that the state with MI = 0 has a different
electrostatic energy from the states with MI = ±1. This ‘quadrupole splitting’ depends
upon the sizes of the nuclear quadrupole moment and the electric field gradient.
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Figure 1.5. Nuclear hyperfine splitting of the J = 1 rotational level of CsF. The major splitting
is the result of the 133Cs quadrupole interaction, and the smaller doublet splitting is caused by
the 19F interaction (see text).
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Figure 1.6. Orientation of a nucleus (I = 1) with an electric quadrupole moment in an electric
field gradient.
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We show elsewhere in this book that the quadrupole interaction may be represented
as the scalar product of two second-rank spherical tensors,

HQ = −eT2(∇E) · T2(Q), (1.28)

where the details of the electric field gradient are contained within the first tensor in
(1.28) and the nuclear quadrupole moment is contained within the second tensor. We
show elsewhere (chapter 8, for example) that the diagonal quadrupole energy obtained
from (1.28) is given by

EQ = − eq0Q

2I (2I − 1)(2 J − 1)(2 J + 3)
{(3/4)C(C + 1) − I (I + 1)J (J + 1)}, (1.29)

where C = F(F + 1) − I (I + 1) − F(F + 1). The quantity eq0Q in (1.29) is called the
quadrupole coupling constant, q0 being the electric field gradient (actually its negative)
and eQ the quadrupole moment of the 133Cs nucleus. The value of eq0Q for 133Cs in
CsF is 1.237 MHz.

The quadrupole coupling is very much the most important nuclear hyperfine inter-
action in 1�+ states, and it takes the same form in open shell states as in closed shells.
We turn now to the much smaller interactions involving magnetic dipole moments, two
types of which may be present. A nuclear spin I gives rise to a magnetic moment µI ,

µI = gNµN I, (1.30)

where gN is the g-factor for the particular nucleus in question and µN is the nuclear
magneton. In addition, the rotation of the nuclei and electrons gives rise to a rotational
magnetic moment, whose value depends upon the rotational quantum number,

µJ = µN J. (1.31)

The magnetic moments given above will interact with an applied magnetic field,
and these interactions are discussed extensively in chapter 8. In some diatomic
molecules both nuclei have non-zero spin and an associated magnetic moment. The
magnetic interactions which then occur are the nuclear spin–rotation interactions, rep-
resented by the operator

Hnsr =
∑

α=1,2

cαT1(J) · T1(Iα), (1.32)

and the nuclear spin–spin interactions. Here two different interactions are possible.
The largest and most important is the through-space dipolar interaction, which in its
classical form is represented by the operator

Hdip = g1g2µ
2
N (µ0/4π)

{
I1 · I2

R3
− 3(I1 · R)(I2 · R)

R5

}
. (1.33)

Here I1, I2 and g1, g2 are the spins and g-factors of nuclei 1 and 2 and R is the distance
between them. In spherical tensor form the interaction may be written

Hdip = −g1g2µ
2
N (µ0/4π)

√
6T2(C) · T2(I1, I2), (1.34)
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where the second-rank tensors are defined as follows:

T2
p(I1, I2) = (−1) p

√
5

∑
p1,p2

(
1 1 2
p1 p2 −p

)
T1
p1

(I1)T
1
p2

(I2), (1.35)

T2
q (C) = 〈

C2
q (θ, φ)R−3

〉
. (1.36)

These expressions require some detailed explanation, and the reader might wish to
advance to chapter 5 at this point. First, here and elsewhere, the subscripts p and q refer
to space-fixed and molecule-fixed axes respectively. Equation (1.35) which describes
the construction of a second-rank tensor from two first-rank tensors contains a vector
coupling coefficient called a Wigner 3- j symbol. Equation (1.36) contains a spherical
harmonic function which gives the necessary geometric information. The equivalence
of (1.34) and (1.33) is demonstrated in appendix 8.1, which also introduces another
spherical tensor form for the dipolar interaction. The most important feature is, of
course, the R−3 dependence of the interaction. In the H2 molecule the proton–proton
dipolar coupling is about 60 kHz, which is readily determinable in the high-resolution
molecular beam magnetic resonance studies.

The second interaction between two nuclear spins in a diatomic molecule is a scalar
coupling,

Hscalar = csT
1(I1) · T1(I2), (1.37)

which is often described as the electron-coupled spin–spin interaction because the
mechanism involves the transmission of nuclear spin orientation through the interven-
ing electrons (see section 1.7). This coupling is very small compared with the dipolar
interaction, and is usually negligible in gas phase studies. It is, however, extremely
important in liquid phase nuclear magnetic resonance because, unlike the dipolar cou-
pling, it is not averaged to zero by the tumbling motion of the molecules.

The remaining important type of magnetic interaction is that between the rotational
magnetic moment and any nuclear spin magnetic moments, given in equation (1.32).
In the case of H2 the constant c has the value 113.9 kHz. The doublet splitting in the
spectrum of CsF, shown in figure 1.5, is due to the 19F nuclear spin–rotation interaction.
Note also that in this case the hyperfine basis kets take the form |η, J, I1, F1; I2, F〉
where I1 is the spin of 133Cs (value 7/2) and I2 is the spin of 19F value 1/2. Hence for
J = 1, F1 can take the values 9/2, 7/2 and 5/2 as shown, and F takes values F1 ± 1/2.
Other possible magnetic interactions in CsF are too small to be observed.

The remaining important magnetic interactions to be considered are those which
arise when a static magnetic field B is applied. The Zeeman interaction with a nuclear
spin magnetic moment is represented by the Hamiltonian term

HZ = −
∑

α=1,2

gα
NµNT1(B) · T1(Iα), (1.38)

and since the direction of the magnetic field is usually taken to define the space-fixed
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Z or p= 0 direction, the scalar product in (1.38) contracts to

HZ = −
∑

α=1,2

gα
NµNT1

0(B)T1
0(Iα). (1.39)

The nuclear spin Zeeman levels then have energies given by

EZ = −
∑

α=1,2

gα
NµN BZMIα , (1.40)

where the projection quantum number MI takes the 2I + 1 values from −I to + I .
The nuclear spin Zeeman interaction in discussed extensively in chapter 8. In molec-
ular beam experiments it is used for magnetic state selection, and the radiofrequency
transitions studied are usually those with the selection rule �MI = ±1 observed in the
presence of an applied magnetic field. We will also see, in chapter 8, that the simple
expression (1.38) is modified by the inclusion of a screening factor,

HZ = −
∑

α=1,2

gα
NµNT1(B) · T1(Iα){1 − σα(J)}, (1.41)

arising mainly because of the diamagnetic circulation of the electrons in the presence
of the magnetic field. In liquid phase nuclear magnetic resonance this screening gives
rise to what is known as the ‘chemical shift’.

The rotational magnetic moment also interacts with an applied magnetic field, the
interaction term being very similar to (1.41) above, i.e.

HJZ = −grµNT1(B) · T1(J){1 − σ (J)}, (1.42)

where gr is the rotational g-factor. In a molecule where there are no nuclear spins
present, the rotational Zeeman interaction can be used for selection of MJ states.

Finally in this section on 1�+ states we must include the Stark interaction which
occurs when an electric field (E) is applied to a molecule possessing a permanent
electric dipole moment (µe):

HE = −T1(µe) · T1(E). (1.43)

As with the Zeeman interaction discussed earlier, (1.43) is usually contracted to the
space-fixed p= 0 component. An extremely important difference, however, is that in
contrast to the nuclear spin Zeeman effect, the Stark effect in a 1� state is second-
order, which means that the electric field mixes different rotational levels. This aspect
is thoroughly discussed in the second half of chapter 8; the second-order Stark effect
is the engine of molecular beam electric resonance studies, and the spectra, such as
that of CsF discussed earlier, are usually recorded in the presence of an applied electric
field.

Whilst the most important examples of Zeeman and Stark effects in 1� states are
found in molecular beam studies, they can also be important in conventional absorption
microwave rotational spectroscopy, as we describe in chapter 10. The use of the Stark
effect to determine molecular dipole moments is a very important example.
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1.6.3. Open shell � states

We now proceed to consider the magnetic interactions involving the electron spin S
in � states with open shell electronic structures. The magnetic dipole moment arising
from electron spin is

µS = −gSµBS, (1.44)

where gS is the free electron g-factor, with the value 2.0023, and µB is the electron
Bohr magneton; µB is almost two thousand times larger than the nuclear magneton,
µN , so we see at once that magnetic interactions from electron spin are very much
larger than those involving nuclear spin, considered in the previous sub-section.

With the introduction of electronic angular momentum, we have to consider how
the spin might be coupled to the rotational motion of the molecule. This question be-
comes even more important when electronic orbital angular momentum is involved.
The various coupling schemes give rise to what are known as Hund’s coupling cases;
they are discussed in detail in chapter 6, and many practical examples will be en-
countered elsewhere in this book. If only electron spin is involved, the important
question is whether it is quantised in a space-fixed axis system, or molecule-fixed. In
this section we confine ourselves to space quantisation, which corresponds to Hund’s
case (b).

We deal first with molecules containing one unpaired electron (S = 1/2) where
magnetic nuclei are not present. The electron spin magnetic moment then interacts
with the magnetic moment due to molecular rotation, the interaction being represented
by the Hamiltonian term

Hsr = γT1(S) · T1(N), (1.45)

in which γ is the spin–rotation coupling constant. As was originally shown by Hund
[15] and Van Vleck [16], each rotational level in a given vibrational level (v) of a 2�

state is split into a spin doublet, with energies

F1(N ) = BvN (N + 1) + (1/2)γvN ,

F2(N ) = BvN (N + 1) − (1/2)γv(N + 1). (1.46)

The F1 levels correspond to J = N + 1/2 and the F2 levels to J = N − 1/2. A typical
rotational energy level diagram is shown in figure 1.7(a); each rotational transition
(�N = ±1) is split into a doublet (with�J = ±1) and aweaker satellite (�J = 0). This
seems a simple conclusion, except that Van Vleck [16] showed that the spin splitting
of each rotation level is only partly the result of the rotational magnetic moment in
the direction of N. The other part comes from electronic orbital angular momentum in
the � state which precesses at right angles about the internuclear axis; in other words,
although the expectation value of L is zero in a pure � state, the spin–orbit coupling
operator mixes the � state with excited � states. This introduces an additional non-
zero magnetic moment in the direction of N, which contributes to the spin–rotation
coupling. We will return to this important subject in the next section; it represents
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(a) (b)

1

Figure 1.7. (a) Lower rotational levels and transitions in a case (b) 2� state, showing the spin
splitting of a rotational transition. (b) Lower rotational levels and transitions in a case (b) 3�

state, showing the spin splitting of a rotational transition.

our first encounter with the very important concept of the effective Hamiltonian. What
looks like a spin–rotation interaction is not entirely what it seems!

The lower rotational levels for a case (b) 3� state are shown in figure 1.7(b).
The spin–rotation interaction takes the same form as for a 2� state, given in
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equation (1.45), but in addition there is an important interaction between the spins
of the two unpaired electrons, called the electron spin–spin interaction; this is usually
larger than the spin–rotation interaction. The spin–spin interaction can be represented
in a number of different ways, depending upon the molecule under investigation. Ini-
tially we might regard the interaction as being analogous to the classical interaction
between two magnetic dipole moments so that, following equation (1.33) for nuclear
spins, we write the interaction as

Hss = g2
Sµ

2
B(µ0/4π)

{
S1 · S2

r3
− 3(S1 · r )(S2 · r )

r5

}
, (1.47)

where S1 and S2 are the spins of the individual electrons, and r is the distance between
them. Of course, the electrons are not point charges, so that r is an average distance
which can be calculated from a suitable electronic wave function. Again, by analogy
with our previous treatment of nuclear spins, the electron spin dipolar interaction can
be represented in spherical tensor form by the operator

Hss = −g2
Sµ

2
B(µ0/4π)

√
6T2(C) · T2(S1, S2), (1.48)

where, as before, T2(C) represents the spherical harmonic functions, the q = 0 com-
ponent being given by

T2
0(C) =C2

0 (θ, φ)(r−3) =
(

4π

5

)1/2

Y2,0(θ, φ)(r−3) = 1

2
(2z2 − x2 − y2)(r−5). (1.49)

In appendix 8.3 we show that (1.48) with q = 0 leads to the simple expression,

Hss = 2

3
λ
(
3S2

z − S2
)
, (1.50)

where z is the internuclear axis andλ is called the spin–spin coupling constant. Provided
λ is not too large compared with the rotational constant, Kramers [17] showed that each
rotational level is split into a spin triplet, with relative component energies

F1(N ) = BvN (N + 1) − 2λ(N + 1)

(2N + 3)
+ γv(N + 1),

F2(N ) = BvN (N + 1), (1.51)

F3(N ) = BvN (N + 1) − 2λN

(2N − 1)
− γvN .

where F1, F2, F3 refer to levels with J = N + 1, N and N − 1. More accurate formulae
were given by Schlapp [18] and, neglecting the small vibrational dependence of λ and
γ , these are

F1(N ) = BvN (N +1)+ (2N +3)Bv −λ−{
(2N +3)2B2

v +λ2 −2λBv

}1/2+γv(N +1),

F2(N ) = BvN (N +1), (1.52)

F3(N ) = BvN (N +1)− (2N −1)Bv −λ+{
(2N −1)2B2

v +λ2 −2λBv

}1/2 −γvN .

The molecule O2 in its 3�−
g ground state is a good example of a case (b)

molecule, and the triplet energies agree with (1.52), the values of the constants
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being B0 = 1.437 77 cm−1, λ = 1.984 cm−1 , γ0 = −0.0084 cm−1. Note that yet another
spherical tensor form for the dipolar interaction which is sometimes used is

Hss = 2λT2(S, S) · T2(n, n), (1.53)

where n is a unit vector along the internuclear axis and S is the total spin of 1. Again, the
relationship of this form to the others is described in appendix 8.3. A typical pattern of
rotational levels for a 3� state with the spin splitting is shown in figure 1.7(b), together
with the allowed rotational transitions. Once again, spin–orbit coupling can mix a 3�

state with nearby � states and contribute to the value of the constant λ. We show in
chapter 9 that in the SeO molecule the spin–orbit coupling is so strong that the case
(b) pattern of rotational levels no longer holds, and a case (a) coupling scheme is more
appropriate. The formulae given above are then not applicable.

The remaining important interactions which can occur for a 2� or 3� molecule
involve the presence of nuclear spin. Interactions between the electron spin and nuclear
spin magnetic moments are called ‘hyperfine’ interactions, and there are two important
ones. The first is called the Fermi contact interaction, and if both nuclei have non-zero
spin, each interaction is represented by the Hamiltonian term

HF = bFT
1(S) · T1(I). (1.54)

The Fermi contact constant bF is given by

bF =
(

2

3

)
gSµBgNµNµ0

∫
ψ2(r )δ(r ) dr , (1.55)

where the function δ(r ), called theDirac delta function, imposes the condition that r = 0
when we integrate over the probability density of the wave function of the unpaired
electron. Hence the contact interaction can only occur when the unpaired electron has
a finite probability density at the nucleus, which means that the wave function must
have some s-orbital character (i.e. ψ(0)2 �= 0).

The second important hyperfine interaction is the dipolar interaction andby analogy
with equations (1.34) and (1.48) it may be expressed in spherical tensor form by the
expression

Hdip =
√

6gSµBgNµN (µ0/4π)T2(C) · T2(S, I). (1.56)

There are some situations when this is the most convenient representation of the dipolar
coupling, for example, when S and I are very strongly coupled to each other but weakly
coupled to the molecular rotation, as in the H+

2 ion. However, an alternative form which
is often more suitable is

Hdip = −
√

10gSµBgNµN (µ0/4π)T1(I) · T1(S, C2). (1.57)

The spherical components of the new first-rank tensor in (1.57) are defined, in the
molecule-fixed axes system, by

T1
q (S, C2) =

√
3

∑
q1,q2

(−1)qT1
q1

(S)T2
q2

(C)

(
1 2 1

q1 q2 −q

)
, (1.58)
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where, as before,

T2
q2

(C) =C2
q2

(θ, φ)(r−3). (1.59)

The relationships between the various forms of the dipolar Hamiltonian are explained
in appendix 8.2. As we see from (1.59), the dipolar interaction has various components
in the molecule-fixed axis system but the most important one, and often the only one
to be determined from experiment, is T2

0(C). This leads us to define a constant t0, the
axial dipolar hyperfine component, given in SI units by,

t0 = gSµBgNµN (µ0/4π)T2
0(C) = 1

2
gSµBgNµN (µ0/4π)

〈
(3 cos2 θ − 1)

r3

〉
. (1.60)

The most important examples of 2� states to be described in this book are CO+,
where there is no nuclear hyperfine coupling in the main isotopomer, CN, which has
14N hyperfine interaction, and the H+

2 ion. A number of different 3� states are de-
scribed, with and without hyperfine coupling. A particularly important and interesting
example is N2 in its A 3�+

u excited state, studied by De Santis, Lurio, Miller and Freund
[19] using molecular beam magnetic resonance. The details are described in chapter 8;
the only aspect to be mentioned here is that in a homonuclear molecule like N2, the
individual nuclear spins (I = 1 for 14N) are coupled to form a total spin, IT , which
in this case takes the values 2, 1 and 0. The hyperfine Hamiltonian terms are then
written in terms of the appropriate value of IT . As we have already mentioned, the
presence of one or more quadrupolar nuclei will give rise to electric quadrupole hy-
perfine interaction; the theory is essentially the same as that already presented for 1�+

states.
Finally we note that the interaction with an applied magnetic field is important

because of the large magnetic moment arising from the presence of electron spin
(see (1.44)). The Zeeman interaction is represented by the Hamiltonian term

HZ = gSµBT1(B) · T1(S) = gSµB Bp=0T
1
p=0(S) = gSµB BZT1

0(S), (1.61)

which, as we show, may again be contracted to a single p= 0 space-fixed component.
As we will see, the Zeeman interaction is central to magnetic resonance studies, either
with molecular beams as described in chapter 8 where radiofrequency spectroscopy is
involved, or with bulk gases (chapter 9) where microwave or far-infrared radiation is
employed. The magnetic resonance studies are, in general, of two kinds. For magnetic
fields which are readily accessible in the laboratory, the Zeeman splitting of different
MS (or MJ ) levels often corresponds to a microwave frequency. In many studies, there-
fore, the transitions studied obey a selection rule �MS = ±1 or �MJ = ±1, and take
place between levels which are otherwise degenerate in the absence of a magnetic field.
There are, however, very important experiments where the transitions occur between
levels which are already well separated in zero field; fixed frequency radiation is then
used, with the transition energy mismatch being tuned to zero with an applied field.
Far-infrared laser magnetic resonance studies are of this type. As we will see, the the-
oretical problem which must be solved concerns the competition between the Zeeman
interaction, which tends to decouple the electron spin from the molecular framework,
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and intramolecular interactions like the electron spin dipolar coupling which tends to
couple the spin orientation to the molecular orientation.

1.6.4. Open shell states with both spin and orbital angular momentum

Many free radicals in their electronic ground states, and also many excited electronic
states of molecules with closed shell ground states, have electronic structures in which
both electronic orbital and electronic spin angular momentum is present. The preces-
sion of electronic angular momentum, L, around the internuclear axis in a diatomic
molecule usually leads to defined components, Λ, along the axis, and states with
|Λ| = 0, 1, 2, 3, etc., are called �, �, �, �, etc., states. In most cases there is also
spin angular momentum S, and the electronic state is then labelled 2S+1�, 2S+1�,
etc.

Questions arise immediately concerning the coupling of L, S and the nuclear
rotation, R. The possible coupling cases, first outlined by Hund, are discussed in detail
in chapter 6. Here we will adopt case (a), which is the one most commonly encountered
in practice. The most important characteristic of case (a) is that Λ, the component of L
along the internuclear axis, is indeed defined and we can use the labels �, �, �, etc.,
as described above. The spin–orbit coupling can be represented in a simplified form
by the Hamiltonian term

Hso = AT1(L) · T1(S) = A
∑
q

(−1)qT1
q (L)T1

−q (S), (1.62)

expanded in the molecule-fixed axis system as shown. The q = 0 term gives a diagonal
energy AΛΣ, where Σ is the component of the electron spin (S) along the internuclear
axis. The component of total electronic angular momentum along the internuclear axis
is called Ω; it is given by Ω = Λ + Σ.

If we are dealing with a 2� state, the possible values of the projection quantum
numbers are as follows:

Λ = +1, Σ = +1/2, Ω = +3/2;
Λ = −1, Σ = −1/2, Ω = −3/2;
Λ = +1, Σ = −1/2, Ω = +1/2;
Λ = −1, Σ = +1/2, Ω = −1/2.

(1.63)

The occurrence of Λ = ±1 is called Λ-doubling or Λ-degeneracy; in addition, the spin
coupling gives rise to an additional two-fold doubling. The states with |Ω| = 3/2 or 1/2
are called fine-structure states, with spin–orbit energies +A/2 and −A/2 respectively;
the value of |Ω| is written as a subscript in the state label. Hence we have 2�3/2 and
2�1/2 fine-structure components; if A is negative the 2�3/2 state is the lower in energy,
and we have an ‘inverted’ doublet, the opposite case being called a ‘regular’ doublet.
The NO molecule has a 2�1/2 ground state (regular), whilst the OH radical has a 2�3/2

ground state (inverted).
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The rigid body rotational Hamiltonian can be written in the form

Hrot = BR2 = B(J − L − S)2

= B(J2 + L2 + S2 − 2J · L − 2J · S + 2L · S). (1.64)

The expansion of (1.64) is discussed in detail in chapter 8, and elsewhere, so we present
only a brief and simplified summary here. Expanded in the molecule-fixed axis system,
the diagonal part of the expression gives the result:

Erot(J ) = B{J (J + 1)+ S(S + 1) + 2ΛΣ + Λ2 − 2Ω2}. (1.65)

There is, therefore, a sequence of rotational levels, characterised by their J values,
for each fine-structure state. According to the discussion above, each J level has a two-
fold degeneracy, forming what are called Ω-doublets or Λ-doublets. The off-diagonal
(q = ±1) terms from (1.64), together with the off-diagonal components of the spin–
orbit coupling operator (1.62), remove the degeneracy of the Λ-doublets. The resulting
pattern of the lower rotational levels for the OH radical is shown in figure 1.8, which is
discussed in more detail in chapters 8 and 9. Transitions between the rotational levels,
shown in the diagram, have been observed by far-infrared lasermagnetic resonance, and
transitions between the Λ-doublet components of the same rotational level have been
observed by microwave rotational spectroscopy, by microwave magnetic resonance,
by molecular beam maser spectroscopy, and by radio-astronomers studying interstellar
gas clouds.

3/2
2

1/2
2

−1

Figure 1.8. Lower rotational levels of the OH radical, and some of the transitions that have been
observed. The size of the Λ-doublet splitting is exaggerated for the sake of clarity.
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Interactions with an applied magnetic field are particularly important for open shell
free radicals, many with 2� ground states having been studied by magnetic resonance
methods. The Zeeman Hamiltonian may be written as the sum of four terms:

HZ = gLµBT1(B) · T1(L) + gSµBT1(B) · T1(S) − gNµNT1(B) · T1(I)

− grµBT1(B) · {T1(J) −T1(L) − T1(S)}. (1.66)

All of these termsmust be included in an accurate analysis and their effects are described
in detail in chapter 9. The most important terms, however, are the first two. Putting
the orbital g-factor, gL , equal to 1 one can show that for a good case (a) molecule the
effective g-value for the rotational level J is

gJ = (Λ + Σ)(Λ + gSΣ)

J (J + 1)
. (1.67)

If we put gS = 2, we find that for the lowest rotational level of the 2�3/2 state, J = 3/2,
the g-factor is 4/5. For any rotational level of the 2�1/2 state, however, (1.67) predicts
a g-factor of zero. For a perfect case (a) molecule, therefore, we cannot use magnetic
resonance methods to study 2�1/2 states. Fortunately perhaps, most molecules are
intermediate between case (a) and case (b) so that both fine-structure states aremagnetic
to some extent. The other point to notice from (1.67) is that the g-factor decreases
rapidly as J increases.

We will see elsewhere is this book many examples of the spectra of 2� molecules.
We will see also that although our discussion above is based upon a case (a) coupling
scheme for the various angular momenta, case (b) is often just as appropriate and, as
we have already noted, many molecules are really intermediate between case (a) and
case (b). We will also meet electronic states with higher spin and orbital multiplicity.
For S ≥ 1, the terms describing the interaction between electron spins play much the
same role in � and � states as they do for � states. Nuclear hyperfine interactions are
also similar to those described already, with the addition of an orbital hyperfine term
which may be written in the form

HIL = aT1(I) · T1(L), (1.68)

where the orbital hyperfine constant is given by

a = 2µBgNµN (µ0/4π)〈r−3〉; (1.69)

r is the distance between the nucleus and the orbiting electron, with the average calcu-
lated from a suitable electronic wave function.

Thepurpose of this sectionhas been to introduce the complexity in the sub-structure
of rotational levels, and the richness of the consequent spectroscopy which is revealed
byhigh-resolution techniques.Understanding the origin anddetails of this structure also
takes us very deeply into molecular quantum mechanics, as we show in chapters 2 to 7.
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1.7. The effective Hamiltonian

The process of analysing a complex diatomic molecule spectrum with electron spin,
nuclear hyperfine and external field interactions has several stages. We need to derive
expressions for the energies of the levels involved, which means choosing a suitable
basis set and a suitable ‘effective Hamiltonian’. The best basis set is that particular
Hund’s case which seems the nearest or most convenient approximation to the ‘truth’.
The effectiveHamiltonian is a sumof terms representing the various interactionswithin
the molecule; each term contains angular momentum operators and ‘molecular param-
eters’. Our choice of effective Hamiltonian is also determined by the basis set chosen.
The procedure is then to set up a matrix of the effective Hamiltonian operating within
the chosen basis. The matrix is often truncated artificially, and we then diagonalise the
matrix to obtain the energies of the levels and the effective wave functions. Armed
with this information we attempt to assign the lines in the spectrum. The spectral fre-
quencies are expressed in terms of the molecular parameters, and usually a first set of
values is determined. If the assignment is correct, a program designed to minimise the
differences between calculated and measured transition frequencies is employed. The
final best values of the molecular parameters may then be used for comparison with
the predictions of electronic structure calculations. In this way we hope to develop a
better description of the electronic structure of the molecule.

The choice of the effective Hamiltonian is often far from straightforward; indeed
we have devoted a whole chapter to this subject (chapter 7). In this section we give a
gentle introduction to the problems involved, and show that the definition of a particu-
lar ‘molecular parameter’ is not always simple. The problem we face is not difficult to
understand. We are usually concerned with the sub-structure of one or two rotational
levels at most, and we aim to determine the values of the important parameters relat-
ing to those levels. However, these parameters may involve the participation of other
vibrational and electronic states. We do notwant an effective Hamiltonian which refers
to other electronic states explicitly, because it would be very large, cumbersome and
essentially unusable. We want to analyse our spectrum with an effective Hamiltonian
involving only the quantum numbers that arise directly in the spectrum. The effects of
all other states, and their quantum numbers, are to be absorbed into the definition and
values of the ‘molecular parameters’. The way in which we do this is outlined briefly
here, and thoroughly in chapter 7.

The development of the effective Hamiltonian has been due to many authors. In
condensed phase electron spin magnetic resonance the so-called ‘spin Hamiltonian’
[20, 21] is an example of an effective Hamiltonian, as is the ‘nuclear spin Hamiltonian’
[22] used in liquid phase nuclear magnetic resonance. In gas phase studies, the first
investigation of a free radical by microwave spectroscopy [23] introduced the ideas of
the effective Hamiltonian, as also did the first microwave magnetic resonance study
[24]. Miller [25] was one of the first to develop the more formal aspects of the subject,
particularly so far as gas phase studies are concerned, and Carrington, Levy and Miller
[26] have reviewed the theory of microwave magnetic resonance, and the use of the
effective Hamiltonian.
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Figure 1.9. Possible pairwise interactions of L, S, R and I.

As a simple introduction to the subject [27], let us consider the four angular
momentum vectors illustrated in figure 1.9. They are as follows:

R: the rotational angular momentum of the bare nuclei,
L: the electronic orbital angular momentum,
S: the electronic spin angular momentum,
I: the nuclear spin angular momentum.

Each angularmomentumcan interactwith the other three, and figure 1.9 draws attention
to the following pairwise interactions:

(L)(S): spin–orbit coupling,
(L)(R): rotational–electronic interaction,
(L)(I): hyperfine interaction between the electron orbital and nuclear spin magnetic

moments,
(S)(I): hyperfine interaction between the electron and nuclear spin magnetic moments,
(S)(R): interaction between the electron spin and rotational magnetic moments,
(I)(R): interaction between the nuclear spin and rotational magnetic moments.

The direct interactions listed above and illustrated in figure 1.9 can occur in the
effective Hamiltonian, but figure 1.10 shows how the effective Hamiltonian can also
contain similar terms which arise indirectly. In figure 1.10(a) we illustrate the interac-
tion of R with L, which in turn couples with the spin S. Consequently the effective
Hamiltonian may contain a term of the form (R)(S), part of which arises from the direct
coupling shown in figure 1.9, but with the remaining part coming from the indirect
coupling via L. If we are dealing with a diatomic molecule in a � state, there is no
first-order orbital angular momentum, but the spin–orbit coupling can mix the ground
state with one or more excited � states, thereby generating some orbital angular mo-
mentum in the ground state [28]. Consequently the spin–rotation constant γ comprises
a first-order direct contribution, plus a second-order contribution arising from admix-
ture of excited states. In all but the lightest molecules, this second-order contribution
is the largest in magnitude.
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S1 S2

I1 I2

Figure 1.10. (a) Second-order spin–rotation interaction occurring via L. (b) Second-order
pseudo-contact hyperfine interaction occurring via L. (c) Electron coupled nuclear spin–spin
interaction. (d) Second-order interaction of R and L.

Another example is the pseudo-contact hyperfine interaction illustrated in
figure 1.10(b); spin–orbit mixing of excited � states with a � ground state gener-
ates orbital angular momentum in the ground state, which interacts with the nuclear
spin magnetic moment. Overall, therefore, the interaction looks somewhat like a direct
Fermi contact interaction, S · I. A third example, illustrated in figure 1.10(c), involves
two electron spins (S1 and S2) and two nuclear spins (I1 and I2). The nuclear spin I1

interacts with the electron spin S1; S1 is coupled with S2, which in turn interacts with
I2. The net result is an interaction which is represented in the effective Hamiltonian
by a term of the form I1 · I2. This interaction is called the ‘electron-coupled nuclear
spin–spin interaction’, and it is the origin of the spin–spin splittings observed in liquid
phase nuclear magnetic resonance spectra. Note that it is not necessary for the total
spin S = S1 + S2 to be non-zero; the interaction can and does occur in closed shell
molecules.

Our final example, illustrated in figure 1.10(d), involves the rotational angu-
lar momentum R and the orbital angular momentum L. The second-order effect
of the coupling for a ground 1� state, operating through admixture of excited
states, involves the product of matrix elements containing the operator products
(R · L)(R · L). The net effect is a term in the effective Hamiltonian which contains
the operator R2. Remembering that the rotational angular momentum of the nu-
clei is also represented in the effective Hamiltonian by a term BR2, we see that
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the rotational constant B must be interpreted with some care, because it contains a
very small contribution from the electrons, added to the major contribution of the
nuclei.

Many different procedures for reducing the complete Hamiltonian to a suitable
effective Hamiltonian have been devised. These are reviewed in detail in chapter 7; we
will see that the methods involve different forms of perturbation theory [29].

1.8. Bibliography

The subject matter of this book is scattered between many other books, and much of
it does not yet appear in any book. The most important book which deals exclusively
with diatomic molecules is that by Herzberg [4], combined with the later supplement
by Huber and Herzberg [13] which lists data up to 1979. This takes us into the era of
computerised data bases (see below), which are the best sources for numerical data,
and are the reason why we have made no attempt at a comprehensive data coverage in
this book. A further important book is that by Lefebvre-Brion and Field [29]; the title of
this book suggests a rather specialised treatment but it is actually both wide and deep in
its coverage. Other books which deal specifically with theoretical aspects of diatomic
molecules are those by Judd [30], dealing with angular momentum theory, Kovács
[31] and Mizushima [32]. Angular momentum theory occupies a central position in
understanding the energy levels of both diatomic and polyatomic molecules. In this
book we use the methods and conventions of Edmonds [33], but have also benefited
from the reader-friendly accounts provided by Rose [34], Zare [35] and Brink and
Satchler [36]. Quantum mechanics is the fundamental theory which must be mastered
if molecular spectroscopy is to be understood. This is not the place for a comprehensive
listing of the many books on this subject, but we have found the books by Flygare [2],
Moss [37] and Hannabuss [38] to be helpful; in particular, our treatment of relativistic
quantum mechanics in chapters 3 and 4 owes much to those by Moss and Hannabuss.
The book by Bunker and Jensen [39] is our standard source for problems involving
symmetry and group theory.

Molecular beams are important in this book. For the early work the book by
Ramsey [3] is indispensable, and a recent two-volume comprehensive survey edited by
Scoles [40] covers recent developments in the technology. However, books dealing with
microwave, millimetre wave or far-infrared spectroscopy, whether using beams or not,
are scarce. The early books of Townes and Schawlow [41], Kroto [42] and Carrington
[27] still have some value, and more recently Hirota [43] has described spectroscopic
work (mainly Japanese) on transient molecules. There is, however, a vast amount of
published original work on the high-resolution spectroscopy of transient species, using
far-infrared or lower radiation frequencies. This book is devoted to a description of
this type of work applied to diatomic molecules. More general books on molecular
spectroscopy, including diatomic molecules, are those by Hollas [44], Demtröder [45]
and Bernath [46]. In the field of radio astronomy we have found the book by Rohlfs
and Wilson [47] to be most helpful.
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There are, of course, a number of review articles from which we select three, all
written by Hirota and all dealing with free radicals and molecular ions. The first of
these covers the period up to 1992 [48] and deals with diatomic and polyatomic species.
It is supplemented by further reviews published in 1994 [49] and 2000 [50]. Finally
we should draw attention to a computer data base covering all types of spectroscopy
of diatomic molecules, produced by Bernath and McLeod [51]. This is available free
of charge on the Internet and may be seen at <http://diref.uwaterloo.ca>. It will be
maintained for the indefinite future.

Appendix 1.1. Maxwell's equations

An important connection between optical and electromagnetic phenomenawas first dis-
covered by Faraday in 1846. He observed that when plane-polarised radiation passes
through certain materials exposed to a magnetic field that is parallel to the propagation
direction of the radiation, the plane of polarisation is rotated. The degree of rotation
depends upon the nature of the material and the strength of the magnetic field. The
union of optical and electromagnetic properties was subsequently put on firm founda-
tions by Maxwell in the form of his wave theory of electromagnetic interactions. As we
shall see, Maxwell’s equations also provide the explanation for optical properties like
dispersion and refraction. The nature of electromagnetic radiation, which is central to
almost everything in this book, was described earlier in this chapter, but without much
justification. Maxwell’s equations, which form the basis for understanding electromag-
netic radiation, will now be described. There are, in fact, four equations that connect
macroscopic electric and magnetic phenomena, and two further equations that describe
the response of a material medium to electric and magnetic fields.

(i) The first equation is

∇ ∧ E + 1

c

∂B

∂t
= 0 (in cgs units),

(1.70)

∇ ∧ E + ∂B

∂t
= 0 (in SI units).

∇ is the vector operator given by

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (1.71)

where i , j , k are orthogonal unit vectors. When ∇ operates on a scalar φ the
resulting vector ∇φ is called the gradient of φ (i.e. grad φ). When ∇ operates
on a vector A there are two possibilities. The scalar product, ∇ · A, results in a
new scalar, and is known as the divergence of A (i.e. div A). The vector product,
∇ ∧ A, is a vector called the curl of A; c, as elsewhere, is the speed of light.

Equation (1.70) is Faraday’s law of electromagnetic induction; it shows that
a time-dependent magnetic flux density, B, gives rise to an electric field, E, in a
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direction perpendicular to the original magnetic field. Equations (1.70) are often
written in the abbreviated form

curlE + 1

c

∂B

∂t
= 0 (in cgs units),

(1.72)

curlE + ∂B

∂t
= 0 (in SI units).

(ii) The second equation is

∇ ∧ H − 1

c

∂D

∂t
= 4π

c
J (in cgs units),

(1.73)

∇ ∧ H − ∂D

∂t
= J (in SI units).

H is the magnetic field vector and D is called the electric induction or displace-
ment field. This equation is known as the Ampere–Oersted law and shows that
a magnetic field will exist near an electric current density J. The displacement
field, D, is necessary to propagate electromagnetic energy through space. J has
units charge · area−1 · t−1

(iii) The third equation is

∇ · D = 4πρ̄ (in cgs units),
(1.74)∇ · D = ρ̄ (in SI units).

∇ · is called the div and ρ̄ is the electric charge density with units charge ·
volume−1. There is a relationship between J and ρ̄, given by

J = ρ̄v, (1.75)

where v is the velocity of the charge distribution. J and E are also related by

J = � · E, (1.76)

where � is the conductivity. Equation (1.74) is actually the Coulomb law in
electrostatics.

(iv) The fourth equation is the same in both cgs and SI units, and is

∇ · B = 0. (1.77)

This equation states that there are no sources of magnetic field except currents;
in other words, there are no free magnetic poles.
The remaining two equations both relate to properties of the medium.

(v) The fifth equation may be written

D = ε · E (in cgs units),
(1.78)

D = ε0ε · E (in SI units).

ε is the relative electric permittivity, or dielectric constant, of the medium, ex-
pressed in general as a tensor, and ε0 is the permittivity of a vacuum.
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(vi) The sixth equation is the magnetic analogue of the fifth:

B = µp · H (in cgs units),
(1.79)

B = µ0µp · H (in SI units).

B is the magnetic induction or magnetic flux density, and µp is the relative
magnetic permeability of the medium, also expressed in general as a tensor.
For an anisotropic medium the scalars ε and µp are used; their values are unity
for a vacuum (so that B and H are then equivalent). ε has a wide range of
values for different substances, but µp is usually close to unity. If µp is less than
1.0 the substance is diamagnetic, and if it is greater than 1.0 the substance is
paramagnetic.

The permittivity of a vacuum is

ε0 = 8.854 187 818 × 10−12 s4 A2 kg−1 m−3, (1.80)

and the permeability of free space is

µ0 = 4π × 10−7 kg m s−2 A−2. (1.81)

It also follows from the above equations that

(1/ε0µ0)
1/2 = c. (1.82)

Appendix 1.2. Electromagnetic radiation

The oscillating electric and magnetic fields of a plane wave, shown in figure 1.2, may
be represented by the following simple equations:

E = kE0 sin(Y − vt),
(1.83)

B = iB0 sin(Y − vt),

in which E0, B0 and v are simply constants. We now show that this electromagnetic
field satisfies Maxwell’s equations provided certain conditions are met. We find the
following results:

divE = 0,

curlE = i
∂EZ

∂Y
= iE0 cos(Y − vt) (1.84)

∂E

∂t
= −vkE0 cos(Y − vt).

divB = 0,

curlB = −k
∂BX

∂Y
= −kB0 cos(Y − vt), (1.85)

∂B

∂t
= −viB0 cos(Y − vt).
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We note also that J = 0 in empty space. If these results are combined with (1.72)
and (1.73), the conditions that must be satisfied are, in SI units,

E0 = vB0, B0 =µ0ε0vE0. (1.86)

Taken together, these equations require that

v = ±c, E0 = cB0. (1.87)

In the old cgs units, the second relationship is even simpler:

E0 = B0. (1.88)

We have therefore established three important features of the electromagnetic ra-
diation. The first is that the field pattern travels with the speed of light, c. The second
is that at every point in the wave at any instant of time, the electric and magnetic field
strengths are directly related to each other. The third is that the electric and magnetic
fields are perpendicular to one another, and to the direction of travel.
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