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THE PHYSICS OF POLARIZATION

By EGIDIO LANDI DEGL’INNOCENTI

Dipartimento di Astronomia e Scienza dello Spazio, Universita di Firenze, Largo E. Fermi 5,
50125 Firenze, Italy

This course is intended to give a description of the basic physical concepts which underlie
the study and the interpretation of polarization phenomena. Apart from a brief historical
introduction (Sect. 1), the course is organized in three parts. A first part (Sects. 2-6) covers
the most relevant facts about the polarization phenomena that are typically encountered in
laboratory applications and in everyday life. In Sect. 2, the modern description of polarization
in terms of the Stokes parameters is recalled, whereas Sect. 3 is devoted to introduce the basic
tools of laboratory polarimetry, such as the Jones calculus and the Mueller matrices. The
polarization phenomena which are met in the reflection and refraction of a beam of radiation at
the separation surface between two dielectrics, or between a dielectric and a metal, are recalled
in Sect. 4. Finally, Sect. 5 gives an introduction to the phenomena of dichroism and of anomalous
dispersion and Sect. 6 summarizes the polarization phenomena that are commonly encountered
in everyday life. The second part of this course (Sects. 7-14) deals with the description, within
the formalism of classical physics, of the spectro-polarimetric properties of the radiation emitted
by accelerated charges. Such properties are derived by taking as starting point the Liénard and
Wiechert equations that are recalled and discussed in Sect. 7 both in the general case and in the
non-relativistic approximation. The results are developed to find the percentage polarization,
the radiation diagram, the cross-section and the spectral characteristics of the radiation emitted
in different phenomena particularly relevant from the astrophysical point of view. The emission
of a linear antenna is derived in Sect. 8. The other Sections are devoted to Thomson scattering
(Sect. 9), Rayleigh scattering (Sect. 10), Mie scattering (Sect. 11), bremsstrahlung radiation
(Sect. 12), cyclotron radiation (sect. 13), and synchrotron radiation (Sect. 14). Finally, the
third part (Sects. 15-19) is devoted to give a sketch of the theory of the generation and transfer
of polarized radiation in spectral lines. After a general introduction to the argument (Sect. 15),
the concepts of density-matrix and of atomic polarization are illustrated in Sect. 16. In Sect. 17,
a parallelism is established, within the framework of the theory of stellar atmospheres, between
the usual formalism, which neglects polarization phenomena, and the more involved formalism
needed for the interpretation of spectro-polarimetric observations. Some consequences of the
radiative transfer equations for polarized radiation, pointing to the importance of dichroism
phenomena in establishing the amplification condition via stimulated emission, are discussed
in Sect. 18. The last section (Sect. 19) is devoted to introduce the problem of finding a self-
consistent solution of the radiative transfer equations for polarized radiation and of the statistical
equilibrium equations for the density matrix (non-LTE of the 2nd kind).

1. Introduction

Polarization is an important physical property of electromagnetic waves which is con-
nected with the transversality character, with respect to the direction of propagation, of
the electric and magnetic field vectors. Under this respect, the phenomenon of polar-
ization is not restricted to electromagnetic waves, but could in principle be defined for
any wave having a transverse character, such as, for instance, transverse elastic waves
propagating in a solid, transverse seismic waves, waves in a guitar string, and so on.
On the contrary, polarization phenomena are obviously inexistent for longitudinal waves,
such as the usual acoustic waves propagating in a gas or in a liquid.

From an historical perspective (see Swyndell, 1975, for a more exhaustive treatment
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2 E. Landi Degl'Innocenti: The Physics of Polarization

of the argument), the study of the polarization characteristics of electromagnetic waves
started as early as the 17th century with an interesting treatise by the Dutch physi-
cist Erasmus Bartholinus entitled “Experimenta crystalli islandici disdiaclastici, quibus
mira et insolita refractio detegitur” (“Ezperiments on double-refracting Icelandic crystals,
showing amazing and unusual refraction”, 1670 —detailed references to this work, as well
as to the other papers or books appeared earlier than 1850, can be found in Swyndell,
1975). In this work, one can find the earliest account of a phenomenon, double refraction
in a crystal, which is intimately connected with the polarization characteristics of light.
We now know that the two rays resulting from the refraction inside a crystal such as an
Iceland spar have different polarization characteristics, a fact that was however ignored
by Bartholinus.

Reflecting on Bartholinus’ experiments, first Christian Huyghens in his “Treatise on
Light” (1690), and later Isaac Newton in his “Optiks” (1730), though working in the
framework of two competing theories of light, arrived to the conclusion that light should
have some “transversality” property, a property, however, that was not yet called “polar-
ization”. Newton, for instance, refers to the phenomenon of polarization by saying that
a ray of light has “sides”.

After many years from Huyghens and Newton, the French physicist Etienne Louis
Malus introduces in the scientific literature the word “Polarization” and brings several
significant contributions to the establishment of the concept of polarization in modern
terms. In his paper “Sur une proprieté de la lumiére réfléchie” (1809) Malus proves that
polarization is an intrinsic property of light (and not a property “induced” in the light
by crossing an Iceland spar), he demonstrates that polarization can be easily produced
through the phenomena of reflection and refraction, and he also proves the famous cos? ¢
law (giving the fraction of the intensity transmitted by two polarizers crossed at an angle
8), nowadays known as Malus law. This work opens the way to the achievements of
another physicist, probably the most renowned optician of all times, Augustin Fresnel,
who definitely proves the transversality of light despite the widespread belief of the times
according to which, the ether being a fluid, the light should be composed of longitudinal
waves. Around 1830, in his paper “Mémoires sur la réflexion de la lumiére polarisée”,
Fresnel proves his famous laws concerning the relationships among the polarization prop-
erties of the incident beam and the same properties of the beams reflected and refracted
at the surface of a dielectric. Despite the fact that the electromagnetic nature of light
was not yet known, Fresnel’s laws are correct and are still in use today.

The story of polarization continues in the 18th century with several significant con-
tributions by Francois Arago and Jean-Baptiste Biot (who discover the phenomenon of
Optical Activity in crystals and in solutions, respectively), David Brewster (nowadays
known for the “Brewster angle”), William Nicol (who builds the first polarizer, the so-
called Nicol prism), and Michael Faraday (who discovers an effect today known as the
“Faraday effect”). However, it is only with the fundamental work of George Stokes,
“On the Composition and Resolution of Streams of Polarized Light from Different Sor-
ces” (1852), that the description of polarized radiation becomes fully consistent. This
is achieved by giving an operational definition of four quantities, the so-called Stokes
parameters, and by introducing a statistical description of the polarization property of
radiation, as we will see in the next Section.

At the middle of the 18th century, the phenomenon of polarization is thus fairly well
understood but it is necessary to wait almost 60 years before assisting to the first appli-
cation of polarimetry to astronomy. In 1908, George Ellery Hale, has the brilliant idea
of observing the solar spectrum with the help of some polarizing devices (Hale, 1908).
By means of a Fresnel rhomb (acting as a quarter-wave plate) and a Nicol prism (acting
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E. Landi Degl’Innocenti: The Physics of Polarization 3

as a polarizer), Hale succeeds in observing the spectrum of a sunspot in two opposite
directions of circular polarization and, from the observed shift of spectral lines, induces
for the first time the existence of magnetic fields in an astronomical object. Since its
birth, astronomical polarimetry has evolved through the years and has given a relevant
contribution to our present understanding of the physical Universe. Among the various
astronomical discoveries that have relied on the use of polarimetric techniques it is just
enough to quote here the discovery of the first magnetic star (Babcock, 1947) and the
discovery of the existence of magnetic white dwarfs (Kemp et al., 1970).

Notwithstanding these remarkable successes, polarimetry has remained for a long time
a secondary discipline in astronomy. However, mostly in the last ten years, the situation
has rapidly evolved and we are now undoubtedly assisting to a revival of this discipline
that seems capable of capturing the scientific interests of a large community of persons
and a non negligible fraction of the funds allocated to astronomical research (the or-
ganization of the present Winter School is a clear example of this trend). Probably,
this is far from being an accidental event. Now that all the possible “windows” of the
electromagnetic spectrum have been opened (from +y-rays to radio-waves), the possibility
of new discoveries —including the serendipitous ones- relies on the development of new
technologies aimed to increase the accuracy of older instrumentation (better angular,
temporal, or spectral resolution, better photometric accuracy, and so on). Polarimetry
perfectly fits into this trend also because, for almost a century, it has generally trailed
behind the other disciplines as a possible target of novel technologies.

Apart from these historical notes, I feel necessary to spend some more introductory
words about polarimetry in the astronomical context. The first thing to be remarked
is that polarization is an invaluable source of information about the geometry of the
astronomical object observed, or about any physical agent (like for instance a magnetic
field) that is capable of altering, to some extent, the geometrical scenario of the same
object. In polarimetry, more than in any other discipline of astronomy, the words of
Galileo about geometry and the physical world still stand, after almost four centuries, as a
must: “Egli (PUniverso) é scritto in lingua matematica, e i caratteri son triangoli, cerchi,
ed altre figure geometriche, senza i quali mezzi é impossibilie a intendere umanamante
parola...” (“The Universe is written in mathematical language, and its characters are
triangles, circles, and other geometrical figures, without which it is humanly impossible
to understand a single word...”).

Only a perfectly symmetric object, devoided of any physical agent capable of intro-
ducing the minimum dissimmetry in its geometrical scenario, is capable of emitting a
completely unpolarized beam of radiation. An ideal black-body could provide an exam-
ple of such an object, but, as we all know, ideal objects do not exist in real life and we
have then to expect that some polarization signal, even if exceedingly small, may always
be present in no matter which astronomical object.

The real challenge for the future of astronomical polarimetry is to increase the sensi-
tivity of the present polarimeters operating in the different regions of the electromagnetic
spectrum. Quite recently, solar physicists have succeeded in lowering the sensitivity of
their polarimeters, operating in the visible range of the electromagnetic spectrum, below
the limit of 10™4, thus discovering a wealth of new and unexpected phenomena that are
taking place in the higher layers of the solar atmosphere and that are stimulating novel
theoretical approaches for their interpretation. It is my impression that, quite similarly,
new exciting discoveries may be obtained for any spectral domain and any discipline of
astronomy once the major effort of building a new-technology polarimeter has reached
the ultimate goal of lowering the sensitivity of presently available instruments.
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4 E. Landi Degl’Innocenti: The Physics of Polarization

2. Description of Polarized Radiation

Consider an electromagnetic, monochromatic plane wave of angular frequency w that
is propagating in vacuum along a direction that we assume as the z-axis of a right-handed
reference system. In a given point of space, the electric and magnetic field vectors of the
wave oscillate in the z-y plane according to equations of the form

E.(t) = E; cos(wt — ¢1) , Ey(t) = Ey cos(wt — ¢2)

where Ey, Ea, ¢1, and ¢, are constants. The same oscillation can also be described in
terms of complex quantities by writing

E,(t) =Re(&1e7™%),  Ey(t) = Re(&e™™)
where £; and &, are given by
(‘:1 = Eleid" s 52 = E‘g(—.‘id’2

As is well known, the composition of two orthogonal oscillations of the same frequency
gives rise to an ellipse. The tip of the electric field vector thus describes an ellipse at
the angular frequency w, and, when trying to recover the geometrical parameters of
the ellipse from the quantities previously introduced, one finds that the following four
combinations,

Pr=E}+E=EE+EE, Pp=FE}—E}=£& -8&6&,

Py = 2B, Ex cos(¢y — ¢2) = E1E2+E3E1, Py = 2E1 By sin(éy — o) = i (E162 — E361)

come naturally into play. The ratio between the minor and major axes of the ellipse, for
instance, is given by

b |vVPr =Py — VPr + Py|

a VP -Pr+VP+Py '
whereas the angle x that the major axis of the ellipse forms with the z-axis can be found
through the equation

Py
P

The quantities Py, Fg, Py, and Py now introduced are not independent. Indeed they
obey the relationship

tan(2x) =

P} =P+ P+ P

and, varying their values, any kind of polarization ellipse can be described. Circular
polarization is obtained by setting Pp = Py = 0, and one speaks about positive (or
right-handed) circular polarization if Py = P; and of negative (or left-handed) circular
polarization if Py = —P;. In these cases the tip of the electric field vector describes a
circle. On the other hand, linear polarization is obtained by setting Py = 0. Now the
tip of the electric vector oscillates along a segment whose inclination with respect to the
z-axis is determined by the values of Pg and Py. In general, when none of the three
quantities Pg, Py and Py is zero, the tip of the electric vector describes an ellipse.

The description now given in terms of the polarization ellipse is however valid only
for a plane, monochromatic wave which goes on indefinitely from t = —o0 to t = +o00.
This is obviously a mathematical abstraction which, in general, has little to do with the
physical world. A much more realistic description of a beam of radiation can be given
only in terms of a statistical superposition of many wave-packets each having a limited
extension in space and time. The beam thus loses its property of being monochromatic,
becoming a quasi-monochromatic wave. Moreover, if the individual wave-packets do not
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E. Landi Degl'Innocenti: The Physics of Polarization 5

share the same polarization properties, the polarization ellipse varies, statistically, in
time. For such a beam of radiation it is then quite natural to generalize the previous
definitions in the following form

Pr = (B} + E}) = (£1&1) +(£362)
Po = (B} — E3) = (£1&61) - (&562)
Py = (2E1E2 cos(¢y — ¢2)) = (8;82) + (5551> ,

Py = (2E1 Ez sin(¢1 — ¢2)) = 1((£7&2) — (£3861)) (2.1)
where the symbol (...) means an average over the statistical distribution of the wave-
packets.

Through the new definitions one can indeed describe a much larger set of physical
situations. In particular, being now

P} >P3+P;+ P} |
it is possible for a particular beam of radiation to have Pp = Py = Py = 0. As it can
be easily derived from the equations, this implies

&) =(&86), (G&)=0,

which means that the electric field components along the 2 and y-axis are, in average,
equal and uncorrelated. Such a beam is a beam of “natural” radiation and its description
has been made possible by the “averaging” operation over the different wave packets. It
is just this operation that has been introduced by Stokes in the description of polarized
radiation and the quantities defined in Eqgs.(2.1) are, apart from a dimensional factor
needed to transform the square of an electric field into a specific intensity, just the
Stokes parameters. The older descriptions of polarization, like the one used by Fresnel,
did not take into account this averaging process and were then suitable to treat only
totally polarized beams of radiation.

The description of polarization presented above involves suitable averages of the elec-
tric vibrations along two orthogonal axes, z and y, perpendicular to the direction of
propagation. In practice, with the remarkable exception of radio-polarimetry, the elec-
tric field of a radiation beam cannot be measured directly, and it is then necessary to
introduce some operational definitions in order to relate the polarization properties of a
beam to actual measurements that can be performed on the beam itself. To reach this
aim, it is convenient to refer to the concept of ideal polarizing filters, such as the ideal
polarizer and the ideal retarder. These ideal devices are defined by specifying their action
on the electric field components along two orthogonal axes perpendicular to the direction
of propagation. For the ideal polarizer one has

g; . i 1 0 ga PPN L ga
()=( o) (@)= (5) -

where £, and &, are the components, at the entrance of the polarizer, of the electric field
vector along the transmission axis and along the perpendicular axis, whereas £; and &}
are the same components at the exit of the polarizer. As this equation shows, the electric
field along the transmission axis is totally transmitted, whereas the transverse component
is totally absorbed. The polarizer also manifests itself through a phase-factor, 1, which
is however completely inessential because it affects both components in the same way.
For the ideal retarder, on the contrary, one has

EY_w (1 O &Y _ vl &
(&)= &) (5) = (&) -
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6 E. Landi Degl’Innocenti: The Physics of Polarization
[ - S —

vV = _

FIGURE 1. Pictorial representation of the Stokes parameters. The observer is supposed to face
the radiation source.

where the notations are similar to those employed in the former equation and where
the indices “f” and “s” stand, respectively, for the fast-axis and the slow-axis. The
ideal retarder acts by introducing a supplementary phase factor, called retardance in the
electric field component along the slow axis. If § = w/2, the retarder is also called a
quarter-wave plate, if § = m, it is called a half-wave plate, and so on. It can be easily
shown that the combination of a quarter-wave plate and a polarizer whose transmission
axis is set at +45° (—45°) from the fast axis of the plate acts as a filter for positive
(negative) circular polarization.

Through the ideal polarizing filters it is possible to give a simple, operational definition
of the Stokes parameters of a beam of radiation. Consider a beam and a reference
direction in the plane perpendicular to the beam. One starts by setting an ideal polarizer
with its transmission axis along the reference direction and measures the intensity of the
beam at the exit of the polarizer, thus obtaining the value Igo. The same operation is
repeated three times after rotating the polarizer (in the counterclockwise direction facing
the source) of the angles 45°, 90°, and 135°, respectively, thus obtaining the values Iy5.,
Ig0o, and I13s0. The ideal polarizer is then substituted by an ideal filter for positive
circular polarization, the measured intensity at the exit of the filter being I, and by
an ideal filter for negative circular polarization, the measured intensity being I_. The
operational definition of the four Stokes parameters, pictorially summarized in Fig. 1, is
the following

I=1Ipe + Igoo = Iyge + Ingse =14 +1-

Q = Ipe — Igoe U = Iyso — I35 , V=I -1

By means of the properties of the ideal filters given previously, it is possible to relate
the Stokes parameters with the quantities P, Pg, Py and Py defined in Egs.(2.1). When
the reference direction introduced for the operational definition of the Stokes parameters
coincides with the z-axis of the system introduced for the definition of the electric field
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E. Landi Degl’Innocenti: The Physics of Polarization 7

components, one simply has
I =kPy, Q=kPy, U=kFy, V=kPy ,

where k is a dimensional constant whose precise value is often irrelevant because only
the ratios Q/I, U/I and V/I are generally measured in practice.

3. Polarization and Optical Devices: Jones Calculus and Mueller
Matrices

The ideal polarizer and the ideal retarder that we have considered above, are just two
examples of optical devices for which a linear relationship of the form

(f?i) - (Z Z) (2) (3.2)

can be established. In this equation, the unprimed components of the electric field refer
to the beam at the entrance of the optical device, whereas the primed components refer to
the exit beam. Moreover, a, b, ¢, and d are four complex quantities that define the phys-
ical characteristics of the optical device. This equation is the basis of the so-called Jones
calculus, a particular formalism for treating polarization phenomena systematically intro-
duced in the scientific literature by Jones in the early 1940s. The two-component vectors
containing the electric field (in complex notations) are called Jones vectors, whereas the
2 x 2 matrix containing the properties of the optical device is called the Jones matrix.
Obviously, for a train of N optical devices one can simply build up the Jones matrix of
the train by considering the product of N individual 2 x 2 matrices:

a b\ _(anv bn az b2\ fa1 b
Cd—CN dN .... Co d2 (4] d1 ?

where the first optical device encountered by the beam is characterized by the index 1,
the second by the index 2, and so on (in other words, the ordering of the matrices in the
r.h.s. is opposite to the ordering in which the optical devices are inserted in the beam).

The relationship between the electric field components of the entrance and exit beams
given by Eq.(3.2) can be easily translated into a relationship between the Stokes param-
eters. Using the definition of the Stokes parameters, one obtains, after some algebra, an
equation of the form

S'=MS , (3.3)
where S is a 4-component vector constructed with the Stokes parameters of the entrance
beam (ST = (I,Q,U,V)), S’ has a similar meaning for the exit beam, and M isa 4 x 4
matrix given by

a’a+bb+c'c+d'd ata—bb+cc—dd 2Re(a*db+c*d) 2Im(a*b+ c*d)
1{aa+bb—c'c—d*d a*a—-bb—cc+d*d 2Re(a’b—c*d) 2Im(a*b-— c*d)
2 2Re(a*c+ b*d) 2Re(a*c — b*d) 2Re(a*d +b*c) 2Im(a*d — b*c)
—2Im(a*c + b*d) —2Im(a*c — b*d) —2Im(a*d + b*c) 2Re(a*d - b*c)

A 4 x 4 matrix as the one here introduced is usually referred to as a Mueller matrix.
Such a matrix is made, in general, of 16 independent elements and the expression that we
have derived above (which depends indeed on only 7 quantities —the real and imaginary
parts of the 4 elements a, b, ¢, and d of the Jones matrix, minus an irrelevant phase that
can be factorized in the same matrix) is a particular case of a Mueller matrix. In the
following, we will refer to this particular case as the Jones-Mueller matrix.

The peculiarity of a Jones-Mueller matrix is contained in a subtle mathematical prop-
erty which we state here without proof. If the determinant of the Jones matrix is non-zero,
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that is if
D=ad—bc#0 ,
then it follows that
|DIPM™! = XMTX
where X is the diagonal matrix defined by

1 0 0 0
_ 0 -1 0 O
X=X"=|. 70 1 o (3.9)

0 0 0 -1

Through this mathematical property it is possible to show an interesting result for the
polarization properties of the entrance and exit beams connected by a Jones-Mueller
matrix. Defining

P=P-Q*-U%?-V2=8TXS; P =1?-Q?-U?-v?=9TXSs" , (3.5)

one has, with easy transformations
P = STXS' = STMTXMS = |DPSTXM~'MS = |D|*P

The equation connecting the first and last terms of this chain of equalities, which can
be proved to be valid also in the case where |D|> = 0, shows that: a) if P > 0, also
P’ > 0; b) if P = 0, then P' = 0. Property a) means that a Jones-Mueller matrix is
always a physical (or bona-fide) Mueller matrix, in the sense that it transforms physical
polarization states (P > 0) in physical polarization states (P’ > 0). Property b) shows
that a totally polarized beam is always transformed by a Jones-Mueller matrix into
another totally polarized beam. In other words a Jones-Mueller matrix is unable of
describing depolarizing mechanisms and this clearly shows the limitations of the Jones
calculus for handling a large variety of polarization phenomena. As an example, consider

the case of an ideal depolarizer. The corresponding Mueller matrix is obviously given by
an expression of the form

OO =

00
00
Mideal depolarizer = 0 0

COoO OO

0 0O

It can be easily proved that it is impossible to find a set of values for the quantities a,
b, ¢, and d, such that, when substituted in the expression for the Jones-Mueller matrix,
are capable of reproducing the Mueller matrix of the ideal polarizer.

Mueller matrices have a large variety of applications in physics and, more particularly,
in astronomy. In many cases, one can even define the Mueller matrix of a telescope by
analyzing the properties of each of its optical devices and then deducing the resulting
matrix as the product of the matrices of each device. The “train property” outlined for
the Jones matrices is obviously valid for the Mueller matrices too, so that one has, with
evident notations

M = MN...M2M1

An important problem about Mueller matrices, that often arises when one is trying
to deduce the Mueller matrix of an optical device (or a combination of several optical
devices) by means of experiments, is the following: given a 4 x 4 real matrix whose
16 elements are to be considered as quantities affected by experimental errors, is it a
physical (or bona-fide) Mueller matrix, or not? This problem has been solved quite
recently by means of a mathematical algorithm directly implemented in a code (Landi
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—(i)
€y

FIGURE 2. Reflection and refraction at the separation of two dielectrics.

Degl'Innocenti & del Toro Iniesta, 1998). As a curiosity we can mention the fact that the
number of physical Mueller matrices is a very tiny fraction of all the 4 x 4 matrices that
can be constructed. More precisely, calculations performed via a Montecarlo technique
show that out of 10 matrices generated by setting the element M;; to 1 and all the
other elements to random numbers bound in the interval (—1,1), only approximately
two matrices turn out to be bona-fide Mueller matrices.

4. The Fresnel Equations

The simplest and commonest physical phenomenon where polarization processes enter
into play is the ordinary reflection of a pencil of radiation on the surface of a dielectric
medium. This phenomenon, which is generally accompanied by the related phenomenon
of refraction, is described by the so-called Fresnel equations that can be derived as a
direct consequence of the Maxwell equations. Referring to Fig. 2, we denote by n; and
ny the index of refraction of the two media by 8; the angle of incidence (which is equal
to the angle of reflection) and by 85 the angle of refraction. Considering, for the time
being, the simplest case where both media (1 and 2) are dielectrics (which implies that
n; and ne are real), and supposing n; < ns, the angles 8; and 82 are connected by the
usual Snell’s law

n sin91 = N2 sin 02 - (4.6)

The incident, the reflected, and the refracted ray all lie in the same plane which also
contain the normal to the surface of separation between the two media (the so-called
incidence plane). For each ray, a right-handed reference frame is introduced, with the
third axis directed along the ray, the first axis lying in the plane of incidence, and the
second axis being directed perpendicularly to the plane of incidence (and being then
parallel to the surface of separation of the two media). The unit vectors are denoted

respectively as (é’"(i),é’f),é‘ () for the incident beam, (é‘"(') & &) for the reflected
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10 E. Landi Degl’Innocenti: The Physics of Polarization

beam, and (é'"m,é' J(_t),é‘ (t)) for the refracted (or transmitted) beam. Using similar no-
tations for denoting the electric field components along the different axes, the laws of
Fresnel are condensed by the following equations

8||(r) _ Ul 0 5"(? gll(t) _ 4] 0 zc,‘”(f)
5_](_:') 0 ry EJ(_') git) 0 ti 5J(_l) ’

where
ng cosy — ny cosfy ny cosf; — ns cosfy
= ’ TL=
1z cosfy + ny cos s 1y cosy + ng cosfsy
2n; cos 8, 2n; cos B
= , ty = . 4.7)
ng cosf; + ny cosfy ny cosf; + no cos by

Since the equations now derived are in the form of “Jones equations” (cfr. Eq.(3.2)),
it is easy to find the Mueller matrices corresponding to reflection and to refraction (or
transmission). Taking into account Eq.(3.3) and choosing for each of the three rays the
reference direction along &), we find for reflection

Iy + e Ayl = |ral? 0 0
M o 1 |1‘"12 - IT_L|2 |r|||2 + |1‘_|_|2 0 0
reflection = 5 0 0 2Re(rjry)  2Im(rjr.)
0 0 —2Im(rﬁm_) 2Re(rﬁrl)
and, for transmission,
eyl + 1t Ieyl® = [tL]? 0 0
M __ngcosfz 1 |t"|2 —JtLf? |t”|2 +|t.)? 0 0
transmission = _nl cos 0, 5 0 0 2Re(tﬁt_|_) 2Im(t|*|t_]_)
0 0 ~2Im(tit1) 2Re(tjty)

In this last equation, a supplementary factor ng cosfz/(n; cosé) has been introduced
in front of the matrix to account for the fact that the energy that is contained, in the
incident beam, within the infinitesimal angle dé,, is contained, after refraction, within
the different infinitesimal angle df,. On the other hand, from Snell’s law (Eq.(4.6)), one
has
df; _ nacosfs
d92 - ny Cos 01
An important property of the Fresnel equations is the fact that they are capable of
describing, besides the phenomenon of reflection and refraction at the surface of two
dielectrics, with the radiation propagating from the less refracting to the more refracting
medium, also the inverse phenomenon where a pencil of radiation is propagating from
a more refractive medium to a less refracting medium, and also the phenomenon of
reflection on the surface of a metal. For treating these two supplementary cases, which
require some further conventions, it is convenient to rewrite Eqs.(4.7) in the equivalent

form
n2uy; — n? -
Uy — NjUz Uy — U2
W= o 2. » = .
nsuy + nyus uy + U2
2n1n2u1 2u1
t=5—3— » by =——— (4.8)
nsu) + nyus Uy + ug
where
uy; =ny cosb Uy = ng cosfs

Consider first the case of two dielectrics with n; > ny. A direct application of Snell’s
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