abilities and capacities, 2, 93; defined as maximal performance, 3; as absent from deliberate practice theory, 20; relation of to expertise, 51–4, 106–10, 134–5; defined, 70; and Francis Galton, 94, 95–6; and Franz Joseph Gall 95–6; inductive search for, 97–8; and human cognition models, 98–9; as biological basis of individual differences, 99–100; and intelligences, 136–7; potential, 137–43; implications of studies of for education, 153–4; phonological, 174–7; rejection of as explanation of expertise, 187–9; and creativity, 213, 213–21; defined 265; and cognitive performance 265–7; and experience, 267–8. See also modular abilities; integrative abilities; performance; expertise; genetics achievement tests: as test of expertise, 3
Ackerman, P. L., 266, 267, 268, 269; on trait complexes, 4, 9; on PPiK, 5 adaptive development: and SOC model, 33–8 adaptive resource allocation: and cognitive-motor performance, 40–5 affect. See personality age and aging; as influence on intelligence, 7–8; as predictor of domain-specific knowledge, 9–10, 11, 14, 15; and trait complexes, 12; lack of consideration for in x-theory, 17; and knowledge acquisition, 19; and longitudinal studies, 21–2; impact of on mechanics and pragmatics of intelligence, 39–40; and adaptive resource allocation, 40–5, 59–60, 62–3; and plasticity in skills acquisition, 45–50; impact of on abilities in expertise studies, 52–8; and relations between SOC and expertise, 58–9; and variations in heritability and environmental impact on development, 72–4, 75
Ahern, F., 73
Aikens, H. A., 97
art: and Savant Syndrome, 165, 167
artificial intelligence, 24
Asperger’s Syndrome, 164, 165
autism, 164, 167; and limits on acquisition of competence, 139
Backman, J., 176
Baltes, Margaret, 33, 266, 267, 269
Barnett, S. M., 267–8, 269
Bast, J., 83
Beier, M. E., 266, 267, 268, 269
Berg, S., 73
Bjorklund, D. F., 250
Bogen, J. E., 242
Boring, E. G., 241
Bradshaw, J. L., 250
bridge: and expertise, 161
Broca, 246
Broca, P. P., 242
Brodsky, K., 242
Broca,
Bouchard, Thomas, 249
Bronfenbrenner, U., 79
Brodsky, K., 242
Buss, A. G., 174
Byrne, R. L., 250
Calvin, W. H., 250
capacities. See abilities and capacities
Carroll, M. W., 266
Caryl, P. G., 245
Cattell, R. B., 7, 22, 46, 266
Ceci, S. J., 79, 267–8, 269
chaos models. See dynamical systems
models
character: as factor in creativity,
225–7
Charmasson, N., 55, 58
Chase, W. G., 37, 158, 1590
chess: as example of expertise, 106–7,
115–16, 158, 159, 160
cognition and cognitive performance,
2, 263–4; genetics and environment in recent research on,
70–4; and Dickens and Flynn’s multiplier effects model, 74–7; and dynamical systems models, 77–9; and bio-ecological models, 79–81; and Matthew effect models, 81–83; and expertise models, 83–4; enhancement of, 84–89; models of compared, 98–9; genetic etiology of, 168–77; defined, 268
competencies: defined, 71, 265;
distinguished from abilities and expertise, 130–4; limits on
acquisition of, 139; realized,
144–50; situation- compared with task-, 146–8; and creativity, 229–32.
See also abilities: expertise
Cosmides, L., 250
Crain-Thoreson, C., 174
creativity: as result of environment,
213; defined, 214–15; difficulty in measuring, 215–18; non-normal distribution of in population, 218; heritability of, 219–21, 233; expertise not required for, 221–9; and competencies, 229–32; uniqueness of, 232–3; and cognitive performance, 268, 272
Cronbach, L. J., 2, 3
crystallized intelligence (Gc), 265,
266, 269; and intelligence-as-
knowledge in PPIK theory, 7, 22;
as predictor of domain-specific
knowledge, 9, 14; and age, 15; in
SOC theory, 38–9
Dale, P. S., 174
Darlington, R. B., 88
Davidson, J. W., 266, 267, 271
Dax, Marc, 242
de Groot, A., 106, 158–9
Deary, I. J., 244–5
deliberate practice: as factor in expertise, 19, 36, 114–15, 116–18,
120, 159–62, 164; and acquisition of musical skills, 190, 192, 197, 199,
203–5, 210; as inapplicable to
creativity, 222–3, 227–9; and
cognitive performance, 270–1,
271–2; defined, 265
deliberate practice theory: compared
with PPIK, 19–21
Dickens, W. T.: and multiplier effects
model, 71, 72, 74–7
disability: as factor in creativity, 226.
See also expertise: and mental
disabilities; Savant Syndrome
domains: competencies as specific to,
144; creativity as specific to, 216,
221–2, 225
domain-specific knowledge; and trait complexes, 4–5, 266; and cognitive effort, 7; predictors of, 9; and intelligence-as-knowledge, 22–3; implications of PPIK theory for education, 23–5; as distinct from general capacities and abilities, 98; as source of creativity, 214–15

Donchin, E., 244
dynamical systems models, 77–9
dyslexia: and limits on acquisition of competence, 139. See also reading

Ebbinghaus, Hermann, 93
Einstein, Albert: as example of creative genius, 213–14
environment: as factor in acquisition of expertise, 1–2; impact of on competencies, 72–3, 75–7, 89–90; self-selection of and competencies, 78–9, 82, 89–90; in bio-ecological models, 79–81; intervention in, 86–8; and creativity, 213; as factor in creativity, 219, 220; and cognitive performance, 269–70. See also musical skills acquisition: influence of parents and teachers on

Ericsson, K. A., 19–21, 36, 48, 57–8, 83, 189, 271; definition of expert, 160–1
Evans, H. M., 172
expertise and expert performance: and SOC model, 33–8; as result of resource investment, 49–50; individual differences in level of, 50–2; and general and specific abilities, 52–4; and SOC-like mechanisms in, 54–8; rejection of innate capacities as limits to, 96, 103–4, 120; and mediating mechanisms, 105–9; and differences in intra- and inter-individual performances, 109–10; distinguished from competence and abilities, 130–1; difficulties in predicting, 133–4; assessment of, 150–2; defined, 157, 160, 171; importance of knowledge base for development of, 158–9, 161, 164, 167; role of abilities in development of, 159, 160, 162, 165; and adaptability of expert knowledge, 162; and mental disabilities, 162–8; and genetic etiology of complex cognitive functions, 168–77; acquisition patterns contrasted with creativity, 227–9; defined, 265. See also musical skills acquisition; chess; deliberate practice: as factor in expertise; performance

Ferguson, G. A., 35, 60
fluid intelligence (gI), 265, 266, 269; and PPIK theory, 11–12; as predictor of domain-specific knowledge, 12–14; and age, 15; in SOC theory, 38–9
Flynn, J. R.: and multiplier effects model, 71, 72, 73, 74–7, 269–70
Fodor, J.: on horizontal and vertical mental faculties, 136, 137
Frensch, P. A., 161
Friedman, R. B., 173

Galton, Francis, 218, 219, 220, 246, 266
Gardner, H., 266; and theory of multiple intelligences, 17–43
Gazzaniga, M. S., 243
gender: differences in domain knowledge due to, 15–16, 26
general intelligence, 266; as predictor of domain knowledge, 9; theory of and PPIK, 16–19; as factor in skills acquisition, 49–50; defined, 136

Gentner, Donald, 54
Glosser, G., 173
Goldberg, T. E., 173
Graziani, L. J., 172
Grenouille, Jean-Baptiste, 156
Grigorenko, E. L., 267, 271

© Cambridge University Press www.cambridge.org
Grugan, P., 173

\textit{g}-theory. See general intelligence: theory of and PPIK

Haier, Richard, 245–6

Harris, J., 172

Hayes, J. R.: inapplicability of findings of to creativity, 222–5

Hebb, D. O., 241

Heggestad, E. D.: on trait complexes, 4, 9

heritability: versus environment in cognitive growth, 72; of creativity, 215, 219–21, 225. See also genetics; twin studies

Horn, J. L., 7

Howe, M. J. A., 83, 266, 267, 271

Hubbell, E., 97

hyperlexia, 170–4, 172–3, 177

idiot savant. See Savant Syndrome

integrative abilities: as required in specific domains, 127–9; and human culture 132–4; defined, 135–6; as linked to competence and expertise in specific domains, 143, 149

intelligence: as defined by psychometric tests, 31–2; mechanics and pragmatics of in SOC theory, 38–40; and plasticity in skill acquisition, 45–50; as dimensions of underlying abilities, 136–7; theory of multiple, 137–43; historically important biological approaches to study of, 240–2; and hemispheric specialization, 242–3; as rate of neural transmission, 243–4; and electrophysiological brain activity, 244–5; and metabolism, 245–6; and brain size, 246–7; and genetic and behavior-genetic approaches to study of, 247–50; and evolution, 250; as biological and cultural adaptation, 251–7

intelligence tests, 3, 26, 241; weaknesses of, 31–2, 61; as inadequate measure of individual differences, 126. See also IQ; mental faculties; crystallized intelligence; fluid intelligence; general intelligence

intelligence-as-knowledge, 265, 266, 269

intelligence-as-process (GI): in \textit{g}-theory, 18; in PPIK theory, 19–20, 25; defined, 265, 266

IQ: increases in last century, 73–4; and race, 84–5; and rate of neural transmission, 243–4; correlation with electrophysiological brain activity, 244; and brain size, 246–7

Jackson, N. E., 174

Jensen, A. R., 136, 244

Jeronson, H. J., 250

Johansson, B., 73

Johnson, C., 176

Kaminski, G., 36

Kanaya, 267–8, 269

Kerbeshian, J., 172

Kipp, K., 250

Kliegl, R., 48

Krampe, R. T., 36, 48, 57–8, 266, 267, 269

Lashley, Karl, 241

Lazar, I., 88–9

Levy, J., 242

Li, K., 44, 45

Li, S.-C., 39–40

lifespan. See age and aging

Lindenberger, U., 39–40, 43–47

long-term memory (LTM): and basic capacities, 98; as factor in expert performance, 107, 109, 119, 120. See also memory: short-term memory

Lorenz, Edward, 78

Luckner, M., 48

Luria, A. R., 241–2

Marsiske, M., 43

Mason, J. C., 172
mathematics: in theory of multiple intelligences, 137, 143
Mayer, R., 36
Mayr, U., 58
McCarthy, G., 244
McClearn, G. E., 73
McGue, Matthew, 249
memory: and aging, 47–9; as basis of chess expertise, 159, 160; and phonological abilities, 175. See also long-term memory (LTM); short-term memory (STM)
Miller, George, 99
modular abilities: as required in specific domains, 127–9; cross species comparison, 129–32; defined, 135–6; as linked to competence and expertise in specific domains, 143
Mori, M., 243
music: in theory of multiple intelligences, 137; and expertise, 107, 108, 109, 117, 160
musical skills acquisition: role of abilities in, 187–9; influence of parents and teachers on, 190, 191–2, 195, 197, 198, 199, 203, 208–9, 210, 271–2; and practice, 190, 192, 195, 199, 203–5, 210; and other environmental factors, 195–6, 197–8; research design of Howe and Davidson study on, 192–4, 200–3; lack of precocity in, 191, 205–7; and creativity, 222–5
Newell, A., 98
Patel, P. G., 174
Patterson, P., 174
Pedersen, N. L., 73
Pennington, B. F., 176
performance, 100–1; typical behavior versus maximal, 2–4; general intelligence theory and, 17–18; effect of extended practice on, 101–2; intra- and inter-individual differences in, 109–10; typical compared with expert, 110–12; acquisition of expert level of, 112–14; and technical skills, 114–15; and superior skill to select actions, 115–16; and deliberate practice, 114–15, 116–18, 119 personality, 2, 3. See also Process, Personality, Interests, and Knowledge theory
Petrill, S. A., 73
Phillipp, D., 48
Plomin, R., 73
Plotkin, H., 250
PPIK. See Process, Personality, Interests, and Knowledge theory
practice: brain and body modification due to, 102–5; and musical performance, 190, 192, 197, 199, 203–5, 210. See also deliberate practice; performance: effect of extended practice on precocity: and reading, 174–7; lack of in musicians, 191, 205–7
Prinz, W., 39–40
Process, Personality, Interests, and Knowledge (PPIK) theory: defined, 5–8; empirical findings related to, 8–15; compared with general intelligence theory, 16–19; compared with deliberate practice theory, 19–21; implications of for science, 21–3; implications of for education, 23–5; implications of for society, 25–6
psychometric testing: of creativity, 215–18, 226. See also IQ; intelligence tests
race: and IQ, 84
reading: and modular cognition, 170–77. See also hyperlexia; dyslexia
Reed, T. E., 244
Reitsma, P., 83
resource investment: in SOC model, 35, 36, 57–8
Riksen-Walraven, J. M., 80
Roeltgen, D. P., 173
Rothemel, R. D., 173
Ruoff, B. A., 36
Salthouse, T. A., 54–5
Savant Syndrome, 177, 267, 271; as expertise in context of mental
disability, 163–8
Scarr, S., 74, 85
Schafer, R., 245
selection, optimization,
compensation model (SOC): as
theoretical framework, 32–3; and
adaptive development, 33–8; and
mechanics and pragmatics of
intelligence in, 38–40; and
cognitive-motor performance,
40–45, 61–2; intelligence and
plasticity in skill acquisition in,
45–50, 61; and abilities and
delay of expertise, 52–4; and evidence for
SOC-like mechanisms in expert
performance, 54–8; reciprocal
relations between expertise
and, 58–9
Seymour, P. H. K., 172
Shaywitz, B. A., 82–3
short-term memory (STM): and basic
capacities, 99; and chess expertise,
107
Simon, H. A., 37, 98, 158, 159
Simonton, D. K., 267, 268
Singh, T., 47
Sloboda, J. A., 180, 190
Smith, J., 105
Snow, R. E.: on aptitude complexes, 4
Sosnajak, Launen, 190–4
Spearman, C.: and g-theory, 17–18,
97–8, 266
Sperry, R. W., 242
Stanford-Binet Intelligence Test, 3
Stanovich, K. E., 81–2
Sternberg, R. J., 161; critique of
deliberate practice theory by, 20–1,
267, 272
task competence: compared with
situation competence, 146–8, 149
Team, C.-M. R., 39–40
Tesch-Römer, C., 36, 48
Thorndike, E. L., 97
Thurstone, L. L., 266
Tooby, J., 250
trait complexes, 4, 5, 6f1;2; and
cognitive effort, 7, 9–10; and
academic disciplines, 12–13; and
individual differences in
knowledge, 14–15; and
domain-specific knowledge, 15; and
trait-trait interactions,
25
twin studies: and intelligence, 247–50,
264, 267, 270
Van Geerts, P., 78–9
Van Ijzendoorn, M. H., 174
Vernon, P. A., 243
Whitehouse, D., 172
Watson, J. B.: and deliberate practice
teachers, 17
Welsh, M. C., 176
Weschler Adult Intelligence Scales, 3
Wissler, C., 97
word learning: as measure of
intellectual growth 78–9
Zager, R. P., 172