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1

Foundations; Set Theory

In constructing a building, the builders may well use different techniques
and materials to lay the foundation than they use in the rest of the building.
Likewise, almost every field of mathematics can be built on a foundation
of axiomatic set theory. This foundation is accepted by most logicians and
mathematicians concerned with foundations, but only a minority of mathe-
maticians have the time or inclination to learn axiomatic set theory in detail.

To make another analogy, higher-level computer languages and programs
written in them are built on a foundation of computer hardware and systems
programs. How much the people who write high-level programs need to know
about the hardware and operating systems will depend on the problem at hand.

In modern real analysis, set-theoretic questions are somewhat more to the
fore than they are in most work in algebra, complex analysis, geometry, and
applied mathematics. A relatively recent line of development in real analysis,
“nonstandard analysis,” allows, for example, positive numbers that are in-
finitely small but not zero. Nonstandard analysis depends even more heavily
on the specifics of set theory than earlier developments in real analysis did.

This chapter will give only enough of an introduction to set theory to define
some notation and concepts used in the rest of the book. In other words,
this chapter presents mainly “naive” (as opposed to axiomatic) set theory.
Appendix A gives a more detailed development of set theory, including a
listing of axioms, but even there, the book will not enter into nonstandard
analysis or develop enough set theory for it.

Many of the concepts defined in this chapter are used throughout mathe-
matics and will, I hope, be familiar to most readers.

1.1. Definitions for Set Theory and the Real Number System

Definitions can serve at least two purposes. First, as in an ordinary dictionary, a
definition can try to give insight, to convey an idea, or to explain a less familiar
idea in terms of a more familiar one, but with no attempt to specify or exhaust

1
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2 Foundations; Set Theory

completely the meaning of the word being defined. This kind of definition will
be called informal. A formal definition, as in most of mathematics and parts
of other sciences, may be quite precise, so that one can decide scientifically
whether a statement about the term being defined is true or not. In a formal
definition, a familiar term, such as a common unit of length or a number, may
be defined in terms of a less familiar one. Most definitions in set theory are
formal. Moreover, set theory aims to provide a coherent logical structure not
only for itself but for just about all of mathematics. There is then a question
of where to begin in giving definitions.

Informal dictionary definitions often consist of synonyms. Suppose, for
example, that a dictionary simply defined “high” as “tall” and “tall” as “high.”
One of these definitions would be helpful to someone who knew one of the
two words but not the other. But to an alien from outer space who was trying
to learn English just by reading the dictionary, these definitions would be
useless. This situation illustrates on the smallest scale the whole problem the
alien would have, since all words in the dictionary are defined in terms of other
words. To make a start, the alien would have to have some way of interpreting
at least a few of the words in the dictionary other than by just looking them up.

In any case some words, such as the conjunctions “and,” “or,” and “but,”
are very familiar but hard to define as separate words. Instead, we might have
rules that define the meanings of phrases containing conjunctions given the
meanings of the words or subphrases connected by them.

At first thought, the most important of all definitions you might expect in
set theory would be the definition of “set,” but quite the contrary, just because
the entire logical structure of mathematics reduces to or is defined in terms of
this notion, it cannot necessarily be given a formal, precise definition. Instead,
there are rules (axioms, rules of inference, etc.) which in effect provide the
meaning of “set.” A preliminary, informal definition of set would be “any
collection of mathematical objects,” but this notion will have to be clarified
and adjusted as we go along.

The problem of defining set is similar in some ways to the problem of
defining number. After several years of school, students “know” about the
numbers 0, 1, 2, . . . , in the sense that they know rules for operating with
numbers. But many people might have a hard time saying exactly what
a number is. Different people might give different definitions of the number 1,
even though they completely agree on the rules of arithmetic.

In the late 19th century, mathematicians began to concern themselves with
giving precise definitions of numbers. One approach is that beginning with
0, we can generate further integers by taking the “successor” or “next larger
integer.”
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If 0 is defined, and a successor operation is defined, and the successor of
any integer n is called n′, then we have the sequence 0, 0′, 0′′, 0′′′, . . . . In terms
of 0 and successors, we could then write down definitions of the usual inte-
gers. To do this I’ll use an equals sign with a colon before it, “:=,” to mean
“equals by definition.” For example, 1 := 0′, 2 := 0′′, 3 := 0′′′, 4 := 0′′′′, and
so on. These definitions are precise, as far as they go. One could produce
a thick dictionary of numbers, equally precise (though not very useful) but
still incomplete, since 0 and the successor operation are not formally de-
fined. More of the structure of the number system can be provided by giving
rules about 0 and successors. For example, one rule is that if m ′ = n′, then
m = n.

Once there are enough rules to determine the structure of the nonnegative
integers, then what is important is the structure rather than what the individual
elements in the structure actually are.

In summary: if we want to be as precise as possible in building a rigorous
logical structure for mathematics, then informal definitions cannot be part of
the structure, although of course they can help to explain it. Instead, at least
some basic notions must be left undefined. Axioms and other rules are given,
and other notions are defined in terms of the basic ones.

Again, informally, a set is any collection of objects. In mathematics, the
objects will be mathematical ones, such as numbers, points, vectors, or other
sets. (In fact, from the set-theoretic viewpoint, all mathematical objects are
sets of one kind or another.) If an object x is a member of a set y, this is
written as “x ∈ y,” sometimes also stated as “x belongs to y” or “x is in y.” If
S is a finite set, so that its members can be written as a finite list x1, . . . , xn ,
then one writes S = {x1, . . . , xn}. For example, {2, 3} is the set whose only
members are the numbers 2 and 3. The notion of membership, “∈,” is also
one of the few basic ones that are formally undefined.

A set can have just one member. Such a set, whose only member is x , is
called {x}, read as “singleton x .” In set theory a distinction is made between
{x} and x itself. For example if x = {1, 2}, then x has two members but {x}
only one.

A set A is included in a set B, or is a subset of B, written A ⊂ B, if and
only if every member of A is also a member of B. An equivalent statement is
that B includes A, written B ⊃ A. To say B contains x means x ∈ B. Many
authors also say B contains A when B ⊃ A.

The phrase “if and only if” will sometimes be abbreviated “iff.” For
example, A ⊂ B iff for all x , if x ∈ A, then x ∈ B.

One of the most important rules in set theory is called “extensionality.” It
says that if two sets A and B have the same members, so that for any object
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x, x ∈ A if and only if x ∈ B, or equivalently both A ⊂ B and B ⊂ A,
then the sets are equal, A = B. So, for example, {2, 3} = {3, 2}. The order in
which the members happen to be listed makes no difference, as long as the
members are the same. In a sense, extensionality is a definition of equality
for sets. Another view, more common among set theorists, is that any two
objects are equal if and only if they are identical. So “{2, 3}” and “{3, 2}” are
two names of one and the same set.

Extensionality also contributes to an informal definition of set. A set is
defined simply by what its members are—beyond that, structures and rela-
tionships between the members are irrelevant to the definition of the set.

Other than giving finite lists of members, the main way to define specific
sets is to give a condition that the members satisfy. In notation, {x : . . .} means
the set of all x such that. . . . For example, {x : (x −4)2 = 4} = {2, 6} = {6, 2}.

In line with a general usage that a slash through a symbol means “not,”
as in a 
= b, meaning “a is not equal to b,” the symbol “/∈” means “is not a
member of.” So x /∈ y means x is not a member of y, as in 3 /∈ {1, 2}.

Defining sets via conditions can lead to contradictions if one is not careful.
For example, let r = {x : x /∈ x}. Then r /∈ r implies r ∈ r and conversely
(Bertrand Russell’s paradox). This paradox can be avoided by limiting the
condition to some set. Thus {x ∈ A: . . . x . . .} means “the set of all x in A
such that . . . x . . . .” As long as this form of definition is used when A is
already known to be a set, new sets can be defined this way, and it turns out
that no contradictions arise.

It might seem peculiar, anyhow, for a set to be a member of itself. It will be
shown in Appendix A (Theorem A.1.9), from the axioms of set theory listed
there, that no set is a member of itself. In this sense, the collection r of sets
named in Russell’s paradox is the collection of all sets, sometimes called the
“universe” in set theory. Here the informal notion of set as any collection of
objects is indeed imprecise. The axioms in Appendix A provide conditions
under which certain collections are or are not sets. For example, the universe
is not a set.

Very often in mathematics, one is working for a while inside a fixed set y.
Then an expression such as {x : . . . x . . .} is used to mean {x ∈ y: . . . x . . .}.

Now several operations in set theory will be defined. In cases where it may
not be obvious that the objects named are sets, there are axioms which imply
that they are (Appendix A).

There is a set, called 
©, the “empty set,” which has no members. That is,
for all x, x /∈ 
©. This set is unique, by extensionality. If B is any set, then 2B ,
also called the “power set” of B, is the set of all subsets of B. For example,
if B has 3 members, then 2B has 23 = 8 members. Also, 2
© = {
©} 
= 
©.
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A ∩ B, called the intersection of A and B, is defined by A ∩ B := {x ∈
A: x ∈ B}. In other words, A ∩ B is the set of all x which belong to both A
and B. A ∪ B, called the union of A and B, is a set such that for any x , x ∈
A ∪ B if and only if x ∈ A or x ∈ B (or both). Also, A\B (read “A
minus B”) is the set of all x in A which are not in B, sometimes called the
relative complement (of B in A). The symmetric difference A � B is defined
as (A\B) ∪ (B\A).

N will denote the set of all nonnegative integers 0, 1, 2, . . . . (Formally,
nonnegative integers are usually defined by defining 0 as the empty set 
©, 1 as
{
©}, and generally the successor operation mentioned above by n′ = n ∪ {n},
as is treated in more detail in Appendix A.)

Informally, an ordered pair consists of a pair of mathematical objects in
a given order, such as 〈x, y〉, where x is called the “first member” and y
the “second member” of the ordered pair 〈x, y〉. Ordered pairs satisfy the
following axiom: for all x, y, u, and v, 〈x, y〉 = 〈u, v〉 if and only if both
x = u and y = v. In an ordered pair 〈x, y〉 it may happen that x = y. Ordered
pairs can be defined formally in terms of (unordered, ordinary) sets so that
the axiom is satisfied; the usual way is to set 〈x, y〉 := {{x}, {x, y}} (as in
Appendix A). Note that {{x}, {x, y}} = {{y, x}, {x}} by extensionality.

One of the main ideas in all of mathematics is that of function. Informally,
given sets D and E , a function f on D is defined by assigning to each x in
D one (and only one!) member f (x) of E . Formally, a function is defined
as a set f of ordered pairs 〈x, y〉 such that for any x, y, and z, if 〈x, y〉 ∈ f
and 〈x, z〉 ∈ f , then y = z. For example, {〈2, 4〉, 〈−2, 4〉} is a function, but
{〈4, 2〉, 〈4, −2〉} is not a function. A set of ordered pairs which is (formally)
a function is, informally, called the graph of the function (as in the case
D = E = R, the set of real numbers).

The domain, dom f, of a function f is the set of all x such that for some
y, 〈x, y〉 ∈ f . Then y is uniquely determined, by definition of function, and
it is called f (x). The range, ran f, of f is the set of all y such that f (x) = y
for some x .

A function f with domain A and range included in a set B is said to be
defined on A or from A into B. If the range of f equals B, then f is said to be
onto B.

The symbol “�→” is sometimes used to describe or define a function. A
function f is written as “x �→ f (x).” For example, “x �→ x3” or “ f : x �→ x3”
means a function f such that f (x) = x3 for all x (in the domain of f ).
To specify the domain, a related notation in common use is, for exam-
ple, “ f : A �→ B,” which together with a more specific definition of f in-
dicates that it is defined from A into B (but does not mean that f (A) = B; to
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distinguish the two related usages of �→, A and B are written in capitals and
members of them in small letters, such as x).

If X is any set and A any subset of X , the indicator function of A (on X )
is the function defined by

1A(x) :=
{

1 if x ∈ A
0 if x /∈ A.

(Many mathematicians call this the characteristic function of A. In probability
theory, “characteristic function” happens to mean a Fourier transform, to be
treated in Chapter 9.)

A sequence is a function whose domain is either N or the set {1, 2, . . .} of
all positive integers. A sequence f with f (n) = xn for all n is often written
as {xn}n≥1 or the like.

Formally, every set is a set of sets (every member of a set is also a set). If
a set is to be viewed, also informally, as consisting of sets, it is often called a
family, class, or collection of sets. Let V be a family of sets. Then the union
of V is defined by ⋃

V := {x : x ∈ A for some A ∈ V}.
Likewise, the intersection of a non-empty collection V is defined by⋂

V := {x : x ∈ A for all A ∈ V}.
So for any two sets A and B,

⋃{A, B} = A ∪ B and
⋂{A, B} = A ∩ B.

Notations such as
⋃

V and
⋂

V are most used within set theory itself. In
the rest of mathematics, unions and intersections of more than two sets are
more often written with indices. If {An}n≥1 is a sequence of sets, their union
is written as

⋃
n

An :=
∞⋃

n=1

An := {x : x ∈ An for some n}.

Likewise, their intersection is written as

⋂
n≥1

An :=
∞⋂

n=1

An := {x : x ∈ An for all n}.

The union of finitely many sets A1, . . . , An is written as

⋃
1≤i≤n

Ai :=
n⋃

i=1

Ai := {x : x ∈ Ai for some i = 1, . . . , n},

and for intersections instead of unions, replace “some” by “all.”
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More generally, let I be any set, and suppose A is a function defined on
I whose values are sets Ai := A(i). Then the union of all these sets Ai is
written ⋃

i

Ai :=
⋃
i∈I

Ai := {x : x ∈ Ai for some i}.

A set I in such a situation is called an index set. This just means that it is
the domain of the function i �→ Ai . The index set I can be omitted from the
notation, as in the first expression above, if it is clear from the context what
I is. Likewise, the intersection is written as⋂

i

Ai :=
⋂
i∈I

Ai := {x : x ∈ Ai for all i ∈ I }.

Here, usually, I is a non-empty set. There is an exception when the sets under
discussion are all subsets of one given set, say X . Suppose t /∈ I and let
At := X . Then replacing I by I ∪ {t} does not change

⋂
i∈I Ai if I is non-

empty. In case I is empty, one can set
⋂

i∈
© Ai = X .
Two more symbols from mathematical logic are sometimes useful as ab-

breviations: ∀ means “for all” and ∃ means “there exists.” For example,
(∀x ∈ A)(∃y ∈ B) . . . means that for all x in A, there is a y in B such that. . . .

Two sets A and B are called disjoint iff A ∩ B = 
©. Sets Ai for i ∈ I are
called disjoint iff Ai ∩ A j = 
© for all i 
= j in I .

Next, some definitions will be given for different classes of numbers, lead-
ing up to a definition of real numbers. It is assumed that the reader is familiar
with integers and rational numbers. A somewhat more detailed and formal
development is given in Appendix A.4.

Recall that N is the set of all nonnegative integers 0, 1, 2, . . . , Z denotes
the set of all integers 0, ±1, ±2, . . . , and Q is the set of all rational numbers
m/n, where m ∈ Z, n ∈ Z, and n 
= 0.

Real numbers can be defined in different ways. A familiar way is through
decimal expansions: x is a real number if and only if x = ±y, where y =
n + ∑∞

j=1 d j/10 j , n ∈ N, and each digit d j is an integer from 0 to 9. But
decimal expansions are not very convenient for proofs in analysis, and they
are not unique for rational numbers of the form m/10k for m ∈ Z, m 
= 0, and
k ∈ N. One can also define real numbers x in terms of more general sequences
of rational numbers converging to x , as in the completion of metric spaces to
be treated in §2.5.

The formal definition of real numbers to be used here will be by way of
Dedekind cuts, as follows: A cut is a set C ⊂ Q such that C /∈ 
©; C 
= Q;
whenever q ∈ C , if r ∈ Q and r < q then r ∈ C , and there exists s ∈ Q with
s > q and s ∈ C .
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Let R be the set of all real numbers; thus, formally, R is the set of all cuts.
Informally, a one-to-one correspondence between real numbers x and cuts C ,
written C = Cx or x = xC , is given by Cx = {q ∈ Q: q < x}.

The ordering x ≤ y for real numbers is defined simply in terms of cuts
by Cx ⊂ Cy . A set E of real numbers is said to be bounded above with an
upper bound y iff x ≤ y for all x ∈ E . Then y is called the supremum or least
upper bound of E , written y = sup E , iff it is an upper bound and y ≤ z for
every upper bound z of E . A basic fact about R is that for every non-empty
set E ⊂ R such that E is bounded above, the supremum y = sup E exists.
This is easily proved by cuts: Cy is the union of the cuts Cx for all x ∈ E , as
is shown in Theorem A.4.1 of Appendix A.

Similarly, a set F of real numbers is bounded below with a lower bound
v if v ≤ x for all x ∈ F , and v is the infimum of F, v = inf F , iff t ≤ v for
every lower bound t of F . Every non-empty set F which is bounded below
has an infimum, namely, the supremum of the lower bounds of F (which are
a non-empty set, bounded above).

The maximum and minimum of two real numbers are defined by
min(x, y) = x and max(x, y) = y if x ≤ y; otherwise, min(x, y) = y and
max(x, y) = x .

For any real numbers a ≤ b, let [a, b] := {x ∈ R: a ≤ x ≤ b}.
For any two sets X and Y , their Cartesian product, written X ×Y , is defined

as the set of all ordered pairs 〈x, y〉 for x in X and y in Y . The basic example
of a Cartesian product is R × R, which is also written as R2 (pronounced
r -two, not r -squared), and called the plane.

Problems

1. Let A := {3, 4, 5} and B := {5, 6, 7}. Evaluate: (a) A ∪ B. (b) A ∩ B.
(c) A\B. (d) A � B.

2. Show that 
© 
= {
©} and {
©} 
= {{
©}}.
3. Which of the following three sets are equal? (a) {{2, 3}, {4}}; (b) {{4},

{2, 3}}; (c) {{4}, {3, 2}}.
4. Which of the following are functions? Why?

(a) {〈1, 2〉, 〈2, 3〉, 〈3, 1〉}.
(b) {〈1, 2〉, 〈2, 3〉, 〈2, 1〉}.
(c) {〈2, 1〉, 〈3, 1〉, 〈1, 2〉}.
(d) {〈x, y〉 ∈ R2: x = y2}.
(e) {〈x, y〉 ∈ R2: y = x2}.

5. For any relation V (that is, any set of ordered pairs), define the domain of



P1: GHN/FEO P2: GBY/FEO QC: FLC/GFM T1: .

Cb444-01 KEY BOARDED May 11, 2002 12:33 Char Count= 0

1.2. Relations and Orderings 9

V as {x : 〈x, y〉 ∈ V for some y}, and the range of V as {y: 〈x, y〉 ∈ V for
some x}. Find the domain and range for each relation in the last problem
(whether or not it is a function).

6. Let A1 j := R × [ j − 1, j] and A2 j := [ j − 1, j] × R for j = 1, 2.
Let B := ⋃2

m=1

⋂2
n=1 Amn and C := ⋂2

n=1

⋃2
m=1 Amn . Which of the

following is true: B ⊂ C and/or C ⊂ B? Why?

7. Let f (x) := sin x for all x ∈ R. Of the following subsets of R, which
is f into, and which is it onto? (a) [−2, 2]. (b) [0, 1]. (c) [−1, 1].
(d) [−π, π].

8. How is Problem 7 affected if x is measured in degrees rather than radians?

9. Of the following sets, which are included in others? A := {3, 4, 5}; B :=
{{3, 4}, 5}; C := {5, 4}; and D := {{4, 5}}. Assume that no nonobvious
relations, such as 4 = {3, 5}, are true. More specifically, you can assume
that for any two sets x and y, at most one of the three relations holds:
x ∈ y, x = y, or y ∈ x , and that each nonnegative integer k is a set with
k members. Please explain why each inclusion does or does not hold.
Sample: If {{6, 7}, {5}} ⊂ {3, 4}, then by extensionality {6, 7} = 3 or 4,
but {6, 7} has two members, not three or four.

10. Let I := [0, 1]. Evaluate
⋃

x∈I [x , 2] and
⋂

x∈I [x , 2].

11. “Closed half-lines” are subsets of R of the form {x ∈ R: x ≤ b} or {x ∈
R: x ≥ b} for real numbers b. A polynomial of degree n on R is a function
x �→ an xn + · · · + a1x + a0 with an 
= 0. Show that the range of any
polynomial of degree n ≥ 1 is R for n odd and a closed half-line for
n even. Hints: Show that for large values of |x |, the polynomial has the
same sign as its leading term an xn and its absolute value goes to ∞.
Use the intermediate value theorem for a continuous function such as a
polynomial (Problem 2.2.14(d) below).

12. A polynomial on R2 is a function of the form 〈x, y〉 �→∑
0≤i≤k,0≤ j≤k ai j x i y j . Show that the ranges of nonconstant polyno-

mials on R2 are either all of R, closed half-lines, or open half-lines
(b, ∞) := {x ∈ R: x > b} or (−∞, b) := {x ∈ R: x < b}, where each
open or closed half-line is the range of some polynomial. Hint: For one
open half-line, try the polynomial x2 + (xy − 1)2.

1.2. Relations and Orderings

A relation is any set of ordered pairs. For any relation E , the inverse relation
is defined by E−1 := {〈y, x〉: 〈x, y〉 ∈ E}. Thus, a function is a special kind
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of relation. Its inverse f −1 is not necessarily a function. In fact, a function
f is called 1–1 or one-to-one if and only if f −1 is also a function. Given a
relation E , one often writes x Ey instead of 〈x, y〉 ∈ E (this notation is used
not for functions but for other relations, as will soon be explained). Given a
set X , a relation E ⊂ X × X is called reflexive on X iff x Ex for all x ∈ X .
E is called symmetric iff E = E−1. E is called transitive iff whenever x Ey
and yEz, we have x Ez. Examples of transitive relations are orderings, such
as x ≤ y.

A relation E ⊂ X × X is called an equivalence relation iff it is reflexive
on X , symmetric, and transitive. One example of an equivalence relation is
equality. In general, an equivalence relation is like equality; two objects x and
y satisfying an equivalence relation are equal in some way. For example, two
integers m and n are said to be equal mod p iff m − n is divisible by p. Being
equal mod p is an equivalence relation. Or if f is a function, one can define
an equivalence relation E f by x E f y iff f (x) = f (y).

Given an equivalence relation E , an equivalence class is a set of the form
{y ∈ X : yEx} for any x ∈ X . It follows from the definition of equivalence
relation that two equivalence classes are either disjoint or identical. Let
f (x) := {y ∈ X : yEx}. Then f is a function and x Ey if and only if f (x) =
f (y), so E = E f , and every equivalence relation can be written in the
form E f .

A relation E is called antisymmetric iff whenever x Ey and yEx , then
x = y. Given a set X , a partial ordering is a transitive, antisymmetric relation
E ⊂ X × X . Then 〈X, E〉 is called a partially ordered set. For example, for
any set Y , let X = 2Y (the set of all subsets of Y ). Then 〈2Y , ⊂〉, for the usual
inclusion ⊂, gives a partially ordered set. (Note: Many authors require that a
partial ordering also be reflexive. The current definition is being used to allow
not only relations ‘≤’ but also ‘<’ to be partial orderings.) A partial ordering
will be called strict if x Ex does not hold for any x . So “strict” is the opposite of
“reflexive.” For any partial ordering E , define the relation ≤ by x ≤ y iff (x Ey
or x = y). Then ≤ is a reflexive partial ordering. Also, define the relation < by
x < y iff (x Ey and x 
= y). Then < is a strict partial ordering. For example, the
usual relations < and ≤ between real numbers are connected in the way just
defined. A one-to-one correspondence between strict partial orderings E and
reflexive partial orderings F on a set X is given by F = E ∪ D and E = F\D,
where D is the “diagonal,” D := {〈x, x〉: x ∈ X}. From here on, the partial
orderings considered will be either reflexive, usually written ≤ (or ≥), or
strict, written < (or >). Here, as usual, “<” is read “less than,” and so forth.

Two partially ordered sets 〈X, E〉 and 〈Y, G〉 are said to be order-
isomorphic iff there exists a 1–1 function f from X onto Y such that for any
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u and x in X , uEx iff f (u)G f (x). Then f is called an order-isomorphism.
For example, the intervals [0, 1] and [0, 2], with the usual ordering for
real numbers, are order-isomorphic via the function f (x) = 2x . The interval
[0, 1] is not order-isomorphic to R, which has no smallest element.

From here on, an ordered pair 〈x, y〉 will often be written as (x, y) (this is,
of course, still different from the unordered pair {x, y}).

A linear ordering E of X is a partial ordering E of X such that for all x and
y ∈ X , either x Ey, yEx , or x = y. Then 〈X, E〉 is called a linearly ordered
set. The classic example of a linearly ordered set is the real line R, with its
usual ordering. Actually, (R, <), (R, ≤), (R, >), and (R, ≥) are all linearly
ordered sets.

If (X, E) is any partially ordered set and A is any subset of X , then {〈x, y〉 ∈
E : x ∈ A and y ∈ A} is also a partial ordering on A. Suppose we call it E A.
For most orderings, as on the real numbers, the orderings of subsets will be
written with the same symbol as on the whole set. If (X, E) is linearly ordered
and A ⊂ X , then (A, E A) is also linearly ordered, as follows directly from
the definitions.

Let W be a set with a reflexive linear ordering ≤. Then W is said to be
well-ordered by ≤ iff for every non-empty subset A of W there is a smallest
x ∈ A, so that for all y ∈ A, x ≤ y. The corresponding strict linear ordering
< will also be called a well-ordering. If X is a finite set, then any linear
ordering of it is easily seen to be a well-ordering. The interval [0, 1] is not
well-ordered, although it has a smallest element 0, since it has subsets, such
as {x : 0 < x ≤ 1}, with no smallest element.

The method of proof by mathematical induction can be extended to well-
ordered sets, as follows. Suppose (X, <) is a well-ordered set and that we
want to prove that some property holds for all elements of X . If it does not,
then there is a smallest element for which the property fails. It suffices, then,
to prove that for each x ∈ X , if the property holds for all y < x , then it holds
for x . This “induction principle” will be treated in more detail in §1.3.

Problems

1. For any partial ordering E , show that E−1 is also a partial ordering.

2. For two partially ordered sets 〈A, ≤〉 and 〈B, ≤〉, the lexicographical or-
dering on the Cartesian product A × B is defined by 〈a, b〉 ≤ 〈c, d〉 iff
a < c or (a = c and b ≤ d). (For example, if A and B are both an alpha-
bet with the usual ordering, then we have the dictionary or “alphabetical”
ordering of two-letter words or strings.) If the orderings on A and B are
linear, show that the lexicographical ordering is linear on A × B. If A
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and B are well-ordered by the given relations, show that A × B is also
well-ordered.

3. Instead, let 〈a, b〉 ≤ 〈c, d〉 iff both a ≤ c and b ≤ d . Show that this is
a partial ordering. If A and B each contain more than one element, show
that A × B is never linearly ordered by such an ordering.

4. On R2 let 〈x, y〉E〈u, v〉 iff x + y = u + v, 〈x, y〉F〈u, v〉 iff x + y ≤ u +v,
and 〈x, y〉G〈u, v〉 iff x + u ≤ y + v. Which of E, F , and G is an equiva-
lence relation, a partial ordering, or a linear ordering? Why?

5. For sequences {xn} of real numbers let {xn}E{yn} iff limn→∞xn − yn = 0
and {xn}F{yn} iff limn→∞xn −yn = 1. Which of E and F is an equivalence
relation and/or a partial ordering? Why?

6. For any two relations E and F on the same set X , define a relation
G := E ◦ F by xGz iff for some y, x Ey and yFz. For each of the fol-
lowing properties, if E and F both have the property, prove, or disprove
by an example, that G also has the property: (a) reflexive, (b) symmetric,
(c) transitive.

7. Refer to Problem 6 and answer the same question in regard to the following
properties: (d) antisymmetric, (e) equivalence relation, (f) function.

*1.3. Transfinite Induction and Recursion

Mathematical induction is a well-known and useful method of proving facts
about nonnegative integers. If F(n) represents a statement that one wants to
prove for all n ∈ N, and a direct proof is not apparent, one first proves F(0).
Then, in proving F(n + 1), one can assume that F(n) is true, which is often
helpful. Or, if you prefer, you can assume that F(0), F(1), . . . , F(n) are all
true. More generally, let (X, <) be any partially ordered set. A subset Y ⊂ X
will be called inductive if, for every x ∈ X such that y ∈ Y for all y ∈ X such
that y < x , we have x ∈ Y . If X has a least element x , then there are no y < x ,
so x must belong to any inductive subset Y of X . In ordinary induction, Y is
the set of all n for which F(n) holds. Proving that Y is inductive gives a proof
that Y = N, so that F(n) holds for all n. In R, the set (−∞, 0) is inductive, but
it is not all of R. The set N is well-ordered, but R is not: the set {x ∈ R: x > 1}
has no least element. One of the main advantages of well-orderings is that
they allow the following extension of induction:

1.3.1. Induction Principle Let X be any set well-ordered by a relation <.
Let Y be any inductive subset of X . Then Y = X .
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Proof. If X\Y = 
©, the conclusion holds. Otherwise, if not, let y be the least
element of X\Y . Then x ∈ Y for all x < y (perhaps vacuously, if y is the
least element of X ), so y ∈ Y , a contradiction. �

For any linearly ordered set (X, ≤), an initial segment is a subset Y ⊂ X
such that whenever x < y and y ∈ Y , then also x ∈ Y . Then if (X, ≤) is the
real line with usual ordering and Y an initial segment, then either Y = X or,
for some y, either Y = {x : x < y} or Y = {x : x ≤ y}.

In ordinary mathematical induction, the set (X, <) is order-isomorphic
to N, the set of nonnegative integers, or to some initial segment of it (finite
integer) with usual ordering. Transfinite induction refers to induction for
an (X, <) with a more complicated well-ordering. One example is “double
induction.” To prove a statement F(m, n) for all nonnegative integers m and
n, one can first prove F(0, 0). Then in proving F(m, n) one can assume that
F( j, k) is true for all j < m and all k ∈ N, and for j = m and k < n. (In this case
the well-ordering is the “lexicographical” ordering mentioned in Problem 2 of
§1.2.) Other well-orderings of N × N may also be useful. Much of set theory
is concerned with well-orderings more general than those of sequences, such
as well-orderings of R, although these are in a sense nonconstructive (well-
ordering of general sets, and of R in particular, depends on the axiom of
choice, to be treated in §1.5).

Another very important method in mathematics, definition by recursion,
will be developed next. In its classical form, a function f is defined by speci-
fying f (0), then defining f (n) in terms of f (n − 1) and possibly other values
of f (k) for k < n. Such recursive definitions will also be extended to well-
ordered sets. For any function f and A ⊂ dom f , the restriction of f to A is
defined by f � A := {〈x, f (x)〉: x ∈ A}.

1.3.2. Recursion Principle Let (X, <) be a well-ordered set and Y any set.
For any x ∈ X , let I (x) := {u ∈ X : u < x}. Let g be a function whose do-
main is the set of all j such that for some x ∈ X, j is a function from I (x)
into Y , and such that ran g ⊂ Y . Then there is a unique function f from X
into Y such that for every x ∈ X, f (x) = g( f � I (x)).

Note. If b is the least element of X and we want to define f (b) = c, then we
set g(
©) = c and note that I (b) = 
©.

Proof. If X = 
©, then f = 
© and the conclusion holds. So suppose X is
non-empty and let b be its smallest element. Let J (x) := {u ∈ X : u ≤ x} for
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each x ∈ X . Let T be the set of all x ∈ X such that on J (x), there is a function
f such that f (u) = g( f � I (u)) for all u ∈ J (x). Let us show that if such an f
exists, it is unique. Let h be another such function. Then h(b) = g( 
©) = f (b).
By induction (1.3.1), for each u ∈ J (x), h(u) = g( f � I (u)) = f (u). So f
is unique. If x < u for some u in T and f as above is defined on J (u), then
f � J (x) has the desired properties and is the f for J (x) by uniqueness. Thus
T is an initial segment of X . The union of all the functions f for all x ∈ T is
a well-defined function, which will also be called f . If T 
= X , let u be the
least element of X\T . But then T = I (u) and f ∪ {〈u, g( f )〉} is a function
on J (u) with the desired properties, so u ∈ T , a contradiction. So f exists.
As it is unique on each J (x), it is unique. �

For any function f on a Cartesian product A×B, one usually writes f (a, b)
rather than f (〈a, b〉). The classical recursion on the nonnegative integers can
then be described as follows.

1.3.3. Corollary (Simple Recursion) Let Y be any set, c ∈ Y , and h any
function from N × Y into Y . Then there is a function f from N into Y with
f (0) = c and for each n ∈ N, f (n + 1) = h(n, f (n)).

Proof. To apply 1.3.2, let g( 
©) = c. Let j be any function from some non-
empty I (n) into Y . (Note that I (n) is empty if and only if n = 0.) Then
n − 1 is the largest member of I (n). Let g( j) = h(n − 1, j(n − 1)). Then
the function g is defined on all such functions j , and 1.3.2 applies to give a
function f . Now f (0) = c, and for any n ∈ N, f (n + 1) = g( f � I (n + 1)) =
h(n, f (n)). �

Example. Let t be a function with real values defined on N. Let

f (n) =
n∑

j=0

t( j).

To obtain f by simple recursion (1.3.3), let c = t(0) and h(n, y) = t(n + 1) + y
for any n ∈ N and y ∈ R. A computer program to compute f , given a program
for t , could well be written along the lines of this recursion, which in a sense
reduces the summation to simple addition.

Example. General recursion (1.3.2) can be used to define the function f such
that for n = 1, 2, . . . , f (n) is the nth prime: f (1) = 2, f (2) = 3, f (3) =
5, f (4) = 7, f (5) = 11, and so on. On the empty function, g is defined as
2, and so f (1) = 2. Given j on J (n) = {1, 2, . . . , n} = I (n + 1), let g( j)


