Out of the Blue

Why is the sky blue and why are sunsets red? When can I see a rainbow? Why is the Moon sometimes visible in daylight? In *Out of the Blue*, skywatcher John Naylor offers practical advice about where and when you can expect to see natural phenomena, what you will see and how to improve your chances of seeing it. He takes in both the night sky and the day sky, and deals only with what can be seen with the naked eye. Drawing on science, history, literature and mythology, and written in a popular style that assumes only basic scientific knowhow, *Out of the Blue* is for everyone who enjoys being outdoors and who feels curious or puzzled about things optical and astronomical.

JOHN NAYLOR has been fascinated by the night sky since he was a child growing up in Peru, and by the daytime sky as an adult. He went to London University to study engineering and philosophy, and now teaches physics at a secondary school in London. Cambridge University Press 0521809258 - Out of the Blue: A 24-Hour Skywatcher's Guide John Naylor Frontmatter <u>More information</u>

Out of the Blue

A 24-hour Skywatcher's Guide

JOHN NAYLOR

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011–4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© J. C. Naylor 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in Italy at G. Canale & C. S.p.A.

Typeface Trump Medieval 9.5/13pt System QuarkXPress[™] [SE]

A catalogue record for this book is available from the British Library

ISBN 0 521 80925 8 hardback

All diagrams drawn by the author, John Naylor

Contents

Preface Introduction		xi 1
1	 Daylight 1.1 The colour of the daytime sky 1.2 Why is the sky blue? 1.3 Airlight 1.4 Aerial perspective 1.5 How far can you see? 1.6 Polarised light 1.7 Polarised light from the sky 1.8 Polarised light due to reflections 1.9 Haidinger's brush 	5 5 7 11 14 18 20 21 25 27
2	Shadows2.1No light without shadow2.2Solar shadows2.3Shadows formed by point sources2.4Mach bands2.5Coloured shadows2.6The <i>heiligenschein</i> 2.7Shadows on water2.8Shadows formed by clouds2.9Shadows under trees in leaf	29 29 30 33 35 36 39 43 46 48
3	Mirages3.1Atmospheric refraction3.2Inferior mirages3.3Superior mirages3.4Lake monsters3.5Looming and unusual visual range	50 50 53 57 61 62
4	Sunset and sunrise 4.1 Sunset 4.2 Twilight 4.3 Clouds at sunset	64 64 70 73

	4.4	The purple light	75
	4.5	Crepuscular rays	77
	4.6	Mountain shadows	79
	4.7	Abnormal twilights	79
	4.8	The Sun at the horizon	80
	4.9	Green flashes	84
	4.10	The Purkinje effect	86
5	Rainb	ows	88
	5.1	Unweaving the rainbow	88
	5.2	How to recognise a rainbow	91
	5.3	Looking for rainbows	95
	5.4	Supernumerary bows	97
	5.5	Circular rainbows	99
	5.6	Rainbows at sunset and sunrise	101
	5.7	Lunar rainbows	102
	5.8	Reflection rainbows	103
	5.9	Reflected rainbows	105
	5.10	Spray bows	106
	5.11	Fog bows	106
	5.12	Rainbow wheels	108
	5.13	Horizontal rainbows	109
	5.14	Searchlight rainbows	111
	5.15	Eclipse rainbows	112
	5.16	Anomalous rainbows	112
	5.17	Explaining the rainbow	114
	5.18	Tertiary rainbows	122
	5.19	Polarised rainbows	123
	5.20	Are rainbows real?	123
	5.21	Notes for rainbow observers	125
6	ა Coronae and glories		127
	6.1	Coronae	127
	6.2	Other situations in which coronae are seen	130
	6.3	Cloud iridescence	131
	6.4	Glories	133
	6.5	Notes for observers of coronae and glories	135
7	Atmos	spheric halos	136
	7.1	Ice halos	136
	7.2	22° halo	139

	7.3	Upper tangent arc	144
	7.4	46° halo	144
	7.5	Rare halos	145
	7.6	Parhelia	146
	7.7	Circumzenithal and circumhorizontal arcs	149
	7.8	The parhelic circle	151
	7.9	Sun pillars	152
	7.10	Subsuns	152
	7.11	Notes for ice halo observers	154
8	The ni	aht sky	157
	8.1	A brief history of the sky	157
	8.2	Naked-eye astronomy	161
	8.3	The celestial sphere	163
	8.4	The ecliptic	165
	8.5	The apparent motion of the Sun	167
	8.6	Why is the sky dark at night?	169
	8.7	The sky beyond the equator	170
9	The N	loon	171
	9.1	Observing the Moon	171
	9.2	The Earth–Moon system	172
	9.3	Looking at the Moon without a telescope	176
	9.4	The lunar surface	180
	9.5	The best time to look at the Moon	183
	9.6	The Moon in daylight	185
	9.7	How bright is the Moon?	188
	9.8	Earthshine	193
	9.9	Moonlight	195
	9.10	The Moon illusion	197
	9.11	A Blue Moon	198
	9.12	Sidereal and synodic months	199
	9.13	Finding the Moon in the sky	200
	9.14	Moonrise and moonset	204
	9.15	The lunar day	207
	9.16	Libration	208
	9.17	Lunar puzzles	210
	9.18	The Moon's phases	213
10	Eclips	es	219
	10.1	Chasing eclipses	219

	 10.2 Solar eclipses 10.3 Preparing to see an eclipse 10.4 Watching a solar eclipse 10.5 Eclipse checklist 10.6 Explaining a solar eclipse 10.7 Eclipses of the Moon 	220 222 224 227 231 236
11	Planets11.1The Solar System11.2How to tell a planet from a star11.3Inferior and superior planets11.4Where to look for an inferior planet11.5Mercury11.6Venus11.7Where to look for a superior planet11.8Apparent changes in brightness of superior planets	240 246 249 250 252 252 254 254
12	Stars12.1Light without form12.2Where are the stars?12.3Star brightness12.4Star colours12.5Looking at stars through a telescope12.6Why do stars twinkle?12.7Seeing in the dark12.8Peripheral vision12.9Why are stars star-shaped?12.10Constellations	258 258 261 266 271 272 274 275 277 277 278
13	Comets and meteors13.1Comets13.2Meteors13.3Artificial satellites13.4Aurorae13.5Zodiacal light	282 282 287 293 294 297
	APPENDIX: Technical and practical advice for skygazing Estimating distance A primer on angles Binoculars A cloud primer	300 300 301 302 304

Glossary	306
Further reading	316
Sources and notes	319
Index	345

ix

Preface

This book is about things that can be seen in the sky. We all look at the sky from time to time, though usually it is to check the weather. By and large we don't look at it for enjoyment, in part because we don't know what to look for. Very few people who are unfamiliar with the many wonderful sights to be seen in the sky accidentally notice halos or sundogs, two of the most common optical phenomena. To be sure of seeing these and other sights, you must know what to look for and when to look. This is where I hope this book will come in useful. It has been written to help you find your way around the sky, and see for yourself the many wonderful things that it has to offer.

My earliest memory of looking at the sky is of having the three stars that make up Orion's Belt pointed out to me. I can't recall what I made of them; I remember being told that they are distant suns, though that didn't mean much to me at the time. I was, I think, six or seven years old.

It was, nevertheless, a defining moment, the start of a lifelong fascination with the sky. But for many years that interest was overwhelmingly bookish. I read about the stars, but I didn't look at them; or, at any rate, not often. And when I did, it was invariably a brief, careless, unreflective glance. I looked, but I didn't see. And I didn't see because I didn't really know what to look for.

The turning point was a book by Marcel Minnaert, a Dutch astronomer. The book was *The Nature of Light and Colour in the Open Air*, and it made me look afresh at things that I had all but ignored, and look out for things which I had never seen.

For the first time in my life, I saw one of the most common sights in the sky, an ice halo around the Sun; I noticed a mirage of a distant island; I spotted a *heiligenschein*, the faint glow sometimes visible around the shadow of your head; I counted the colours in a rainbow. I began to take notice of the atmosphere itself, and of how it alters and transforms the way things appear to us. I was amazed at how much there was to see. All I had to do was keep my eyes peeled, something I could do while looking out of the window, pottering about in the garden, or walking to work.

It wasn't long before I found myself searching the night sky for similar sights. I began to realise that the night sky is about much more than stars

PREFACE

and planets. It is a dynamic entity. Gradually I fell in step with its rhythms: the nightly procession of stars, the monthly race around the heavens between the Sun and Moon, the yearly coming and going of planets, and much else.

As I learned more about the sky, the idea of this book took shape. I have called it *Out of the Blue* because its deals with phenomena that most of us have only seen by accident in the sky. It is a guide to a vast range of optical and astronomical phenomena, many of which occur daily, and which can be seen and understood without instruments or specialised knowledge. It has been written for anyone who is curious about, puzzled by, or just downright ignorant of the many optical phenomena that can be seen in the course of daily life. It offers practical advice about where and when you can expect to see these things, what you will see, and how to improve your chances of seeing them. It gives equal weight to the night sky and the day sky, and deals only with phenomena that can be seen with the naked eye. This is, after all, how most of us see things: we don't usually have telescopes or binoculars to hand.

I also hope that the book will help you make sense of what you see. I have assumed that you are a casual observer, and don't have a single focus of interest. You enjoy nature but are not, for example, a dedicated amateur astronomer or meteorologist. The text is thus a mixture of description and explanation, and draws on science, history, literature, mythology and anecdote. Explanations assume little or no scientific knowledge. Technical terms are kept to a minimum, are explained in the main text, and again in a glossary at the end of the book. Should you want to look into a particular phenomenon in greater detail, there is a comprehensive reference section in the sources and notes.

I could not have written this book without a great deal of help from a good many people. I should like to thank Jos Widdershoven, a one-time student of Marcel Minnaert, for introducing me to the sky; Gerald King for asking a lot of awkward questions; Alastair McBeith for reading an early draft, and setting me right on astronomical matters; Pekka Parviainen for his generosity and patience, not to mention his stunning photographs; Claudia Hinz and Francisco Diego similarly; several anonymous reviewers who spotted mistakes and made helpful suggestions; Mairi Sutherland for her hard work knocking my prose into shape and helping me to express myself more clearly; Faith Evans, my agent for dealing with the business side of things; and, most importantly, Sue, my wife, who never doubted that this book would see the light of day, for her encouragement, constructive criticism and much, much more.